首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ciliary or flagellar movement is the model of microtubule-dependent motility, the best studied at the molecular level. It is based on the relative sliding of outer doublets of microtubules that are linked at their proximal end to the basal structure and interconnected by associated proteins, among which dynein ATPase is at the origin of the movement. It is regulated from inside and outside media by various diffusible factors such as Ca2+, cyclic adenosine monophosphate (cAMP), polypeptides and so on (see other conferences presented during this meeting). Other motility processes are based on microtubules: vesicle and organelle transport through the cytoplasm (axonal flow in neurons, pigment granule movements in fish chromatophores, movements of particles along heliozoan axopods, etc.) could be mediated by microtubule motors such as kinesin or MAP 1C. Kinesin and MAP 1C, like dynein, are proteins that bind to microtubules and show an ATPase activity associated with force production. They differ from each other by their structure, and biochemical and pharmacological properties. The movements of chromosomes during mitosis and meiosis have long been studied, but are still poorly understood at the molecular level; this topic will be discussed in the light of recent data. Other constituents of the cytoskeleton are certainly involved in cellular motility: actin microfilaments and their motor myosin, intermediate filaments, non-actin filaments, all organized around the Microtubule Organizing Center (MTOC). As more information becomes available, it seems increasingly obvious that these various networks are closely interconnected and that each component probably modulates, resists, or favors properties of its partners, contributing to cellular and intracellular motility.  相似文献   

2.
We present an overview of the research on intracellular transport in pigment cells, with emphasis on the most recent discoveries. Pigment cells of lower vertebrates have been traditionally used as a model for studies of intracellular transport mechanisms, because these cells transport pigment organelles to the center or to the periphery of the cell in a highly co-ordinated fashion. It is now well established that both aggregation and dispersion of pigment in melanophores require two elements of the cytoskeleton: microtubules and actin filaments. Melanosomes are moved along these cytoskeletal tracks by motor proteins. Recent studies have identified the motors responsible for pigment dispersion and aggregation in melanophores. We propose a model for the possible roles of the two cytoskeletal transport systems and how they might interact. We also discuss the putative mechanisms of regulation of pigment transport, especially phosphorylation. Last, we suggest areas of research that will receive attention in the future in order to elucidate the mechanisms of organelle transport.  相似文献   

3.
We present an overview of the research on intracellular transport in pigment cells, with emphasis on the most recent discoveries. Pigment cells of lower vertebrates have been traditionally used as a model for studies of intracellular transport mechanisms, because these cells transport pigment organelles to the center or to the periphery of the cell in a highly co-ordinated fashion. It is now well established that both aggregation and dispersion of pigment in melanophores require two elements of the cytoskeleton: microtubules and actin filaments. Melanosomes are moved along these cytoskeletal tracks by motor proteins. Recent studies have identified the motors responsible for pigment dispersion and aggregation in melanophores. We propose a model for the possible roles of the two cytoskeletal transport systems and how they might interact. We also discuss the putative mechanisms of regulation of pigment transport, especially phosphorylation. Last, we suggest areas of research that will receive attention in the future in order to elucidate the mechanisms of organelle transport.  相似文献   

4.
The effects of acrylamide (ACR), nocodazole, and latrunculin were studied on intracellular transport and cytoskeletal morphology in cultured Xenopus laevis melanophores, cells that are specialized for regulated and bidirectional melanosome transport. We used three different methods; light microscopy, fluorescence microscopy, and spectrophotometry. ACR affected the morphology of both microtubules and actin filaments in addition to inhibiting retrograde transport of melanosomes but leaving dispersion unaffected. Using the microtubule-inhibitor nocodazole and the actin filament-inhibitor latrunculin we found that microtubules and actin filaments are highly dependent on each other, and removing either component dramatically changed the organization of the other. Both ACR and latrunculin induced bundling of microtubules, while nocodazole promoted formation of filaments resembling stress fibers organized from the cell center to the periphery. Removal of actin filaments inhibited dispersion of melanosomes, further concentrated the central pigment mass in aggregated cells, and induced aggregation even in the absence of melatonin. Nocodazole, on the other hand, prevented aggregation and caused melanosomes to cluster and slowly disperse. Dispersion of nocodazole-treated cells was induced upon addition of alpha-melanocyte-stimulating hormone (MSH), showing that dispersion can proceed in the absence of microtubules, but the distribution pattern was altered. It is well established that ACR has neurotoxic effects, and based on the results in the present study we suggest that ACR has several cellular targets of which the minus-end microtubule motor dynein and the melatonin receptor might be involved. When combining morphological observations with qualitative and quantitative measurements of intracellular transport, melanophores provide a valuable model system for toxicological studies.  相似文献   

