首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activated human polymorphonuclear neutrophils (PMNs) convert molecular oxygen into superoxide anion, a process known as the respiratory burst, through the activity of a latent multicomponent NADPH-dependent oxidase. Components of this respiratory burst oxidase include the membrane-bound cytochrome b558 and the cytosolic factors p47-phox and p67-phox. We initiated these studies based on three observations: 1) that stimulation of PMN oxidase activity is associated with translocation of the cytosolic oxidase components to the plasma membrane; 2) that p47-phox is phosphorylated during PMN activation and that there is a sequential relationship between phosphorylation of p47-phox in the cytosol and appearance of the phosphoprotein in the membran; and 3) that the predicted amino acid sequences of p47-phox and of p67-phox contain regions of homology to the SH3 or A domain of the src family of tyrosine kinases, a region found in a variety of proteins which interact with the cytoskeleton or the subplasmalemmal cytoskeleton. Thus the purpose of our studies was to examine the role of protein kinase C (PKC)-dependent phosphorylation in the stimulus-induced association of p47-phox and p67-phox with the plasma membrane and the cytoskeleton. Using the PKC activator phorbol myristate acetate (PMA) as the agonist, we found that activation of the respiratory burst oxidase was associated with translocation of cytosolic p47-phox and p67-phox to the plasma membrane as well as redistribution of p47-phox to the Triton-insoluble cytoskeleton. Furthermore, the PKC inhibitor staurosporine inhibited phosphorylation of p47-phox, interrupted the redistribution of cytosolic oxidase factors, and blocked PMA-induced generation of superoxide anion. Taken together these results indicate that PKC-dependent phosphorylation of p47-phox correlates with association of p47-phox with the cytoskeleton and with translocation of p47-phox and p67-phox to the plasma membrane, with the ensuing assembly of an active superoxide-generating NADPH-dependent oxidase.  相似文献   

2.
The leukocyte NADPH oxidase is an enzyme present in phagocytes and B lymphocytes that when activated catalyzes the production of O-2 from oxygen at the expense of NADPH. A correlation between the activation of the oxidase and the phosphorylation of p47(PHOX), a cytosolic oxidase component, is well recognized in whole cells, and direct evidence for a relationship between the phosphorylation of this oxidase component and the activation of the oxidase has been obtained in a number of cell-free systems containing neutrophil membrane and cytosol. Using superoxide dismutase-inhibitable cytochrome c reduction to quantify O-2 production, we now show that p47(PHOX) phosphorylated by protein kinase C activates the NADPH oxidase not only in a cell-free system containing neutrophil membrane and cytosol, but also in a system in which the cytosol is replaced by the recombinant proteins p67(PHOX), Rac2, and phosphorylated p47(PHOX), suggesting that neutrophil plasma membrane plus those three cytosolic proteins are both necessary and sufficient for oxidase activation. In both the cytosol-containing and recombinant cell-free systems, however, activation by SDS yielded greater rates of O-2 production than activation by protein kinase C-phosphorylated p47(PHOX), indicating that a system that employs protein kinase C-phosphorylated p47(PHOX) as the sole activating agent, although more physiological than the SDS-activated system, is nevertheless incomplete.  相似文献   

