首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Angelman (AS) and Prader-Willi (PWS) syndromes are two clinically distinct disorders that are caused by a differential parental origin of chromosome 15q11-q13 deletions. Both also can result from uniparental disomy (the inheritance of both copies of chromosome 15 from only one parent). Loss of the paternal copy of 15q11-q13, whether by deletion or maternal uniparental disomy, leads to PWS, whereas a maternal deletion or paternal uniparental disomy leads to AS. The differential modification in expression of certain mammalian genes dependent upon parental origin is known as genomic imprinting, and AS and PWS represent the best examples of this phenomenon in humans. Although the molecular mechanisms of genomic imprinting are unknown, DNA methylation has been postulated to play a role in the imprinting process. Using restriction digests with the methyl-sensitive enzymes HpaII and HhaI and probing Southern blots with several genomic and cDNA probes, we have systematically scanned segments of 15q11-q13 for DNA methylation differences between patients with PWS (20 deletion, 20 uniparental disomy) and those with AS (26 deletion, 1 uniparental disomy). The highly evolutionarily conserved cDNA, DN34, identifies distinct differences in DNA methylation of the parental alleles at the D15S9 locus. Thus, DNA methylation may be used as a reliable, postnatal diagnostic tool in these syndromes. Furthermore, our findings demonstrate the first known epigenetic event, dependent on the sex of the parent, for a locus within 15q11-q13. We propose that expression of the gene detected by DN34 is regulated by genomic imprinting and, therefore, that it is a candidate gene for PWS and/or AS.  相似文献   

2.
Genetic imprinting has been implicated in the etiology of two clinically distinct but cytogenetically indistinguishable disorders--Angelman syndrome (AS) and Prader-Willi syndrome (PWS). This hypothesis is derived from two lines of evidence. First, while the molecular extents of de novo cytogenetic deletions of chromosome 15q11q13 in AS and PWS patients are the same, the deletions originate from different parental chromosomes. In AS, the deletion occurs in the maternally inherited chromosome 15, while in PWS the deletion is found in the paternally inherited chromosome 15. The second line of evidence comes from the deletion of an abnormal parental contribution of 15q11q13 in PWS patients without a cytogenetic and molecular deletion. These patients have two maternal copies and no paternal copy of 15q11q13 (maternal uniparental disomy) instead of one copy from each parent. By qualitative hybridization with chromosome 15q11q13 specific DNA markers, we have now examined DNA samples from 10 AS patients (at least seven of which are familial cases) with no cytogenetic or molecular deletion of chromosome 15q11q13. Inheritance of one maternal copy and one paternal copy of 15q11q13 was observed in each family, suggesting that paternal uniparental disomy of 15q11q13 is not responsible for expression of the AS phenotype in these patients.  相似文献   

3.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two distinct neurogenetic disorders caused by the loss of function of imprinted genes in the chromosomal region 15q11q13. An approximately 2 Mb region inside 15q11q13 is subject to genomic imprinting. As a consequence the maternal and paternal copies in this region are different in DNA methylation and gene expression. The most frequent genetic lesions in both disorders are an interstitial de novo deletion of the chromosomal region 15q11q13, uniparental disomy 15, an imprinting defect or, in the case of AS, a mutation of the UBE3A gene. Microdeletions in a small number of patients with PWS and AS with an imprinting defect have led to the identification of the chromosome 15 imprinting centre (IC) upstream of the SNURF-SNRPN gene, which acts in cis to regulate imprinting in the whole 15q imprinted domain. The IC consists of two critical elements: one in the more centromeric part which is deleted in patients with AS and which is thought to be responsible for the establishment of imprinting in the female germ line, and one in the more telomeric part which is deleted in patients with PWS and which is required to maintain the paternal imprint.  相似文献   