5.
BACKGROUND: Fish melanocytes aggregate or disperse their melanosomes in response to the level of intracellular cAMP. The role of cAMP is to regulate both melanosome travel along microtubules and their transfer between microtubules and actin. The factors that are downstream of cAMP and that directly modulate the motors responsible for melanosome transport are not known. To identify these factors, we are characterizing melanosome transport mutants in zebrafish. RESULTS: We report that a mutation (allele j120) in the gene encoding zebrafish melanophilin (Mlpha) interferes with melanosome dispersion downstream of cAMP. Based on mouse genetics, the current model of melanophilin function is that melanophilin links myosin V to melanosomes. The residues responsible for this function are conserved in the zebrafish ortholog. However, if linking myosin V to melanosomes was Mlpha's sole function, elevated cAMP would cause mlpha(j120) mutant melanocytes to hyperdisperse their melanosomes. Yet this is not what we observe. Instead, mutant melanocytes disperse their melanosomes much more slowly than normal and less than halfway to the cell margin. This defect is caused by a failure to suppress minus-end (dynein) motility along microtubules, as shown by tracking individual melanosomes. Disrupting the actin cytoskeleton, which causes wild-type melanocytes to hyperdisperse their melanosomes, does not affect dispersion in mutant melanocytes. Therefore, Mlpha regulates dynein independently of its putative linkage to myosin V. CONCLUSIONS: We propose that cAMP-induced melanosome dispersion depends on the actin-independent suppression of dynein by Mlpha and that Mlpha coordinates the early outward movement of melanosomes along microtubules and their later transfer to actin filaments.  相似文献   

6.
Organelles transported along microtubules are normally moved to precise locations within cells. For example, synaptic vesiceles are transported to the neruronal synapse, the Golgi apparatus is generally found in a perinuclear location, and the membranes of the endoplasmic reticulum are actively extended to the cell periphery. The correct positioning of these organelles depends on microtubules and microtubule motors. Melanophores provide an extreme example of organized organelle transport. These cells are specialized to transport pigment granules, which are coordinately moved towards or away from the cell center, and result in the cell appearing alternately light or dark. Melanophores have proved to be an ideal system for studying the mechanisms by which the cell controls the direction of its organelle transport. Pigment granule dispersion (the movement away from the cell center) requires protein phosphorylation, while pigment aggregation (the movement towards the cell center) requires protein dephosphorylation. The target of this phosphorylation and dephosphorylation event is a protein that interacts with the microtubule motor protein, kinesin. Thus, the direction of organelle transport along microtubules may be regulated by controlling the activity of a microtubule motor.  相似文献   

7.
While it is now recognised that transport within the endomembrane system may occur via membranous tubules, spatial regulation of this process is poorly understood. We have investigated the role of the cytoskeleton in regulating the motility and morphology of the motile vacuole system in hyphae of the fungus Pisolithus tinctorius by studying (1) the effects of anti-microtubule (oryzalin, nocodazole) and anti-actin drugs (cytochalasins, latrunculin) on vacuolar activity, monitored by fluorescence microscopy of living cells; and (2) the ultrastructural relationship of microtubules, actin microfilaments, and vacuoles in hyphae prepared by rapid-freezing and freeze-substitution. Anti-microtubule drugs reduced the tubular component of the vacuole system in a dose-dependent and reversible manner, the extent of which correlated strongly with the degree of disruption of the microtubule network (monitored by immunofluorescence microscopy). The highest doses of anti-microtubule drugs completely eliminated tubular vacuoles, and only spherical vacuoles were observed. In contrast, anti-actin drugs did not reduce the frequency of tubular vacuoles or the motility of these vacuoles, even though immunofluorescence microscopy confirmed perturbation of microfilament organisation. Electron microscopy showed that vacuoles were always accompanied by microtubules. Bundles of microtubules were found running in parallel along the length of tubular vacuoles and individual microtubules were often within one microtubule diameter of a vacuole membrane. Our results strongly support a role for microtubules, but not actin microfilaments, in the spatial regulation of vacuole motility and morphology in fungal hyphae.  相似文献   

