首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The APOBEC3 genes encode cytidine deaminases that act as components of an intrinsic immune defense that have potent activity against a variety of retroelements. This family of genes has undergone a rapid expansion from one or two genes in nonprimate mammals to at least seven members in primates. Here we describe the evolution and function of an uncharacterized antiviral effector, APOBEC3H, which represents the most evolutionarily divergent APOBEC3 gene found in primates. We found that APOBEC3H has undergone significant adaptive evolution in primates. Consistent with our previous findings implicating adaptively evolving APOBEC3 genes as antiviral effectors, APOBEC3H from Old World monkeys (OWMs) has efficient antiviral activity against primate lentiviruses, is sensitive to inactivation by the simian immunodeficiency virus Vif protein, and is capable of hypermutating retroviral genomes. In contrast, human APOBEC3H is inherently poorly expressed in primate cells and is ineffective at inhibiting retroviral replication. Both OWM and human APOBEC3H proteins can be expressed in bacteria, where they display significant DNA mutator activity. Thus, humans have retained an APOBEC3H gene that encodes a functional, but poorly expressed, cytidine deaminase with no apparent antiviral activity. The consequences of the lack of antiviral activity of human APOBEC3H are likely to be relevant to the current-day abilities of humans to combat retroviral challenges.  相似文献   

2.
Li MM  Emerman M 《Journal of virology》2011,85(16):8197-8207
The APOBEC3 family of cytidine deaminases is part of the innate host defense targeted toward retroviruses and retroelements. APOBEC3H is the most distantly related member of the family and carries functional polymorphisms in current human populations. Haplotype II of APOBEC3H, which is more commonly found in individuals of African descent, encodes a protein with the highest antiviral activity in cells, whereas the other haplotypes encode proteins with weak or no antiviral activity. Here, we show that the different human APOBEC3H haplotypes exhibit differential subcellular localizations, as the haplotype I protein is mostly found in the nucleus and the haplotype II protein is mostly localized to the cytoplasm. The determinant responsible for this phenotype maps to a single amino acid that is also important for APOBEC3H protein stability. Furthermore, we show that the cytoplasmic localization is dominant over nuclear localization, by using fusion proteins of APOBEC3H. Our data support a model in which the APOBEC3H protein encoded by haplotype II is actively retained in the cytoplasm by interacting with specific host factors, whereas the less active protein encoded by haplotype I is allowed to enter the nucleus by a passive mechanism. Together, cytoplasmic localization and its link with protein stability correlate with the ability of APOBEC3H to inhibit HIV replication, providing a mechanistic basis for the differential antiviral activities of different APOBEC3H haplotypes.  相似文献   

3.
The Vif protein of HIV-1 allows virus replication by degrading several members of the host-encoded APOBEC3 family of DNA cytosine deaminases. Polymorphisms in both host APOBEC3 genes and the viral vif gene have the potential to impact the extent of virus replication among individuals. The most genetically diverse of the seven human APOBEC3 genes is APOBEC3H with seven known haplotypes. Overexpression studies have shown that a subset of these variants express stable and active proteins, whereas the others encode proteins with a short half-life and little, if any, antiviral activity. We demonstrate that these stable/unstable phenotypes are an intrinsic property of endogenous APOBEC3H proteins in primary CD4+ T lymphocytes and confer differential resistance to HIV-1 infection in a manner that depends on natural variation in the Vif protein of the infecting virus. HIV-1 with a Vif protein hypo-functional for APOBEC3H degradation, yet fully able to counteract APOBEC3D, APOBEC3F, and APOBEC3G, was susceptible to restriction and hypermutation in stable APOBEC3H expressing lymphocytes, but not in unstable APOBEC3H expressing lymphocytes. In contrast, HIV-1 with hyper-functional Vif counteracted stable APOBEC3H proteins as well as all other endogenous APOBEC3s and replicated to high levels. We also found that APOBEC3H protein levels are induced over 10-fold by infection. Finally, we found that the global distribution of stable/unstable APOBEC3H haplotypes correlates with the distribution a critical hyper/hypo-functional Vif amino acid residue. These data combine to strongly suggest that stable APOBEC3H haplotypes present as in vivo barriers to HIV-1 replication, that Vif is capable of adapting to these restrictive pressures, and that an evolutionary equilibrium has yet to be reached.  相似文献   