4.
Prader-Willi (PWS) and Angelman (AS) are syndromes of developmental impairment that result from the loss of expression of imprinted genes in the paternal (PWS) or maternal (AS) 15q11-q13 chromosome. Diagnosis on a clinical basis is difficult in newborns and young infants; thus, a suitable molecular test capable of revealing chromosomal abnormalities is required. We used a variety of cytogenetic and molecular approaches, such as, chromosome G banding, fluorescent in situ hybridization, a DNA methylation test, and a set of chromosome 15 DNA polymorphisms to characterize a cohort of 27 PWS patients and 24 suspected AS patients. Molecular analysis enabled the reliable diagnosis of 14 PWS and 7 AS patients, and their classification into four groups: (A) 6 of these 14 PWS subjects (44 %) had deletions of paternal 15q11-q13; (B) 4 of the 7 AS patients had deletions of maternal 15q11-q13; (C) one PWS patient (8 %) had a maternal uniparental disomy (UPD) of chromosome 15; (D) the remaining reliably diagnoses of 7 PWS and 3 AS cases showed abnormal methylation patterns of 15q11-q13 chromosome, but none of the alterations shown by the above groups, although they may have harbored deletions undetected by the markers used. This study highlights the importance of using a combination of cytogenetic and molecular tests for a reliable diagnosis of PWS or AS, and for the identification of genetic alterations.  相似文献   

5.
The Prader-Willi syndrome (PWS) and the Angelman syndrome (AS) are distinct genetic disorders that are caused by a deletion of chromosome region 15q11-13 or by uniparental disomy for chromosome 15. Whereas PWS results from the absence of a paternal copy of 15q11-13, the absence of a maternal copy of 15q11-13 leads to AS. We have found that an MspI/HpaII restriction site at the D15S63 locus in 15q11-13 is methylated on the maternally derived chromosome, but unmethylated on the paternally derived chromosome. Based on this difference, we have devised a rapid diagnostic test for patients suspected of having PWS and AS.  相似文献   

6.
Summary Sporadic cases of Prader-Willi syndrome (PWS) are associated with the physical absence of the paternal Prader-Willi chromosome region (PWCR) by deletion 15q11–13, by segmental maternal heterodisomy or by chromosome rearrangements resulting in homozygosity for maternal PWCR. In isolated/familial cases, it is proposed that the expression of PWS depends on the functional absence caused by mutated gene(s) within the paternal PWCR. The same mutation on a maternally derived chromosome 15 is not able to express PWS. An epigenetic mechanism associated with the paternal meiosis is essential. In the Angelman syndrome (AS), inverse mechanisms are postulated. There is convincing evidence for specific PWS and AS genes or alleles within PWCR. This is compatible with the observations of interstitial chromosome deletions of the critical region in normal individuals or in probands with phenotypes other than PWS or AS. The new ideas of the model stated here are: (1) the proposed epigenetic mechanism in PWCR is obviously common in humans, but is usually of no phenotypic relevance; (2) interactions with specific chromosomal or gene mutations are required for the clinical expression of PWS or AS; (3) each factor alone is not able to produce an abnormal phenotype.  相似文献   

7.
Angelman syndrome (AS) is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG) abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11–q13 (70%), paternal uniparental disomy (UPD) of chromosome 15 (5%), imprinting mutations (rare), and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%). Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11–q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m−/p+) were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m−/p+), but not paternal (m+/p−), deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV) recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal communication behaviors in human AS patients. Thus, mutant mice with a maternal deletion from Ube3a to Gabrb3 provide an AS mouse model that is molecularly more similar to the contiguous gene deletion form of AS in humans than mice with Ube3a mutation alone. These mice will be valuable for future comparative studies to mice with maternal deficiency of Ube3a alone.  相似文献   

8.
Angelman syndrome (AS) is associated with a loss of maternal genetic information, which typically occurs as a result of a deletion at 15q11-q13 or paternal uniparental disomy of chromosome 15. We report a patient with AS as a result of an unbalanced cryptic translocation whose breakpoint, at 15q11.2, falls within this region. The proband was diagnosed clinically as having Angelman syndrome, but without a detectable cytogenetic deletion, by using high-resolution G-banding. FISH detected a deletion of D15S11 (IR4-3R), with an intact GABRB3 locus. Subsequent studies of the proband's mother and sister detected a cryptic reciprocal translocation between chromosomes 14 and 15 with the breakpoint being between SNRPN and D15S10 (3- 21). The proband was found to have inherited an unbalanced form, being monosomic from 15pter through SNRPN and trisomic for 14pter to 14q11.2. DNA methylation studies showed that the proband had a paternal-only DNA methylation pattern at SNRPN, D15S63 (PW71), and ZNF127. The mother and unaffected sister, both having the balanced translocation, demonstrated normal DNA methylation patterns at all three loci. These data suggest that the gene for AS most likely lies proximal to D15S10, in contrast to the previously published position, although a less likely possibility is that the maternally inherited imprinting center acts in trans in the unaffected balanced translocation carrier sister.  相似文献   