8.
One of the most important issues of molecular biophysics is the complex and multifunctional behavior of the cell's cytoskeleton. Interiors of living cells are structurally organized by the cytoskeleton networks of filamentous protein polymers: microtubules, actin and intermediate filaments with motor proteins providing force and directionality needed for transport processes. Microtubules (MT's) take active part in material transport within the cell, constitute the most rigid elements of the cell and hence found many uses in cell motility (e.g. flagella andcilia). At present there is, however, no quantitatively predictable explanation of how these important phenomena are orchestrated at a molecular level. Moreover, microtubules have been demonstrated to self-organize leading to pattern formation. We discuss here several models which attempt to shed light on the assembly of microtubules and their interactions with motor proteins. Subsequently, an overview of actin filaments and their properties isgiven with particular emphasis on actin assembly processes. The lengths of actin filaments have been reported that were formed by spontaneous polymerization of highly purified actin monomers after labeling with rhodamine-phalloidin. The length distributions are exponential with a mean of about 7 μm. This length is independent of the initial concentration of actin monomer, an observation inconsistent with a simple nucleation-elongation mechanism. However, with the addition of physically reasonable rates of filament annealing and fragmenting, a nucleation-elongation mechanism can reproduce the observed average length of filaments in two types of experiments: (1) filaments formed from a wide range of highly purified actin monomer concentrations, and (2) filaments formed from 24 mM actin over a range of CapZ concentrations. In the final part of the paper we briefly review the stochastic models used to describe the motion of motor proteins on protein filaments. The vast majority of these models are based on ratchet potentials with the presence of thermal noise and forcing due to ATP binding and a subsequent hydrolysis. Many outstanding questions remain to be quantitatively addressed on a molecular level in order to explain the structure-to-function relationship for the key elements of the cytoskeleton discussed in this review. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
BACKGROUND: Interactions between microtubules and actin filaments (F-actin) are critical for cellular motility processes ranging from directed cell locomotion to cytokinesis. However, the cellular bases of these interactions remain poorly understood. We have analyzed the role of microtubules in generation of a contractile array comprised of F-actin and myosin-2 that forms around wounds made in Xenopus oocytes. RESULTS: After wounding, microtubules are transported to the wound edge in association with F-actin that is itself recruited to wound borders via actomyosin-powered cortical flow. This transport generates sufficient force to buckle and break microtubules at the wound edge. Transport is complemented by local microtubule assembly around wound borders. The region of microtubule breakage and assembly coincides with a zone of actin assembly, and perturbation of the microtubule cytoskeleton disrupts this zone as well as local recruitment of the Arp2/3 complex and myosin-2. CONCLUSIONS: The results reveal transport of microtubules in association with F-actin that is pulled to wound borders via actomyosin-based contraction. Microtubules, in turn, focus zones of actin assembly and myosin-2 recruitment at the wound border. Thus, wounding triggers the formation of a spatially coordinated feedback loop in which transport and assembly of microtubules maintains actin and myosin-2 in close proximity to the closing contractile array. These results are surprisingly reminiscent of recent findings in locomoting cells, suggesting that similar feedback interactions may be generally employed in a variety of fundamental cell motility processes.  相似文献   