4.
5.
6.
Antiviral defense by APOBEC3 family proteins   总被引:1,自引:0,他引:1  
Takaori A 《Uirusu》2005,55(2):267-272
APOBEC3G is a potent antiretroviral factor, which belongs to the APOBEC superfamily of cytidine deaminases. It deaminates cytidine to uridine in nascent minus-strand viral DNA, inducing G-to-A hypermutation in the plus-strand viral DNA. HIV-1 Vif protein overcomes the antiviral activity of APOBEC3G by targeting it for ubiquitin-dependent degradation. Recent accumulating evidences that other members of APOBEC proteins also show antiviral activity on a wide variety of viruses suggest that APOBEC family proteins play a crucial role in an antiviral defense as an innate immunity. Here, we review recent progress in research on APOBEC3 proteins.  相似文献   

7.
8.
Successful intracellular pathogens must evade or neutralize the innate immune defenses of their host cells and render the cellular environment permissive for replication. For example, to replicate efficiently in CD4(+) T lymphocytes, human immunodeficiency virus type 1 (HIV-1) encodes a protein called viral infectivity factor (Vif) that promotes pathogenesis by triggering the degradation of the retrovirus restriction factor APOBEC3G. Other APOBEC3 proteins have been implicated in HIV-1 restriction, but the relevant repertoire remains ambiguous. Here we present the first comprehensive analysis of the complete, seven-member human and rhesus APOBEC3 families in HIV-1 restriction. In addition to APOBEC3G, we find that three other human APOBEC3 proteins, APOBEC3D, APOBEC3F, and APOBEC3H, are all potent HIV-1 restriction factors. These four proteins are expressed in CD4(+) T lymphocytes, are packaged into and restrict Vif-deficient HIV-1 when stably expressed in T cells, mutate proviral DNA, and are counteracted by HIV-1 Vif. Furthermore, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H of the rhesus macaque also are packaged into and restrict Vif-deficient HIV-1 when stably expressed in T cells, and they are all neutralized by the simian immunodeficiency virus Vif protein. On the other hand, neither human nor rhesus APOBEC3A, APOBEC3B, nor APOBEC3C had a significant impact on HIV-1 replication. These data strongly implicate a combination of four APOBEC3 proteins--APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H--in HIV-1 restriction.  相似文献   

9.
The human immunodeficiency virus type 1 (HIV-1) relies on Vif (viral infectivity factor) to overcome the potent antiviral function of APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G, also known as CEM15). Using an APOBEC3G-specific antiserum, we now show that Vif prevents virion incorporation of endogenous APOBEC3G by effectively depleting the intracellular levels of this enzyme in HIV-1-infected T cells. Vif achieves this depletion by both impairing the translation of APOBEC3G mRNA and accelerating the posttranslational degradation of the APOBEC3G protein by the 26S proteasome. Vif physically interacts with APOBEC3G, and expression of Vif alone in the absence of other HIV-1 proteins is sufficient to cause depletion of APOBEC3G. These findings highlight how the bimodal translational and posttranslational inhibitory effects of Vif on APOBEC3G combine to markedly suppress the expression of this potent antiviral enzyme in virally infected cells, thereby effectively curtailing the incorporation of APOBEC3G into newly formed HIV-1 virions.  相似文献   