9.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders resulting from deficiency of imprinted gene expression from paternal or maternal chromosome 15q11-15q13, respectively. In humans, expression of the imprinted genes is under control of a bipartite cis-acting imprinting center (IC). Families with deletions causing PWS imprinting defects localize the PWS-IC to 4.3 kb overlapping with SNRPN exon 1. Families with deletions causing AS imprinting defects localize the AS-IC to 880 bp 35 kb upstream of the PWS-IC. We report two mouse mutations resulting in defects similar to that seen in AS patients with deletion of the AS-IC. An insertion/duplication mutation 13 kb upstream of Snrpn exon 1 resulted in lack of methylation at the maternal Snrpn promoter, activation of maternally repressed genes, and decreased expression of paternally repressed genes. The acquisition of a paternal epigenotype on the maternal chromosome in the mutant mice was demonstrated by the ability to rescue the lethality and growth retardation in a mouse model of a PWS imprinting defect. A second mutation, an 80-kb deletion extending upstream of the first mutation, caused a similar imprinting defect with variable penetrance. These results suggest that there is a mouse functional equivalent to the human AS-IC.  相似文献   

10.
The Prader-Willi syndrome and the Angelman syndrome   总被引:1,自引:0,他引:1  
The Prader-Willi syndrome and the Angelman syndrome are characterised by a complex clinical and behavioural phenotype resulting from loss of paternal or maternal expression, respectively, of genes located on the human chromosome 15q11-13. Different molecular mechanisms leading to this imbalance have been identified, including microdeletions, intragenic mutations, uniparental disomy and imprinting centre defects. Low copy repeat gene clusters are known to flank the 15q11-13 microdeletion. They predispose to unequal crossing-over events resulting in the deletion. Involvement of multiple disease genes is strongly suspected and traditional positional cloning techniques as well as animal models are used to identify the involved genes. In this review we include the present state of art and a delineation of future approach to study the candidate genes in these two syndromes.  相似文献   

11.
Angelman syndrome (AS) most frequently results from large (> or = 5 Mb) de novo deletions of chromosome 15q11-q13. The deletions are exclusively of maternal origin, and a few cases of paternal uniparental disomy of chromosome 15 have been reported. The latter finding indicates that AS is caused by the absence of a maternal contribution to the imprinted 15q11-q13 region. Failure to inherit a paternal 15q11-q13 contribution results in the clinically distinct disorder of Prader-Willi syndrome. Cases of AS resulting from translocations or pericentric inversions have been observed to be associated with deletions, and there have been no confirmed reports of balanced rearrangements in AS. We report the first such case involving a paracentric inversion with a breakpoint located approximately 25 kb proximal to the reference marker D15S10. This inversion has been inherited from a phenotypically normal mother. No deletion is evident by molecular analysis in this case, by use of cloned fragments mapped to within approximately 1 kb of the inversion breakpoint. Several hypotheses are discussed to explain the relationship between the inversion and the AS phenotype.  相似文献   

