首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Takahashi  B Blazy  A Baudras 《Biochemistry》1980,19(22):5124-5130
The binding of adenosine cyclic 3',5'-monophosphate (cAMP) and guanosine cyclic 3',5'-monophosphate (cGMP) to the adenosine cyclic 3',5'-monophosphate receptor protein (CRP) from Escherichia coli was investigated by equilibrium dialysis at pH 8.0 and 20 degrees C at different ionic strengths (0.05--0.60 M). Both cAMP and cGMP bind to CRP with a negative cooperativity that is progressively changed to positive as the ionic strength is increased. The binding data were analyzed with an interactive model for two identical sites and site/site interactions with the interaction free energy--RT ln alpha, and the intrinsic binding constant K and cooperativity parameter alpha were computed. Double-label experiments showed that cGMP is strictly competitive with cAMP, and its binding parameters K and alpha are not very different from that for cAMP. Since two binding sites exist for each of the cyclic nucleotides in dimeric CRP and no change in the quaternary structure of the protein is observed on binding the ligands, it is proposed that the cooperativity originates in ligand/ligand interactions. When bound to double-stranded deoxyribonucleic acid (dsDNA), CRP binds cAMP more efficiently, and the cooperativity is positive even in conditions of low ionic strength where it is negative for the free protein. By contrast, cGMP binding properties remained unperturbed in dsDNA-bound CRP. Neither the intrinsic binding constant K nor the cooperativity parameter alpha was found to be very sensitive to changes of pH between 6.0 and 8.0 at 0.2 M ionic strength and 20 degrees C. For these conditions, the intrinsic free energy and entropy of binding of cAMP are delta H degree = -1.7 kcal . mol-1 and delta S degree = 15.6 eu, respectively.  相似文献   

2.
3.
4.
5.
Cyclic AMP inhibits growth rate of E. coli Hfr 3000. Doubling times in glucose minimal medium increased from 60 to about 90 minutes with the addition of 5 mM cAMP. This effect is specific since it was not observed when the cyclic nucleotide was replaced by 5′ AMP, ADP, ATP or adenosine. Half maximal inhibition was obtained with 1 to 3 mM cyclic AMP. This inhibition occurs only with those carbon sources which are known to decrease intracellular cyclic AMP levels, i.e. glucose and pyruvate. No inhibition was observed with succinate, malate or glycerol.  相似文献   

6.
During temperature-induced transition of the dimorphic pathogenic fungus Histoplasma capsulatum from the single yeast cell form to the multicellular mycelial form, there was an increase in intracellular cyclic adenosine 3',5'-monophosphate (cAMP) levels as well as a striking accumulation of cAMP in the medium. cAMP levels also changed during the reverse mycelium-to-yeast transition.  相似文献   

7.
The cAMP-signaling pathway is composed of multiple components ranging from receptors, G proteins, and adenylyl cyclase to protein kinase A. A common view of the molecular interaction between them is that these molecules are disseminated on the plasma lipid membrane and random collide with each other to transmit signals. A limitation to this idea, however, is that a signaling cascade involving multiple components may not occur rapidly. Caveolae and their principal component, caveolin, have been implicated in transmembrane signaling, particularly in G protein-coupled signaling. We examined whether caveolin interacts with adenylyl cyclase, the membrane-bound enzyme that catalyzes the conversion of ATP to cAMP. When overexpressed in insect cells, types III, IV, and V adenylyl cyclase were localized in caveolin-enriched membrane fractions. Caveolin was coimmunoprecipitated with adenylyl cyclase in tissue homogenates and copurified with a polyhistidine-tagged form of adenylyl cyclase by Ninitrilotriacetic acid resin chromatography in insect cells, suggesting the colocalization of adenylyl cyclase and caveolin in the same microdomain. Further, the regulatory subunit of protein kinase A (RIIalpha, but not RIalpha) was also enriched in the same fraction as caveolin. Gsalpha was found in both caveolin-enriched and non-caveolin-enriched membrane fractions. Our data suggest that the cAMP-signaling cascade occurs within a restricted microdomain of the plasma membrane in a highly organized manner.  相似文献   