3.
The superoxide-generating respiratory burst oxidase (NADPH oxidase) from human neutrophils can be activated in a cell-free system consisting of plasma membranes, cytosol, and an anionic amphiphile such as sodium dodecyl sulfate (SDS) or arachidonate, and guanosine 5'-(3-O-thio)triphosphate (GTP(gamma)S) augments activation. We report herein that short-chain diacylglycerols (e.g. dioctanoylglycerol (diC8)) synergize with SDS in the activation of superoxide generation in a dose- and time-dependent manner, resulting in rates up to 1400 nmol/min/mg plasma membrane protein, or 250-700% higher than the rate seen with SDS alone. diC8 did not affect significantly the dose response for either cytosol or SDS, indicating that the activation was not due to increased sensitivity of the oxidase toward either of these components. At optimal concentrations of SDS and diC8, additional activation was observed in the presence of GTP(gamma)S, indicating that diC8 and GTP activate by separate mechanisms. In contrast to diC8, other known activators of protein kinase C (phorbol myristate acetate and mezerein) augmented SDS activation only minimally (typically 20-30%), and neither diacylglycerols nor tumor promoters activated in the absence of SDS. Activation by diC8 was calcium and phosphatidylserine independent, and the specificity for neutral lipids was atypical for protein kinase C. Inhibitors of protein kinase C (staurosporine and a peptide substrate analog) also failed to inhibit the response. Nevertheless, phosphorylation of several neutrophil proteins including p47phox was seen with both SDS and diC8, and synergistic phosphorylation of p47phox was seen when both activating factors were present. Thus, diacylglycerol synergizes with SDS in activating both superoxide generation and p47phox phosphorylation in the cell-free activation system, but the activation is atypical of a protein kinase C mechanism.  相似文献   

4.
The NADPH-oxidase of human neutrophils can be activated in a cell-free system comprised of plasma membrane, cytosol, and an anionic amphiphile such as arachidonate or sodium dodecyl sulfate (SDS). Recently, we showed that diacylglycerol acts synergistically with SDS in the cell-free system to stimulate superoxide generation, with concurrent phosphorylation of a 47-kDa cytosolic protein which is thought to be a component of the oxidase (Burnham, D. N., Uhlinger, D. J., and Lambeth, J. D. (1990) J. Biol. Chem. 265, 17550-17559). We report herein that when undialyzed cytosol is used along with either SDS alone or SDS plus diacylglycerol as activators, adenosine 5'-(gamma-thio)triphosphate (ATP gamma S) and guanosine 5'-(gamma-thio)triphosphate (GTP gamma S) both stimulated superoxide generation several fold, yielding about the same maximal velocity. ATP and GTP showed lower levels of stimulation. Stimulation by ATP gamma S and GTP gamma S was nonadditive, and showed a 5-7-fold greater specificity for GTP gamma S. ATP gamma S stimulation was inhibited by the nucleoside diphosphate (NDP) kinase inhibitor UDP. In contrast, when extensively dialyzed cytosol was used, most of the stimulation by ATP gamma S was lost, while most of that by GTP gamma S was retained. Addition of GDP restored the ability of ATP gamma S to stimulate, consistent with NDP kinase-catalyzed formation of GTP gamma S from ATP gamma S plus GDP. This activity was demonstrated directly in both cytosol and plasma membrane. Using undialyzed cytosol, phosphorylation of p47 showed a similar nonspecificity for nucleoside triphosphates, due to NDP kinase activity, but revealed the expected ATP specificity when dialyzed cytosol was used. Neither ATP gamma S nor GTP gamma S were good substrates for protein phosphorylation. Under a variety of conditions, phosphorylation of p47 or other neutrophil proteins failed to correlate with oxidase activation. The present studies indicate that SDS and diacylglycerol stimulation of superoxide generation in the cell-free system is independent of protein kinase C or other protein kinase activity, and suggest a novel role for diacylglycerol in cell regulation.  相似文献   

5.
Human neutrophil respiratory burst oxidase (NADPH-oxidase) activity can be reconstituted in a cell-free system consisting of plasma membrane, cytosol and an anionic amphiphile [e.g., sodium dodecyl sulfate (SDS) or arachidonate]. Herein, we report reconstitution of oxidase activity using isolated neutrophil plasma membrane together with purified recombinant p47-phox and p67-phox which had been produced using a baculovirus expression system. Activity required an anionic amphiphile (SDS or arachidonate) and was potentiated by diacylglycerol and GTP gamma S. Serial washes of the plasma membrane failed to affect its ability to reconstitute activity, indicating that a dissociable membrane component was not present. The Km for NADPH, 43 microM, was the same as that determined using cytosol in place of recombinant factors. The EC50 values for p47-phox and p67-phox under optimal activation conditions were 220 nM and 80 nM, respectively, indicating a relatively high affinity of these components in an activation complex. Since neither cytosolic component contains a nucleotide binding consensus sequence, these data indicate that the NADPH binding component of the oxidase resides in the plasma membrane.  相似文献   