12.
Wu MY  Jiang M  Zhai X  Beaudet AL  Wu RC 《PloS one》2012,7(4):e34348
Genomic imprinting is a phenomenon that some genes are expressed differentially according to the parent of origin. Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders caused by deficiency of imprinted gene expression from paternal and maternal chromosome 15q11-q13, respectively. Imprinted genes at the PWS/AS domain are regulated through a bipartite imprinting center, the PWS-IC and AS-IC. The PWS-IC activates paternal-specific gene expression and is responsible for the paternal imprint, whereas the AS-IC functions in the maternal imprint by allele-specific repression of the PWS-IC to prevent the paternal imprinting program. Although mouse chromosome 7C has a conserved PWS/AS imprinted domain, the mouse equivalent of the human AS-IC element has not yet been identified. Here, we suggest another dimension that the PWS-IC also functions in maternal imprinting by negatively regulating the paternally expressed imprinted genes in mice, in contrast to its known function as a positive regulator for paternal-specific gene expression. Using a mouse model carrying a 4.8-kb deletion at the PWS-IC, we demonstrated that maternal transmission of the PWS-IC deletion resulted in a maternal imprinting defect with activation of the paternally expressed imprinted genes and decreased expression of the maternally expressed imprinted gene on the maternal chromosome, accompanied by alteration of the maternal epigenotype toward a paternal state spread over the PWS/AS domain. The functional significance of this acquired paternal pattern of gene expression was demonstrated by the ability to complement PWS phenotypes by maternal inheritance of the PWS-IC deletion, which is in stark contrast to paternal inheritance of the PWS-IC deletion that resulted in the PWS phenotypes. Importantly, low levels of expression of the paternally expressed imprinted genes are sufficient to rescue postnatal lethality and growth retardation in two PWS mouse models. These findings open the opportunity for a novel approach to the treatment of PWS.  相似文献   

13.
Uniparental disomy of chromosome 14 (UPD 14) results in one of two distinct abnormal phenotypes, depending upon the parent of origin. This discordance may result from the reciprocal over-expression and/or under-expression of one or more imprinted genes. We report a case of segmental paternal isodisomy for chromosome 14 with features similar to those reported in other paternal disomy 14 cases. Microsatellite marker analysis revealed an apparent somatic recombination event in 14q12 leading to proximal biparental inheritance, but segmental paternal uniparental isodisomy distal to this site. Analysis of monochromosomal somatic cell hybrids containing either the paternally inherited or the maternally inherited chromosome 14 revealed no deletion of the maternally inherited chromosome 14 and demonstrated the presence of paternal sequences from D14S121 to the telomere on both chromosomes 14. Thus, the patient has paternal isodisomy for 14q12-14qter. Because the patient shows most of the features associated with paternal disomy 14, this supports the presence of the imprinted domain(s) distal to 14q12 and suggests that the proximal region of chromosome 14 does not contain imprinted genes that contribute significantly to the paternal UPD 14 phenotype.  相似文献   

14.
Angelman syndrome (AS) is characterized by severe mental retardation, absent speech, puppet-like movements, inappropriate laughter, epilepsy, and abnormal electroencephalogram. The majority of AS patients ( 65%) have a maternal deficiency within chromosomal region 15q11–q13, caused by maternal deletion or paternal uniparental disomy (UPD). Approximately 35% of AS patients exhibit neither detectable deletion nor UPD, but a subset of these patients have abnormal methylation at several loci in the 15q11–q13 interval. We describe here three patients with Angelman syndrome belonging to an extended inbred family. High resolution chromosome analysis combined with DNA analysis using 14 marker loci from the 15q11-q13 region failed to detect a deletion in any of the three patients. Paternal UPD of chromosome 15 was detected in one case, while the other two patients have abnormal methylation atD15S9, D15S63, andSNRPN. Although the three patients are distantly related, the chromosome 15q11-q13 haplotypes are different, suggesting that independent mutations gave rise to AS in this family.  相似文献   

15.
The Angelman syndrome (AS) is caused by genetic abnormalities affecting the maternal copy of chromosome region 15q12. Until recently, the molecular diagnosis of AS relied on the detection of either a deletion at 15q11-13, a paternal uniparental disomy (UPD) for chromosome 15 or imprinting mutations. A fourth class of genetic defects underlying AS was recently described and consists of mutations of the UBE3A gene. The vast majority of mutations reported so far are predicted to cause major disruptions at the protein level. It is unclear whether mutations with less drastic consequences for the gene product could lead to milder forms of AS. We report on our results obtained by screening 101 clinically diagnosed AS patients for mutations in the UBE3A gene. Non-stringent clinical criteria were purposely applied for inclusion of AS patients in this study. The mutation search was carried out by single-strand conformation polymorphism (SSCP), and SSCP/restriction fragment length polymorphism (RFLP) analyses and revealed five novel UBE3A gene mutations as well as three different polymorphisms. All five mutations were detected in patients with typical features of AS and are predicted to cause frameshifts in four cases and the substitution of a highly conserved residue in the fifth. The results we obtained add to the as yet limited number of reports concerning UBE3A gene mutations. Important aspects that emerge from the data available to date is that the four classes of genetic defects known to underlie AS do not appear to cover all cases. The genetic defect underlying approximately 10% of AS cases, including some familial cases, remains unknown.  相似文献   

