首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Germination and outgrowth of three strains of Clostridium botulinum in PYEG medium were measured by phase contrast microscopy. Reduction in pH from 7 to 5·5 completely inhibited germination of strain 12885A, reduced the extent of germination of strain 62A and had no effect on the extent of germination of strain 53B. At pH 5·5, 225 mg/1 of undissociated sorbic acid had no effect on the germination of strain 53B, while at pH 6·5, 225 mg/1 of undissociated sorbic acid completely inhibited germination of strains 62A and 12885A. Outgrowth of germinated spores of strains 62A and 53B was not inhibited at pH 5·5, but the addition of sorbate (225 mg/1 undissociated sorbic acid) completely inhibited outgrowth. Sorbate inhibited germination of Cl. botulinum and Bacillus cereus spores triggered to germinate by amino acids. Inhibition occurred after germinant binding, as measured by commitment to germinate.  相似文献   

2.
Germination and outgrowth of three strains of Clostridium botulinum in PYEG medium were measured by phase contrast microscopy. Reduction in pH from 7 to 5.5 completely inhibited germination of strain 12885A, reduced the extent of germination of strain 62A and had no effect on the extent of germination of strain 53B. At pH 5.5, 225 mg/l of undissociated sorbic acid had no effect on the germination of strain 53B, while at pH 6.5, 225 mg/l of undissociated sorbic acid completely inhibited germination of strains 62A and 12885A. Outgrowth of germinated spores of strains 62A and 53B was not inhibited at pH 5.5, but the addition of sorbate (225 mg/l undissociated sorbic acid) completely inhibited outgrowth. Sorbate inhibited germination of Cl. botulinum and Bacillus cereus spores triggered to germinate by amino acids. Inhibition occurred after germinant binding, as measured by commitment to germinate.  相似文献   

3.
Spores of Bacillus subtilis NCTC 8236 were exposed to 2% alkaline glutaraldehyde and subsequently subjected to various treatments in an attempt to revive injured spores. Treatment with alkali (sodium or potassium hydroxide or, to a lesser extent, sodium bicarbonate) proved to be most successful. Some revival was achieved after thermal treatment. No revival was obtained with lysozyme or with various types of coat-removing agents. Experiments designed to distinguish between germination and outgrowth in the revival process established that sodium hydroxide (optimum concentration, 20 mmol/l) added to glutaraldehyde-treated spores increased the potential for germination. In contrast, spores which had been allowed to germinate before exposure to low concentrations of glutaraldehyde and then to sodium hydroxide were inhibited at the outgrowth phase to a much greater extent than germinated spores treated with the dialdehyde without subsequent alkali exposure. The results overall are discussed in terms of the possible mechanism and site of action of glutaraldehyde and the practical implications and significance of its use as a sporicide.  相似文献   

4.
The effect of visible radiations on the germination and outgrowth of spores of Bacillus subtilis MD2 and Bacillus subtilis var. niger was determined by direct observation of populations irradiated on the surface of nutrient agar. Little effect on germination (phase darkening) was found but white light prevented outgrowth of some and retarded it for all spores. Different wavebands in the visible spectrum differed in their effect on outgrowth, the greatest retardation being found for the shorter wavelengths, 410–570 nm. Outgrowth in dark controls was always greater both in number of spores outgrown and rate of outgrowth. The results are consistent with others, suggesting an effect of singlet oxygen generated from endogenous photosensitizers by visible radiation.  相似文献   

5.
Spores of Bacillus subtilis NCTC 8236 were exposed to 2% alkaline glutaraldehyde and subsequently subjected to various treatments in an attempt to revive injured spores. Treatment with alkali (sodium or potassium hydroxide or, to a lesser extent, sodium bicarbonate) proved to be most successful. Some revival was achieved after thermal treatment. No revival was obtained with lysozyme or with various types of coat-removing agents. Experiments designed to distinguish between germination and outgrowth in the revival process established that sodium hydroxide (optimum concentration, 20 mmol/l) added to glutaraldehyde-treated spores increased the potential for germination. In contrast, spores which had been allowed to germinate before exposure to low concentrations of glutaraldehyde and then to sodium hydroxide were inhibited at the outgrowth phase to a much greater extent than germinated spores treated with the dialdehyde without subsequent alkali exposure. The results overall are discussed in terms of the possible mechanism and site of action of glutaraldehyde and the practical implications and significance of its use as a sporicide.  相似文献   