10.
Microtubules define the architecture and internal organization of cells by positioning organelles and activities, as well as by supporting cell shape and mechanics. One of the major functions of microtubules is the control of polarized cell motility. In order to support the asymmetry of polarized cells, microtubules have to be organized asymmetrically themselves. Asymmetry in microtubule distribution and stability is regulated by multiple molecular factors, most of which are microtubule-associated proteins that locally control microtubule nucleation and dynamics. At the same time, the dynamic state of microtubules is key to the regulatory mechanisms by which microtubules regulate cell polarity, modulate cell adhesion and control force-production by the actin cytoskeleton. Here, we propose that even small alterations in microtubule dynamics can influence cell migration via several different microtubule-dependent pathways. We discuss regulatory factors, potential feedback mechanisms due to functional microtubule-actin crosstalk and implications for cancer cell motility.  相似文献   

11.
During the course of an infection, viruses take advantage of a variety of mechanisms to travel in cells, ranging from diffusion within the cytosol to active transport along cytoskeletal filaments. To study viral motility within the intrinsically heterogeneous environment of the cell, we have developed a motility assay that allows for the global and unbiased analysis of tens of thousands of virus trajectories in live cells. Using this assay, we discovered that poliovirus exhibits anomalously rapid intracellular movement that was independent of microtubules, a common track for fast and directed cargo transport. Such rapid motion, with speeds of up to 5 μm/s, allows the virus particles to quickly explore all regions of the cell with the exception of the nucleus. The rapid, microtubule-independent movement of poliovirus was observed in multiple human-derived cell lines, but appeared to be cargo-specific. Other cargo, including a closely related picornavirus, did not exhibit similar motility. Furthermore, the motility is energy-dependent and requires an intact actin cytoskeleton, suggesting an active transport mechanism. The speed of this microtubule-independent but actin-dependent movement is nearly an order of magnitude faster than the fastest speeds reported for actin-dependent transport in animal cells, either by actin polymerization or by myosin motor proteins.  相似文献   

12.
Interactions between mitochondria and the cytoskeleton are essential for normal mitochondrial morphology, motility and distribution. While microtubules and their motors have been established as important factors for mitochondrial transport, emerging evidence indicates that mitochondria interact with the actin cytoskeleton in many cell types. In certain fungi, such as the budding yeast and Aspergillus, or in plant cells mitochondrial motility is largely actin-based. Even in systems such as neurons, where microtubules are the primary means of long-distance mitochondrial transport, the actin cytoskeleton is required for short-distance mitochondrial movements and for immobilization of the organelle at the cell cortex. The actin cytoskeleton is also involved in the immobilization of mitochondria at the cortex in cultured tobacco cells and in budding yeast. While the exact nature of these immobilizations is not known, they may be important for retaining mitochondria at sites of high ATP utilization or at other cellular locations where they are needed. Recent findings also indicate that mutations in actin or actin-binding proteins can influence mitochondrial pathways leading to cell death. Thus, mitochondria-actin interactions contribute to apoptosis.  相似文献   

13.
The organization of the cytoplasm is regulated by molecular motors, which transport organelles and other cargoes along cytoskeleton tracks. In this work, we use single particle tracking to study the in vivo regulation of the transport driven by myosin-V along actin filaments in Xenopus laevis melanophores. Melanophores have pigment organelles or melanosomes, which, in response to hormones, disperse in the cytoplasm or aggregate in the perinuclear region. We followed the motion of melanosomes in cells treated to depolymerize microtubules during aggregation and dispersion, focusing the analysis on the dynamics of these organelles in a time window not explored before to our knowledge. These data could not be explained by previous models that only consider active transport. We proposed a transport-diffusion model in which melanosomes may detach from actin tracks and reattach to nearby filaments to resume the active motion after a given time of diffusion. This model predicts that organelles spend ∼70% and 10% of the total time in active transport during dispersion and aggregation, respectively. Our results suggest that the transport along actin filaments and the switching from actin to microtubule networks are regulated by changes in the diffusion time between periods of active motion driven by myosin-V.  相似文献   