6.
Superoxide production by phagocytic blood cells involves assembly of an active NADPH oxidase complex from components found both in membrane and cytosolic locations in resting cells. We recently cloned cDNAs encoding two cytosolic components (p47-phox and p67-phox) of the oxidase that are deficient in distinct forms of autosomal recessive chronic granulomatous disease. The precise roles of p47-phox and p67-phox were explored further using purified factors produced in large quantities using recombinant baculoviruses to infect cultured Sf9 insect cells. Neither p47-phox nor p67-phox are thought to represent the flavoprotein components of the oxidase, since neither of the purified recombinant factors contained or bound FAD. Recombinant p47-phox and p67-phox are capable of restoring the deficient cytosol from chronic granulomatous disease patient neutrophils to nearly normal levels in a cell-free reconstitution system. Both p47-phox and p67-phox, used together in the absence of neutrophil cytosol, are incapable of supporting cell free production of superoxide, confirming the involvement of other soluble factor(s) in the assembly of an active oxidase in vitro.  相似文献   

7.
Grepafloxacin is an asymmetric fluoroquinolone derivative which possesses high tissue penetrability as well as strong, broad-spectrum antimicrobial activities. We recently found that grepafloxacin induced a priming effect on neutrophil respiratory burst induced by N-formylmethionylleucylphenylalanine. In this report, we elucidate the precise mechanism of the priming by grepafloxacin. The R(+) enantiomer of grepafloxacin induced a more potent priming effect than did S(-)-grepafloxacin. R(+)-Grepafloxacin also produced a more potent translocation of both p47- and p67-phox proteins to membrane fractions of neutrophils. Grepafloxacin-induced primed superoxide generation was significantly inhibited by pretreatment with PD169316 and SB203580, p38 mitogen-activated protein kinase (MAPK) inhibitors, but not with PD98059, a specific inhibitor of the upstream kinase that activates p44/42 MAPK, or SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (JNK). Grepafloxacin strongly phosphorylated p38 MAP kinase but not p44/42 MAPK or JNK. R(+)-Grepafloxacin showed more potent phosphorylation of p38 MAPK than did S(-)-grepafloxacin, in a time- and concentration-dependent manner. PD169316 significantly inhibited R(+)-grepafloxacin-induced translocation of p47-phox protein to the membrane fraction. Interestingly, grepafloxacin stereospecifically bound to the membrane fractions of neutrophils. These results strongly suggest that grepafloxacin stereospecifically primes neutrophil respiratory burst, and p38 MAPK activation is closely related to the grepafloxacin priming.  相似文献   