6.
Polymyxin B, one of the cyclic polypeptide antibiotics, binds to the coat of Bacillus subtilis dormant spores and inhibits them from growing after germination. When about 2.8 × 108 cells/ml of polymyxin B-treated dormant spores were incubated in heart infusion broth, 3.6 μg/ml of polymyxin B were released into the liquid medium during germination. Incubation of the same concentration of polymyxin B-treated ones in 100 mM CaCl2 solution released 4.0 μg/ml of the antibiotic. The effect of various concentrations of polymyxin B on germination, outgrowth and vegetative growth of the dormant spores was investigated; the results showed that concentrations of 4.0 μg/ml and higher of the antibiotic inhibited their outgrowth and vegetative growth after germination. Young vegetative cells were less sensitive to the antibiotic than germinated spores. In addition to these results, immunoelectron microscopy with colloidal gold particles indicated that polymyxin B permeated into the core of the germinated spores and inhibited them from outgrowing.  相似文献   

7.
Polymyxin B combined with the resting spores of Bacillus subtilis and inhibited outgrowth and vegetative growth after germination. The antibiotic was released from the resting spores and its inhibitory action was reversed by the addition of di- and trivalent metallic cations.  相似文献   

8.
Pretreatment with ethidium bromide (5 μg/ml) followed by a water wash had no effect on unheated Bacillus subtilis spores, but the viability of these spores after heating was much lower than that of similarly heated spores exposed to water alone. The fate of water- or ethidium bromide-treated spores, unheated or heated, was followed by allowing them to germinate and outgrow in a minimal or a complex liquid medium. Spores exposed to ethidium bromide and then heated (85°C, 10 min) exhibited a developmental block during germination and outgrowth. Many of them were blocked at the stage when the bacterium emerged from the germinated spore. When 0.35 μg of ethidium bromide per ml was added to heated spores in the germination-growth medium, the outgrowth of heated spores was inhibited to the same extent as were pretreated spores. Ethidium bromide acted in the first hour of germination of heated spores since addition after this time was ineffective in inhibiting recovery events. Repair of heat-damaged spore DNA was detected during the first 2 h of germination. The addition of ethidium bromide (final concentration, 0.35 μg/ml) inhibited DNA repair during early outgrowth. Increased sensitivity of spores to heat after pretreatment with sublethal concentrations of ethidium bromide was due to the inhibition of the repair of heat-damaged DNA.  相似文献   

9.
Spore-forming bacteria are a special problem for the food industry as some of them are able to survive preservation processes. Bacillus spp. spores can remain in a dormant, stress resistant state for a long period of time. Vegetative cells are formed by germination of spores followed by a more extended outgrowth phase. Spore germination and outgrowth progression are often very heterogeneous and therefore, predictions of microbial stability of food products are exceedingly difficult. Mechanistic details of the cause of this heterogeneity are necessary. In order to examine spore heterogeneity we made a novel closed air-containing chamber for live imaging. This chamber was used to analyze Bacillus subtilis spore germination, outgrowth, as well as subsequent vegetative growth. Typically, we examined around 90 starting spores/cells for ≥4 hours per experiment. Image analysis with the purposely built program “SporeTracker” allows for automated data processing from germination to outgrowth and vegetative doubling. In order to check the efficiency of the chamber, growth and division of B. subtilis vegetative cells were monitored. The observed generation times of vegetative cells were comparable to those obtained in well-aerated shake flask cultures. The influence of a heat stress of 85°C for 10 min on germination, outgrowth, and subsequent vegetative growth was investigated in detail. Compared to control samples fewer spores germinated (41.1% less) and fewer grew out (48.4% less) after the treatment. The heat treatment had a significant influence on the average time to the start of germination (increased) and the distribution and average of the duration of germination itself (increased). However, the distribution and the mean outgrowth time and the generation time of vegetative cells, emerging from untreated and thermally injured spores, were similar.  相似文献   

10.
The method by which sodium nitrite may act to prevent germination or outgrowth, or both, of heat-injured spores in canned cured meats was investigated by using Clostridium perfringens spores. Four possible mechanisms were tested: (i) prevention of germination of the heat-injured spores, (ii) prior combination with a component in a complex medium to prevent germination of heat-injured spores, (iii) inhibition of outgrowth of heat-injured spores, and (iv) induction of germination (which would render the spore susceptible to thermal inactivation). Only the third mechanism was effective with the entire spore population when levels of sodium nitrite commercially acceptable in canned cured meats were used. Concentrations of 0.02 and 0.01% prevented outgrowth of heat-sensitive and heat-resistant spores, respectively. Nitrite-induced germination occurred with higher sodium nitrite concentrations.  相似文献   