14.
The pollen tube exhibits cytoplasmic streaming of organelles, which is dependent on the actin-myosin system. Although microtubule-based motors have also been identified in the pollen tube, many uncertainties exist regarding their role in organelle transport. As part of our attempt to understand the role of microtubule-based movement in the pollen tube of tobacco, we investigated the cooperation between microtubules and actin filaments in the transport of mitochondria and Golgi vesicles, which are distributed differently in the growing pollen tube. The analysis was performed using in vitro motility assays in which organelles move along both microtubules and actin filaments. The results indicated that the movement of mitochondria and Golgi vesicles is slow and continuous along microtubules but fast and irregular along actin filaments. In addition, the presence of microtubules in the motility assays forces organelles to use lower velocities. Actin- and tubulin-binding tests, immunoblotting and immunogold labeling indicated that different organelles bind to identical myosins but associate with specific kinesins. We found that a 90 kDa kinesin (previously known as 90 kDa ATP-MAP) is associated with mitochondria but not with Golgi vesicles, whereas a 170 kDa myosin is distributed on mitochondria and other organelle classes. In vitro and in vivo motility assays indicate that microtubules and kinesins decrease the speed of mitochondria, thus contributing to their positioning in the pollen tube.  相似文献   

15.
In eukaryotic cells, microtubules are 24-nm-diameter tubular structures composed of a class of conserved proteins called tubulin. They are involved in numerous cell functions including ciliary motility, nerve cell elongation, pigment migration, centrosome formation, and chromosome movement. Although cytoplasmic tubules and fibers have been observed in bacteria, some with diameters similar to those of eukaryotes, no homologies to eukaryotic microtubules have been established. Certain groups of bacteria including azotobacters, cyanobacteria, enteric bacteria, and spirochetes have been frequently observed to possess microtubule-like structures, and others, including archaebacteria, have been shown to be sensitive to drugs that inhibit the polymerization of microtubules. Although little biochemical or molecular biological information is available, the differences observed among these prokaryotic structures suggest that their composition generally differs among themselves as well as from that of eukaryotes. We review the distribution of cytoplasmic tubules in prokaryotes, even though, in all cases, their functions remain unknown. At least some tend to occur in cells that are large, elongate, and motile, suggesting that they may be involved in cytoskeletal functions, intracellular motility, or transport activities comparable to those performed by eukaryotic microtubules. In Escherichia coli, the FtsZ protein is associated with the formation of a ring in the division zone between the newly forming offspring cells. Like tubulin, FtsZ is a GTPase and shares with tubulin a 7-amino-acid motif, making it a promising candidate in which to seek the origin of tubulins.  相似文献   

16.
The pseudocoelomic body cavity of the rotifer Asplanchna spp. contains free cells that form a highly dynamic, three-dimensional polygonal network of filopodia. Using video-enhanced differential interference contrast microscopy, we have qualitatively and quantitatively characterized the motion types involved with network motility: (1) filopodial junctions are displaced laterally at 10.52 +/- 0.46 microns/s; (2) free-ending filopodia form and extend at rates of 8.77 +/- 0.40 microns/s, until they retract again at 7.23 +/- 0.87 microns/s; (3) filopodial strands fuse either laterally or tip to the lateral side. The combination of these motion types results in enlargements, diminutions, and extinctions of filopodial polygons, and in the formation of new polygons. Moreover, there is intense and fast (5.11 +/- 0.28 microns/s) particle transport within the filopodial strands. The organization of the cytoskeleton in filopodia was examined by electron microscopy and by labeling with fluorescent-tagged phalloidin. Filopodia contain several microtubules that are often organized in a bundle. Moreover, F-actin is present within the filopodia. To characterize which of these cytoskeletal systems is involved with cell and organelle motility, we have examined cell dynamics after incubations with colchicine or cytochalasin D. The results of these pharmacological experiments provide evidence that microtubules are required for both cell and organelle motility, but that actin filaments contribute to these phenomena and are required for the structural maintenance of slender filopodia.  相似文献   