8.
We reported previously that diacylglycerol (diC8) and GTP gamma S synergize with an anionic amphiphile such as sodium dodecyl sulfate (SDS) to produce high rates of superoxide generation in a cell-free system consisting of neutrophil plasma membrane plus cytosol [Burnham, D. N., Uhlinger, D. J., & Lambeth, J. D. (1990) J. Biol. Chem. 265, 17550-17559]. Here we investigate the effects of these activating factors on the plasma membrane association in an in vitro translated radiolabeled recombinant p47-phox protein. Apparent translocation, assayed by cosedimentation with plasma membranes, required the presence of excess cytosol and an anionic amphiphile, was enhanced by both GTP gamma S and diC8, and was inhibited by high salt, correlating qualitatively with activation; up to 70% cosedimentation was observed with the combination of activators (compared with less than 20% in their absence). Similar results were obtained using heat-inactivated cytosol, wherein another oxidase component, p67-phox, has been inactivated. Unexpectedly, from 50 to 80% of the apparent translocation occurred in the absence of membranes, indicating that protein aggregation accounted for a significant part of the observed translocation. Nevertheless, the percent translocation was increased in all cases by the presence of membranes, indicating some degree of protein-membrane interaction. While a control in vitro translated protein failed to translocate, cosedimentation of p47-phox occurred equally well when red blood cell or neutrophil plasma membranes lacking cytochrome b558 were used. Also, the peptide RGVHFIF, which is contained within the C-terminus of the large subunit of cytochrome b558, failed to inhibit translocation/aggregation of p47-phox, despite its ability to inhibit cell-free activation of the oxidase. The data are consistent with the following: (a) SDS, diC8, and GTP gamma S all act on cytosolic components to alter protein-protein and/or protein-membrane associations, and these changes are necessary (but not sufficient) for activation; (b) these altered associations are likely to function by increasing the local concentration of p47-phox and other components at the plasma membrane; (c) a high background of nonspecific associations in the cell-free activation system is likely to obscure any specific, functionally relevant associations (e.g., with cytochrome b558); and (d) the mechanism of translocation in the cell-free system differs from that seen in intact neutrophils.  相似文献   

9.
The effects of carbobenzyloxy-leucine-tyrosine-chloromethylketone (zLYCK), an inhibitor of chymotrypsin, were investigated on the activation pathways of the human neutrophil respiratory burst. At 10 microM zLYCK, a parallel inhibition was observed of superoxide production stimulated with the chemo-attractant FMLP and of chymotrypsin-like activity of human neutrophils. By contrast, superoxide production induced by PMA was minimally affected by zLYCK. The known transduction pathways triggered by FMLP were analyzed. zLYCK did not affect either the FMLP-induced cytosolic free calcium transient, inositol 1,4,5 trisphosphate formation, nor the PMA-induced phosphorylation of the 47-kDa substrate of protein kinase C. zLYCK did not affect the activity of protein kinase C extracted from neutrophils. In Ca(2+)-depleted cells, in which phosphatidylinositol 4,5-biphosphate breakdown does not occur, zLYCK inhibited the FMLP-induced respiratory burst in cells primed by low doses of PMA. The activity of the NADPH oxidase tested with active membranes from stimulated neutrophils or in a cell-free system was not inhibited by zLYCK. We conclude that: 1) zLYCK inhibits superoxide production through the inhibition of a chymotrypsin-like protease of the neutrophil, 2) zLYCK inhibits FMLP-induced activation of NADPH oxidase through a pathway independent of PtdInsP2 breakdown and cytosolic free calcium, and 3) zLYCK may prove a useful probe for the characterization of its target protease in neutrophil activation.  相似文献   

10.
Activation of phospholipase D occurs in response to a wide variety of hormones, growth factors, and other extracellular signals. The initial product of phospholipase D, phosphatidic acid (PA), is thought to serve a signaling function, but the intracellular targets for this lipid second messenger are not clearly identified. The production of PA in human neutrophils is closely correlated with the activation of NADPH oxidase, the enzyme responsible for the respiratory burst. We have developed a cell-free system, in which the activation of NADPH oxidase is induced by the addition of PA. Characterization of this system revealed that a multi-functional cytosolic protein kinase was a target for PA, and that two NADPH oxidase components were substrates for the enzyme. Partial purification of the PA-activated protein kinase separated the enzyme from known protein kinase targets of PA. The partially purified enzyme was selectively activated by PA, compared to other phospholipids, and phosphorylated the oxidase component p47-phox on both serine and tyrosine residues. PA-activated protein kinase activity was present in a variety of hematopoietic cells and cell lines and in rat brain, suggesting it has widespread distribution. We conclude that this protein kinase may be a novel target for the second messenger function of PA.  相似文献   