11.
The normal system functioning in the utilization of metabolizable germinants by both heat-sensitive and heat-resistant spores of Clostridium perfringens was inactivated by heat or by treatment of the spores with alkali to remove a soluble coat protein layer. Altered spores were incapable of germination (less than 1%) and outgrowth (less than 0.0005%) in complex media without the addition of either lysozyme or an initiation protein produced by C. perfringens. The addition of either of these agents permitted, in the case of alkali-treated spores, both 90 to 95% germination and outgrowth, as measured by colony formation. In the case of heat-damaged spores, only 50% germination and 2% outgrowth resulted from addition of the initiation protein, whereas lysozyme permitted 85% germination and 8% outgrowth. Alteration of the spores by heat or alkali apparently inactivated the normal lytic system responsible for cortical degradation during germination. Kinetics of production of the initiation protein and conditions affecting both its activity and that of lysozyme on altered spores are described.  相似文献   

12.
A novel slide-culture technique was used to study germination and outgrowth of Bacillus popilliae spores without disturbing the microenvironment. Infective spores formed in larvae required 24 hr to begin outgrowth, whereas noninfective spores from colonies initiated outgrowth in 12 hr. Dissolution of the paraspore coincided with outgrowth and not with germination of the attached spore. Germination and outgrowth were asynchronous events and required several days in all cell populations, except for free spores.  相似文献   

13.
1-Methyldodecyldimethylamine oxide (MDDO) and N,N'-bis(dodecyldimethyl)-1,2-ethanediammonium dibromide (BDED) exhibit a significant affinity for the surface of Bacillus cereus spores and adsorb very rapidly to the cells; they have a pronounced inhibitory effect on spore outgrowth. In order to alter the affinity of the spore surface for these inhibitors, the spores were pretreated with sodium dodecyl sulfate (SDS), and with an electronegative (Tween 80) and electropositive (histone) compound. In SDS-pretreated spores the inhibitory effect of MDDO and BDED was abolished to a considerable extent. Whereas the development of intact spores was inhibited already after germination, in SDS-pretreated spores the postgermination development continued but was not completed. In Tween 80-pretreated spores the addition of BDED led only to a retardation of outgrowth and division; BDED added only during the division stage interrupted further development completely. Histone-pretreated spores stopped their development instantaneously after the addition of BDED at any phase of the postgermination development. The possible mechanisms of the interaction of the compounds used with spore surface or rather with the state of its structures are discussed.  相似文献   

14.
Bacillus brevis strain Nagano and its gramicidin S-negative mutant, BI-7, were compared with respect to germination of their spores produced in several media. Germination initiation occurred in the presence of nutrient broth orL-alanine but not with inosine, glucose, glycerol or fructose; the process was activated by heat. Parental and mutant spores behaved similarly in these experiments. During outgrowth, parental spores remained in this phase of germination much longer than did mutant spores, but only when the parental spores had been harvested from a sporulation medium where significant gramicidin S synthesis had occurred. When parental spores were extracted or treated with an enzyme that hydrolyzes gramicidin S, rapid outgrowth occurred. Adding exogenous gramicidin S or the extract from parental spores to mutant spores lengthened the outgrowth in a dose-dependent manner. The uptake of labeledL-alanine by parental spores was delayed compared to mutant spores in the presence or absence of chloramphenicol. These data suggest a mechanism of action for gramicidin S whereby it interferes in membrane function, such as transport or energy metabolism, in outgrowing spores.Abbreviations GS Gramicidin S - CFU colony-forming units  相似文献   

15.
Nucleic acid synthesis was studied during germination and outgrowth of normal spores of Bacillus subtilis, as well as of spores carrying the genome of phage phie. In a system in which development was restricted to the spore-darkening phase, synthesis of ribonucleic acid (RNA), but not deoxyribonucleic acid (DNA), was detected. The extent of RNA synthesis and turnover, during this phase was similar for the two types of spores. In a partially darkened population of spores of either type, there was little RNA degradation, whereas there was considerable turnover in a fully darkened population. The DNA-dependent RNA polymerase of dormant or dark spores was not active in vitro with phi DNA as template, although a sigma-like factor could be separated from the polymerizing activity by zone centrifugation. Within 40 min after resuspension of dark spores in a medium that allows outgrowth, the enzyme acquired the ability to transcribe the phage DNA efficiently. During outgrowth, both normal and carrier spores synthesized DNA, but in carrier spores this DNA was almost entirely phage specific. The pattern of RNA accumulation in normal spores was in two distinct phase (0 to 60 min and 90 to 180 min). The second phase was absent in outgrowing carrier spores. The burst of phage in carrier spores occurred at 160 to 180 min.  相似文献   