8.
9.
10.
Wang ZW  Liu XL 《Bioresource technology》2008,99(17):8245-8251
Statistics based experimental designs were used to optimize the medium for antifungal active substances production from a newly isolated Paenibacillus polymyxa Cp-S316 in shaker flask cultivation. The medium components having significant effect on the production were first identified using a fractional factorial design. Then steepest ascent method was employed to approach the experimental design space, followed by an application of response surface methodology for further optimization. A quadratic model was found to fit the antifungal active substances production. Response surface analysis revealed that the optimum values of the tested variables for the production of active substances were 12.3 (g/l) lactose, 17.5 (g/l) peptone, 0.4 (g/l) sodium nitrate, 4.5 (g/l) magnesium sulfate and 100 (g/l) potato. A production of 4687.71mug/ml, which was in agreement with the prediction, was observed in verification experiment. In comparison to the production of basal medium, 3.05-fold increase had been obtained.  相似文献   

11.
12.
13.
14.
15.
16.
Nattokinase is a potent fibrinolytic enzyme with the potential for fighting cardiovascular diseases. Most recently, a new Bacillus subtilis/Escherichia coli (B. subtilis/E. coli) shuttle vector has been developed to achieve stable production of recombinant nattokinase in B. subtilis (Chen; et al. 2007, 23, 808-813). With this developed B. subtilis strain, the design of an optimum but cost-effective medium for high-level production of recombinant nattokinase was attempted by using response surface methodology. On the basis of the Plackett-Burman design, three critical medium components were selected. Subsequently, the optimum combination of selected factors was investigated by the Box-Behnken design. As a result, it gave the predicted maximum production of recombinant nattokinase with 71 500 CU/mL for shake-flask cultures when the concentrations of soybean hydrolysate, potassium phosphate, and calcium chloride in medium were at 6.100, 0.415, and 0.015%, respectively. This was further verified by a duplicated experiment. Moreover, the production scheme based on the optimum medium was scaled up in a fermenter. The batch fermentation of 3 L was carried out by controlling the condition at 37 degrees C and dissolved oxygen reaching 20% of air saturation level while the fermentation pH was initially set at 8.5. Without the need for controlling the broth pH, recombinant nattokinase production with a yield of 77 400 CU/mL (corresponding to 560 mg/L) could be obtained in the culture broth within 24 h. In particular, the recombinant B. subtilis strain was found fully stable at the end of fermentation when grown on the optimum medium. Overall, it indicates the success of this experimental design approach in formulating a simple and cost-effective medium, which provides the developed strain with sufficient nutrient supplements for stable and high-level production of recombinant nattokinase in a fermenter.  相似文献   

17.
Inhibition of E. coli growth by cyclic adenosine monophosphate is observed in wild type strains cultured in glucose as carbon source, but not in a cyclic AMP receptor protein deficient mutant. A deletion mutant of the adenylate cyclase gene requires cyclic adenosine monophosphate for optimal growth. Using glucose as carbon source, 2 mM cyclic AMP promotes maximal rates of cell multiplication in this mutant; however higher concentrations of the nucleotide inhibit growth. Cell multiplication of wild type strains grown in glycerol is not affected by cyclic adenosine monophosphate. Nevertheless, in this carbon source the growth rate of the adenylate cyclase mutant is strongly inhibited by concentrations of this nucleotide beyond 0.1 mM. This suggests that growth inhibition by exogenous cyclic adenosine monophosphate is highly dependent on the intracellular levels of the nucleotide.  相似文献   

18.
Incubation of purified cyclic guanosine 3':5'-monophospate-dependent protein kinase with [gamma-32P]ATP and Mg2+ led to formation of one 32P-labeled protein, Mr = 75,000, which corresponded to the single protein band detected after polyacrylamide gel electrophoresis in sodium dodecyl sulfate. When electrophoresis was performed without detergent, the labeled protein coincided with the position of cGMP-dependent protein kinase activity. Phosphorylation was enhanced severalfold by either histone or cAMP and was inhibited by the addition of cGMP. Low concentrations of cGMP blocked the stimulatory effects of cAMP or histone (or both). Since neither cAMP-dependent protein kinase nor cGMP-dependent phosphoprotein phosphatase activities were detected in the purified enzyme, we concluded that the cGMP-dependent protein kinase is a substrate for its own phosphotransferase activity and that other protein substrates (histone) and cyclic nucleotides modulate the process of self-phosphorylation.  相似文献   

19.
The biosynthesis of 1-methyladenine (1-MeAde) in follicle cells of the starfish, Asterina pectinifera, occurred in response to a gonad-stimulating substance (GSS). Simultaneously with 1-MeAde production, the intracellular cAMP level immediately increased following the administration of GSS. This level in follicle cells markedly depended on GSS concentration. Although 1-MeAde production was also induced by 1-methyladenosine, it caused no increase in cAMP content. It thus appears that the effect of GSS on starfish follicle cells results in the receptor-mediated formation of cAMP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号