11.
To assess the role of protein kinase C (Ca2+/phospholipid-dependent enzyme) in the activation of the human neutrophil respiratory burst, we have utilized an ether lipid of the type 1-O-alkyl-2-O-methylglycerol (AMG), recently shown to be an inhibitor of this kinase. AMG-C16 (with an hexadecyl chain at the sn-1 position) was found to inhibit the respiratory burst induced by sub-optimal concentrations of phorbol 12,13-dibutyrate. Respiratory burst activity was recovered by subsequent addition of a supraoptimal dose of phorbol 12-myristate 13-acetate, indicating that in the presence of the inhibitor only the activation of the NADPH:O2 oxidoreductase via protein kinase C is inhibited, but not the oxidoreductase itself. The respiratory burst induced by the chemoattractant N-formyl-methionyl-leucyl-phenylalanine (fMLP) was also inhibited in the presence of AMG-C16, the extent of inhibition being dependent on the concentration of fMLP. At the concentrations applied in these studies, AMG-C16 had no effect on cell viability, did not affect the formation of inositol phosphates induced by fMLP, and did not affect the characteristics of the Ca2+ fluxes induced by the same stimulus. In a cell-free assay system, AMG-C16 had no effect on the activity of cAMP-dependent or Ca2+/calmodulin-dependent protein kinase but inhibited protein kinase C in a dose-dependent fashion. To characterize the inhibitory action of AMG-C16 on the respiratory burst activity in more detail, we studied protein phosphorylation in relation to respiratory burst activity in neutrophil cytoplasts. We focused on the phosphorylation of the 47-kDa protein, because this protein is functionally associated with the NADPH:O2 oxidoreductase. At suboptimal concentrations of phorbol 12,13-dibutyrate, AMG-C16 inhibited phosphorylation of proteins, including that of the 47-kDa protein. Recovery of protein phosphorylation in parallel to recovery of respiratory burst activity was obtained by addition of increasing doses of phorbol 12,13-dibutyrate. Recovery of respiratory burst activity at intermediate concentrations of fMLP did not result in a proportional increase in 47-kDa protein phosphorylation; phosphorylation of the 47-kDa protein was recovered only at high concentrations of fMLP. From these data we conclude that protein kinase C is involved in the activation of the respiratory burst by phorbol esters and fMLP. However, with fMLP as a stimulus, a second signal seems to be triggered, which is insensitive to AMG-C16.  相似文献   

12.
T Xing  V J Higgins    E Blumwald 《The Plant cell》1997,9(2):249-259
The effect of race-specific elicitors on NADPH oxidase was examined in vivo by treating tomato cells with elicitor-containing intercellular fluids prepared from infected tomato leaves inoculated with specific Cladosporium fulvum races. Treatment of Cf-4 or Cf-5 cells with intercellular fluids from incompatible but not from compatible races of C. fulvum increased oxidase activity and the amount of p67-phox, p47-phox, and rac2 in the plasma membrane. Comparison of these three components in the cytosol and plasma membrane indicated that elicitors promoted the translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells carrying the appropriate resistance gene. Protein kinase C activators and inhibitors did not affect enzyme activity or the binding of these three components to the plasma membrane. In contrast, staurosporine, calmodulin antagonists, and EGTA inhibited elicitor-induced oxidase activity and the translocation of the cytosolic components. The assembly process involves a Ca(2+)-dependent protein kinase that catalyzes the phosphorylation of p67-phox and p47-phox, facilitating their translocation to the plasma membrane. Our data suggest that although both plants and animals share common elements in eukaryotic signal transduction, the involvement of different protein kinases mediating the activation of phosphorylation of p67-phox and p47-phox may reflect the unique spatial and temporal distribution of signal transduction pathways in plants.  相似文献   