10.
11.
Liu B  Yu X  Luo K  Yu Y  Yu XF 《Journal of virology》2004,78(4):2072-2081
The Vif protein of human immunodeficiency virus type 1 (HIV-1) is essential for viral evasion of the host antiviral protein APOBEC3G, also known as CEM15. Vif mutant but not wild-type HIV-1 viruses produced in the presence of APOBEC3G have been shown to undergo hypermutations in newly synthesized viral DNA upon infection of target cells, presumably resulting from C-to-U modification during minus-strand viral DNA synthesis. We now report that HIV-1 Vif could induce rapid degradation of human APOBEC3G that was blocked by the proteasome inhibitor MG132. The efficiency of Vif-induced downregulation of APOBEC3G expression depended on the level of Vif expression. A single amino acid substitution in the conserved SLQXLA motif reduced Vif function. Vif proteins from distantly related primate lentiviruses such as SIVagm were unable to suppress the antiviral activity of human APOBEC3G or the packaging of APOBEC3G into HIV-1 Vif mutant virions, due to a lack of interaction with human APOBEC3G. In the presence of the proteasome inhibitor MG132, virion-associated Vif increased dramatically. However, increased virion packaging of Vif did not prevent virion packaging of APOBEC3G when proteasome function was impaired, and the infectivity of these virions was significantly reduced. These results suggest that Vif function is required during virus assembly to remove APOBEC3G from packaging into released virions. Once packaged, virion-associated Vif could not efficiently block the antiviral activity of APOBEC3G.  相似文献   

12.
Restriction of foamy viruses by APOBEC cytidine deaminases   总被引:8,自引:4,他引:4  
Foamy viruses (FVs) are nonpathogenic retroviruses infecting many species of mammals, notably primates, cattle, and cats. We have examined whether members of the apolipoprotein B-editing catalytic polypeptide-like subunit (APOBEC) family of antiviral cytidine deaminases restrict replication of simian FV. We show that human APOBEC3G is a potent inhibitor of FV infectivity in cell culture experiments. This antiviral activity is associated with cytidine editing of the viral genome. Both molecular FV clones and primary uncloned viruses were susceptible to APOBEC3G, and viral infectivity was also inhibited by murine and simian APOBEC3G homologues, as well as by human APOBEC3F. Wild-type and bet-deleted viruses were similarly sensitive to this antiviral activity, suggesting that Bet does not significantly counteract APOBEC proteins. Moreover, we did not detect FV sequences that may have been targeted by APOBEC in naturally infected macaques, but we observed a few G-to-A substitutions in humans that have been accidentally contaminated by simian FV. In infected hosts, the persistence strategy employed by FV might be based on low levels of replication, as well as avoidance of cells expressing large amounts of active cytidine deaminases.  相似文献   

13.
14.
It has been shown that porcine endogenous retrovirus (PERV) can infect human cells, indicating that PERV transmission poses a serious concern in pig-to-human xenotransplantation. A number of recent studies have reported on retrovirus interference by antiviral proteins. The most potent antiviral proteins are members of the APOBEC family of cytidine deaminases, which are involved in defense against retroviral attack. These proteins are present in the cytoplasm of mammalian cells and inhibit retroviral replication. To evaluate the inhibition of PERV transmission by human APOBEC3 proteins, we co-transfected 293T cells with a PERV molecular clone and human APOBEC3F or APOBEC3G expression vectors, and monitored PERV replication competency using a quantitative analysis of PERV pol genes. The replication of PERVs in cells co-expressing human APOBEC3s was reduced by 60–90% compared with PERV-only control. These results suggest that human APOBEC3G and APOBEC3F might serve a potential barrier function against PERV transmission in xenotransplantation.  相似文献   