17.
Previously, we have shown that melanosomes of Xenopus laevis melanophores are transported along both microtubules and actin filaments in a coordinated manner, and that myosin V is bound to purified melanosomes (Rogers, S., and V.I. Gelfand. 1998. Curr. Biol. 8:161-164). In the present study, we have demonstrated that myosin V is the actin-based motor responsible for melanosome transport. To examine whether myosin V was regulated in a cell cycle-dependent manner, purified melanosomes were treated with interphase- or metaphase-arrested Xenopus egg extracts and assayed for in vitro motility along Nitella actin filaments. Motility of organelles treated with mitotic extract was found to decrease dramatically, as compared with untreated or interphase extract-treated melanosomes. This mitotic inhibition of motility correlated with the dissociation of myosin V from melanosomes, but the activity of soluble motor remained unaffected. Furthermore, we find that myosin V heavy chain is highly phosphorylated in metaphase extracts versus interphase extracts. We conclude that organelle transport by myosin V is controlled by a cell cycle-regulated association of this motor to organelles, and that this binding is likely regulated by phosphorylation of myosin V during mitosis.  相似文献   

18.
Localization and organization of actin in melanophores   总被引:2,自引:1,他引:1       下载免费PDF全文
Melanophores of the angelfish, Pterophyllum scalare, were studied in an attempt to demonstrate the existence of actin in these cells although microfilaments had previously not been found. By use of a variety of procedures, including immunofluorescence microscopy of intact and detergent-extracted cells, transmission electron microscopy, high voltage electron microscopy of whole-mount preparations, and labeling with heavy meromyosin-subfragment 1, the presence of a loose cortical mesh of actin filaments is demonstrated. In addition, a more parallel array of filaments is detected in microspike- and microvillus-like surface projections. There seem to be no changes in the arrangement of these filaments as a function of the state of pigment distribution. No actin filaments could be found in association with pigment granules or microtubules in more central cell portions. For reasons presently unknown, the preservation of the cortical filament network in lysed cell preparations depends strongly on the presence of an intact microtubular system. The involvement of this subplasmalemmal actin filament network in pigment granule transport remains unclear.  相似文献   

19.
Melanosomes on the move: a model to understand organelle dynamics   总被引:1,自引:0,他引:1  
Advances in live-cell microscopy have revealed the extraordinarily dynamic nature of intracellular organelles. Moreover, movement appears to be critical in establishing and maintaining intracellular organization and organellar and cellular function. Motility is regulated by the activity of organelle-associated motor proteins, kinesins, dyneins and myosins, which move cargo along polar MT (microtubule) and actin tracks. However, in most instances, the motors that move specific organelles remain mysterious. Over recent years, pigment granules, or melanosomes, within pigment cells have provided an excellent model for understanding the molecular mechanisms by which motor proteins associate with and move intracellular organelles. In the present paper, we discuss recent discoveries that shed light on the mechanisms of melanosome transport and highlight future prospects for the use of pigment cells in unravelling general molecular mechanisms of intracellular transport.  相似文献   

20.
BACKGROUND: Intracellular transport involves the movement of organelles along microtubules (MTs) or actin filaments (AFs) by means of opposite-polarity MT motors or actin-dependent motors of the myosin family. The correct delivery of organelles to their different destinations involves a precise coordination of the two transport systems. Such coordination could occur through regulation of the densities of the two cytoskeletal systems or through regulation of the activities of the cytoskeletal motors by signaling mechanisms. RESULTS: To investigate the mechanisms of switching between MT and AF-dependent transport, we examine the influence of the densities of the MT and AF network on pigment transport in fish melanophores. We also change signaling by using activators and inhibitors of Protein Kinase A (PKA). We find that the key parameters characterizing pigment granule transport along MTs do not depend on MT density and are not significantly altered by complete disruption of AFs. In contrast, the kinetics of changes in these parameters correlate with the kinetics of changes in the intracellular levels of cAMP and are affected by the inhibitors of PKA, suggesting the regulation of MT- and AF-dependent motors by cAMP-induced signaling. Furthermore, perturbation of cAMP levels prevents the transfer of pigment granules from MTs onto AFs. CONCLUSIONS: We conclude that the switching of pigment granules between the two major cytoskeletal systems is independent of the densities of MT or AF but is tightly controlled by signaling events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号