13.
Using a phosphorylation-dependent cell-free system to study NADPH oxidase activation (McPhail, L. C., Qualliotine-Mann, D., and Waite, K. A. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 7931-7935), we previously showed that p47(phox), a cytosolic NADPH oxidase component, is phosphorylated. Now, we show that p22(phox), a subunit of the NADPH oxidase component flavocytochrome b(558), also is phosphorylated. Phosphorylation is selectively activated by phosphatidic acid (PA) versus other lipids and occurs on a threonine residue in p22(phox). We identified two protein kinase families capable of phosphorylating p22(phox): 1) a potentially novel, partially purified PA-activated protein kinase(s) known to phosphorylate p47(phox) and postulated to mediate the phosphorylation-dependent activation of NADPH oxidase by PA and 2) conventional, but not novel or atypical, isoforms of protein kinase C (PKC). In contrast, all classes of PKC isoforms could phosphorylate p47(phox). In a gel retardation assay both the phosphatidic acid-dependent kinase and conventional PKC isoforms phosphorylated all molecules of p22(phox). These findings suggest that phosphorylation of p22(phox) by conventional PKC and/or a novel PA-activated protein kinase regulates the activation/assembly of NADPH oxidase.  相似文献   

14.
Respiratory burst activity and phosphorylation of an NADPH oxidase component, p47(phox), during neutrophil stimulation are mediated by phosphatidylinositol 3-kinase (PI-3K) activation. Products of PI-3K activate several kinases, including the serine/threonine kinase Akt. The present study examined the ability of Akt to regulate neutrophil respiratory burst activity and to interact with and phosphorylate p47(phox). Inhibition of Akt activity in human neutrophils by an inhibitory peptide significantly attenuated fMLP-stimulated, but not PMA-stimulated, superoxide release. Akt inhibitory peptide also inhibited hydrogen peroxide generation stimulated by bacterial phagocytosis. A direct interaction between p47(phox) and Akt was shown by the ability of GST-p47(phox) to precipitate recombinant Akt and to precipitate Akt from neutrophil lysates. Active recombinant Akt phosphorylated recombinant p47(phox) in vitro, as shown by (32)P incorporation, by a mobility shift change detected by two-dimensional gel electrophoresis, and by immunoblotting with phospho-Akt substrate Ab. Mutation analysis indicated that 2 aa residues, Ser(304) and Ser(328), were phosphorylated by Akt. Inhibition of Akt activity also inhibited fMLP-stimulated neutrophil chemotaxis. We propose that Akt mediates PI-3K-dependent p47(phox) phosphorylation, which contributes to respiratory burst activity in human neutrophils.  相似文献   

15.
Differentiation of myeloid cells is associated with the gradual acquisition of functional capacity to produce a respiratory burst. In our study HL-60 cells were differentiated to the monocyte phenotype with IFN-gamma or 1,25-dihydroxyvitamin D3, or to the neutrophil phenotype with retinoic acid or DMSO to compare the time-course of expression of membrane and cytosolic oxidase components, and to correlate this with the appearance of a functional oxidase. Over a 6-day period of induction the rank order of the ability of these agents to induce expression of PMA-stimulated superoxide production was: IFN-gamma greater than 1,25(OH)2D3 greater than retinoic acid greater than DMSO. Immunoblot analysis of HL-60 membranes and cytosol was used to assess the amount of specific phagocyte oxidase factors (91 and 22 kDa subunits of membrane cytochrome b558 (gp91 and p22), and 47 and 67 kDa cytosol oxidase factors (p47 and p67)). HL-60 cell membranes or cytosol were tested in a cell-free assay of superoxide production by mixing with normal neutrophil cytosol or membranes, respectively. p47 was first detected at 16 h of differentiation, increasing similarly thereafter with all induction regimens and reaching a maximum by 3 to 4 days. The earliest detection of p67 varied from 2 to 6 days depending on the inducing agent and appeared to be the limiting cytosol component. Small amounts of both subunits of cytochrome b558 were detected in uninduced HL-60 membranes, but were sufficient to support substantial superoxide production when combined with normal neutrophil cytosol. Both cytochrome b558 subunit proteins and membrane oxidase activity increased during differentiation in parallel. We conclude that membrane and cytosol components of the NADPH oxidase complex appear at different times and increase differently during HL-60 differentiation. The production of p67 is the major factor limiting the respiratory burst during HL-60 differentiation.  相似文献   