16.
Olive oil intake has been shown to induce significant levels of apoptosis in various cancer cells. These anti-cancer properties are thought to be mediated by phenolic compounds present in olive. These beneficial health effects of olive have been attributed, at least in part, to the presence of oleuropein and hydroxytyrosol. In this study, oleuropein and hydroxytyrosol, major phenolic compound of olive oil, was studied for its effects on growth in MCF-7 human breast cancer cells using assays for proliferation (MTT assay), cell viability (Guava ViaCount assay), cell apoptosis, cellcycle (flow cytometry). Oleuropein or hydroxytyrosol decreased cell viability, inhibited cell proliferation, and induced cell apoptosis in MCF-7 cells. Result of MTT assay showed that 200 μg/mL of oleuropein or 50 μg/mL of hydroxytyrosol remarkably reduced cell viability of MCF-7 cells. Oleuropein or hydroxytyrosol decrease of the number of MCF-7 cells by inhibiting the rate of cell proliferation and inducing cell apoptosis. Also hydroxytyrosol and oleuropein exhibited statistically significant block of G1 to S phase transition manifested by the increase of cell number in G0/G1 phase.  相似文献   

17.
Population heterogeneity complicates the predictability of the outgrowth kinetics of individual spores. Flow cytometry sorting and monitoring of the germination and outgrowth of single dormant spores allowed the quantification of acid-induced spore population heterogeneity at pH 5.5 and in the presence of sorbic acid. This showed that germination efficiency was not a good predictor for heterogeneity in final outgrowth.  相似文献   

18.
Gramicidin S is known to prolong the outgrowth stage of spore germination in the producing culture. Bacillus brevis strain Nagano and its gramicidin S-negative mutant, BI-7, were compared with respect to cell-surface hydrophobicity and germination of their spores. Parental spores were hydrophobic as determined by adhesion to hexadecane, whereas mutant spores showed no affinity to hexadecane. Addition of gramicidin S to mutant spores resulted in a high cell surface hydrophobicity and a delay in germination outgrowth. The hydrophobicity of parental spores was retained throughout most of the germination period. Hydrophobicity was lost as outgrowing spores entered into the stage of vegetative growth. The data indicate that gramicidin S is responsible for the hydrophobicity of B. brevis spores. It is suggested that in making spores hydrophobic, the antibiotic plays a role in concentrating the spores at interfaces where there is a higher probability of finding nutrients for germination and growth.Abbreviation GS Gramicidin S  相似文献   

19.
Cabbage looper hemolymph induced rapid germination and outgrowth of spores of Bacillus popilliae. Spores germinated within sporangia but outgrowth occurred from free released spores as well as from spores retained in sporangia. With 37°C, an alkaline pH, and tyrosinase, outgrowth resulted in 1 hr. Of six strains of milky disease bacteria tested, hemolymph mediated germination and outgrowth of only those which are infective perorally for European chafer larvae, indicating a potential use as a screening tool to assess virulence for the chafer.  相似文献   

20.
The effects of temperature on the activation, glucose-induced germination, and outgrowth of Bacillus megaterium QM B1551 spores were investigated. There was no evidence for discontinuities in the response of spores to temperature in these processes reflecting reported thermal anomalies in the physical structure of water. Increasing the temperature of heat activation (aqueous suspensions, 5 min) increased the germinability of spores. Activation, as measured by extent of germination, was optimal after heating at 62 to 78 C, and the rate of spore germination was maximal after heat activation at 64 to 68 C. Increasing the temperature of activation above 68 C depressed the germination rate and increased the time lag before this rate was reached. Germination occurred over a wide range of temperatures, but was optimal between 28 and 38 C. The highest rate of germination was at 38 C; at lower incubation temperatures, the maximum attained rate was lower and the lag in attaining this rate was extended. Outgrowth (postgerminative development through the first cell division) of the germinated spores in Brain Heart Infusion (BHI) occurred in at least two phases-a temperature-dependent lag phase followed by a relatively temperature-independent phase of maximum outgrowth rate, during which increase in optical density was a linear function of time. Outgrowth time (time required for doubling of the initial optical density), essentially dependent on the time for completion of the lag phase, was shortest at temperatures between 34 and 40 C. The temperature-dependent lag phase was completed in a rich medium (e.g., BHI) but not in the glucose germination medium, suggesting that the endogenous reserves of the germinated spore were inadequate to support the metabolic synthetic events occurring during this period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号