15.
16.
17.
18.
Dang Y  Wang X  Esselman WJ  Zheng YH 《Journal of virology》2006,80(21):10522-10533
A tandem arrayed gene cluster encoding seven cytidine deaminase genes is present on human chromosome 22. These are APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3DE, APOBEC3F, APOBEC3G, and APOBEC3H. Three of them, APOBEC3G, APOBEC3F, and APOBEC3B, block replication of human immunodeficiency virus type 1 (HIV-1) and many other retroviruses. In addition, APOBEC3A and APOBEC3C block intracellular retrotransposons and simian immunodeficiency virus (SIV), respectively. In opposition to APOBEC genes, HIV-1 and SIV contain a virion infectivity factor (Vif) that targets APOBEC3F and APOBEC3G for polyubiquitylation and proteasomal degradation. Herein, we studied the antiretroviral activities of the human APOBEC3DE and APOBEC3H. We found that only APOBEC3DE had antiretroviral activity for HIV-1 or SIV and that Vif suppressed this antiviral activity. APOBEC3DE was encapsidated and capable of deaminating cytosines to uracils on viral minus-strand DNA, resulting in disruption of the viral life cycle. Other than GG-to-AG and AG-to-AA mutations, it had a novel target site specificity, resulting in introduction of GC-to-AC mutations on viral plus-strand DNA. Such mutations have been detected previously in HIV-1 clinical isolates. In addition, APOBEC3DE was expressed much more extensively than APOBEC3F in various human tissues and it formed heteromultimers with APOBEC3F or APOBEC3G in the cell. From these studies, we concluded that APOBEC3DE is a new contributor to the intracellular defense network, resulting in suppression of retroviral invasion.  相似文献   

19.
The APOBEC3 cytidine deaminases play a critical role in host-mediated defense against exogenous viruses, most notably, human immunodeficiency virus type-1 (HIV-1) and endogenous transposable elements. APOBEC3G and APOBEC3F interact with numerous proteins that regulate cellular RNA metabolism, including components of the RNA-induced silencing complex (RISC), and colocalize with a subset of these proteins to mRNA processing bodies (P bodies), which are sites of mRNA translational repression and decay. We sought to determine the role of P bodies and associated proteins in HIV-1 replication and APOBEC3 antiviral activity. While we established a positive correlation between APOBEC3 protein incorporation into virions and localization to P bodies, depletion of the P-body components DDX6 or Lsm1 did not affect HIV-1 replication, APOBEC3 packaging into virions or APOBEC3 protein mediated inhibition of HIV-1 infectivity. In addition, neither HIV-1 genomic RNA nor Gag colocalized with P-body proteins. However, simultaneous depletion of multiple Argonaute family members, the effector proteins of RISC, could modestly increase viral infectivity. Because some APOBEC3 proteins interact with several Argonaute proteins, we also tested whether they could modulate microRNA (miRNA) activity. We found no evidence for the specific regulation of miRNA function by the APOBEC3 proteins, though more general effects on transfected gene expression were observed. In sum, our results indicate that P bodies and certain associated proteins do not regulate HIV-1 replication or APOBEC3 protein antiviral activity. Localization to P bodies may therefore provide a means of sequestering APOBEC3 enzymatic activity away from cellular DNA or may be linked to as yet unidentified cellular functions.  相似文献   

20.
The human immunodeficiency virus type 1 (HIV-1) virion infectivity factor (Vif) overcomes the antiviral activity of APOBEC3G to protect HIV-1 DNA from G-to-A hypermutation. Vif targets APOBEC3G for ubiquitination and proteasomal degradation by forming an SCF-like E3 ubiquitin ligase complex composed of Cullin5, Elongin B, and Elongin C (Vif-BC-Cul5) through a novel SOCS-box motif. In this paper, we have established an in vitro ubiquitin conjugation assay with purified Vif-BC-Cul5 complex and reported that the Vif-BC-Cul5 complex could function as an E3 ligase for APOBEC3G in vitro. A Vif-BC-Cul5 complex promotes the in vitro ubiquitination of the wild type, APOBEC3G but not that of D128K mutant, which does not interact with Vif. We have also investigated several loss-of-function Vif mutants. One mutant, SLQ144/146AAA, lost its activity on APOBEC3G because it could not form a complex due to mutations in SOCS-box motif. Other mutants, C114S and C133S, also lost their activity because of loss of the E3 ligase activity of a Vif-BC-Cul5 complex, although these mutants retained the ability to bind to APOBEC3G as well as Cul5 complex. These findings suggest that the E3 ubiquitin ligase activity of the Vif-BC-Cul5 complex is essential for Vif function against APOBEC3G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号