16.
Abstract

We present an up-to-date insight into the function of NADPH oxidase in human neutrophils, the signalling pathways involved in activation of this enzyme and the process of association of its components with the cytoskeleton. We also discuss the functional implications of morphological studies revealing localization of the sites of NADPH oxidase activity. An original model of the process of superoxide (O2) production in human neutrophils is shown. Organization of NADPH oxidase is associated with several components. Upon stimulation, tri-phox cytosolic components of NADPH oxidase (p40-phox, p47-phox and p67-phox) bind to actin filaments. This process involves other actin-binding proteins, such as cofilin and coronin. Activated protein kinase C, translocated from the plasma membrane, phosphorylates cytosolic components at a scaffold of cytoskeleton. Subsequently, p40-phox, responsible for maintaining the resting state of NADPH oxidase, is separated from other two cytosolic phox proteins following an attachment of the active form of small GTP-binding protein Rac to p67-phox. Cytosolic duo-phox proteins (p47-phox and p67-phox) conjugate with membrane components (gp91-phox, p22-phox and Rap1a) of NADPH oxidase residing within membranes of intracellular compartments. This chain of events triggers production of O2. Then, oxidant-producing intracellular compartments associate with the plasma membrane. Eventually, intracellularly produced O2 is released to the extracellular environment through the orifice formed by fusion of oxidant-producing compartments with the plasma membrane. Intracellular movement of the oxidant-producing compartments may be regulated by myosin light chain kinase. The review emphasizes that functional assembly of NADPH oxidase and, therefore, generation of O2 is accomplished essentially within the intracellular compartments. Upon neutrophil stimulation, intracellularly generated O2 is transported to the plasma membrane to be released and to ensure host defense against infection.  相似文献   

17.
We present an up-to-date insight into the function of NADPH oxidase in human neutrophils, the signalling pathways involved in activation of this enzyme and the process of association of its components with the cytoskeleton. We also discuss the functional implications of morphological studies revealing localization of the sites of NADPH oxidase activity. An original model of the process of superoxide (O2*-) production in human neutrophils is shown. Organization of NADPH oxidase is associated with several components. Upon stimulation, tri-phox cytosolic components of NADPH oxidase (p40-phox, p47-phox and p67-phox) bind to actin filaments. This process involves other actin-binding proteins, such as cofilin and coronin. Activated protein kinase C, translocated from the plasma membrane, phosphorylates cytosolic components at a scaffold of cytoskeleton. Subsequently, p40-phox, responsible for maintaining the resting state of NADPH oxidase, is separated from other two cytosolic phox proteins following an attachment of the active form of small GTP-binding protein Rac to p67-phox. Cytosolic duo-phox proteins (p47-phox and p67-phox) conjugate with membrane components (gp91-phox, p22-phox and Rapla) of NADPH oxidase residing within membranes of intracellular compartments. This chain of events triggers production of O2*-. Then, oxidant-producing intracellular compartments associate with the plasma membrane. Eventually, intracellularly produced O2*- is released to the extracellular environment through the orifice formed by fusion of oxidant-producing compartments with the plasma membrane. Intracellular movement of the oxidant-producing compartments may be regulated by myosin light chain kinase. The review emphasizes that functional assembly of NADPH oxidase and, therefore, generation of O2*- is accomplished essentially within the intracellular compartments. Upon neutrophil stimulation, intracellularly generated O2*- is transported to the plasma membrane to be released and to ensure host defense against infection.  相似文献   

18.
The large subunit of cytochrome b558, gp91-phox, is believed to play a key role in superoxide generation in neutrophils by accepting electrons from NADPH and donating them to molecular oxygen. We found that a peptide corresponding to a predicted NADPH binding site in gp91-phox inhibited superoxide generation in a cell-free system consisting of neutrophil membrane and cytosol. Minimum essential sequence for the inhibition was KSVWYK, which corresponded to residues 420-425 (IC50 = 30 microM). Unlike other peptides known to inhibit the reaction, this peptide was effective even when added to the system after activation or to activated membrane from stimulated neutrophils. Furthermore, the peptide inhibited superoxide generation in a membrane system activated without cytosol. Kinetic analysis revealed that the peptide inhibited the reaction uncompetitively. These results suggest that the peptide combines with the activated cytochrome b558-NADPH complex and thereby inhibits electron transfer from NADPH to molecular oxygen.  相似文献   

19.
Rac1 and Rac2 are closely related, low molecular weight GTP-binding proteins that have both been implicated in regulation of phagocyte NADPH oxidase. This enzyme system is composed of multiple membrane-bound and cytosolic subunits and when activated catalyzes the one-electron reduction of oxygen to superoxide. Superoxide and its highly reactive derivatives are essential for killing microorganisms. Rac proteins undergo posttranslational processing, primarily the addition of an isoprenyl group to a carboxyl-terminal cysteine residue. We directly compared recombinant Rac1 and Rac2 in a human neutrophil cell-free NADPH oxidase system in which cytosol was replaced by purified recombinant cytosolic components (p47-phox and p67-phox). Processed Rac1 and Rac2 were both highly active in this system and supported comparable rates of superoxide production. Under different cell-free conditions, however, in which suboptimal amounts of cytosol were present in the assay mixture, processed Rac2 worked much better than Rac1 at all but the lowest concentrations. This suggests that a factor in the cytosol may suppress the activity of Rac1 but not of Rac2. Unprocessed Rac proteins were only weakly able to support superoxide generation in either system, but preloading of Rac1 or Rac2 with guanosine 5'-O-(3-thio-triphosphate) (GTP gamma S) restored activity. These results indicate that processing is required for nucleotide exchange but not for interaction with oxidase components.  相似文献   

20.
Activation of the phagocyte NADPH oxidase requires participation of membrane-bound cytochrome b558 and cytosol proteins of 47 kDa (p47) and 67 kDa (p67). We examined the sequence of participation of p47 and p67 in activation of the oxidase using an arachidonate-activated cell-free superoxidase (O2-) generating assay requiring phagocyte membrane and cytosol. Neutrophil cytosol from patients with certain forms of autosomal recessive chronic granulomatous disease (CGD) lack either p47 or p67. Initial incubation of membrane and arachidonate with CGD cytosol deficient in either p47 or p67 fails to generate superoxide in the cell-free assay until addition of complementary cytosol. CGD cytosol was incubated with arachidonate and membrane for 5-15 min and the lag time of O2- generation was measured after addition of complementary CGD cytosol. The lag time is shortened when p47, but not p67, is present in the initial incubation. We have previously shown that the peptide, RGVHFIF, corresponding to a cytoplasmic carboxyl-terminal domain of the large subunit of cytochrome b558, inhibits activation of NADPH oxidase in the cell-free assay, but does not affect the enzyme activity of fully assembled oxidase. Experiments with sequential addition of complementary CGD cytosols were performed as above, except that RGVHFIF was added after the initial incubation. The peptide failed to inhibit when added after initial incubation if p47 was present during that incubation. In contrast, the peptide markedly inhibited oxidase activity if p47 was absent during the initial incubation. These results suggest that p47, but not p67, is a participant with membrane and/or other cytosol components in early arachidonate-dependent reactions. In the absence of p67, these reactions culminate in the irreversible formation of a metastable activation intermediate that is insensitive to inhibition by RGVHFIF. After addition of p67, this activation intermediate subsequently reacts to form the active NADPH oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号