16.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurodevelopmental disorders caused by absence of paternally or maternally expressed imprinted genes on chr15q11.2-q13.3. Three mechanisms are known to be involved in the pathogenesis: microdeletions, uniparental disomy (UPD) and imprinting defects. Both disorders are difficult to be definitely diagnosed at early age if no available molecular cytogenetic tests. In this study, we identified 5 AS patients with the maternal deletion and 26 PWS patients with paternal deletion on chr15q11-q13 by using an innovative multiplex-fluorescent-labeled short tandem repeats (STRs) assay based on linkage analysis, and validated by the methylation-specific PCR and array comparative genomic hybridization techniques. More interesting, one of these PWS patients was confirmed as maternal uniparental isodisomy by the STR linkage analysis. The phenotypic and genotypic characteristics of these individuals were also presented. Our results indicate that the new linkage analysis is much faster and easier for large-scale screening deletion and uniparental disomy, thus providing a valuable method for early diagnosis of PWS/AS patients, which is critical for genetic diagnosis, management and improvement of prognosis.  相似文献   

17.
Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by severe mental retardation, microcephaly, speech impairment, frequent epilepsy, EEG abnormalities, ataxic movements, tongue protrusion, bursts of laughter, sleep abruptions, and hyperactivity. AS results from loss of function of the imprinted UBE3A (ubiquitin‐protein ligase E3A) gene on chromosome 15q11–q13, including a mutation on the maternal allele of Ube3a, a large deletion of the maternally inherited chromosomal region 15q11–13, paternal uniparental disomy of chromosome 15q11–13, or an imprinting defect. The Ube3a maternal deleted mouse model recaptured the major phenotypes of AS patients include seizure, learning and memory impairments, sleep disturbance, and motor problems. Owing to the activity‐dependent structural and functional plasticity, dendritic spines are believed as the basic subcellular compartment for learning and memory and the sites where LTP and LTD are induced. Defects of spine formation and dynamics are common among several neurodevelopmental disorders and neuropsychiatric disorders including AS and reflect the underlying synaptopathology, which drives clinically relevant behavioral deficits. This review will summarize the impaired spine density, morphology, and synaptic plasticity in AS and propose that future explorations on spine dynamics and synaptic plasticity may help develop novel interventions and therapy for neurodevelopmental disorders like AS.  相似文献   

18.
Deletions of the proximal long arm of chromosome 15 (bands 15q11q13) are found in the majority of patients with two distinct genetic disorders, Angelman syndrome (AS) and Prader-Willi syndrome (PWS). The deleted regions in the two syndromes, defined cytogenetically and by using cloned DNA probes, are similar. However, deletions in AS occur on the maternally inherited chromosome 15, and deletions in PWS occur on the paternally derived chromosome 15. This observation has led to the suggestion that one or more genes in this region show differential expression dependent on parental origin (genetic imprinting). No genes of known function have previously been mapped to this region. We show here that the gene encoding the GABAA (gamma-aminobutyric acid) receptor beta 3 subunit maps to the AS/PWS region. Deletion of this gene (GABRB3) was found in AS and PWS patients with interstitial cytogenetic deletions. Evidence of beta 3 gene deletion was also found in an AS patient with an unbalanced 13;15 translocation but not in a PWS patient with an unbalanced 9;15 translocation. The localization of this receptor gene to the AS/PWS region suggests a possible role of the inhibitory neurotransmitter GABA in the pathogenesis of one or both of these syndromes.  相似文献   

19.
Uniparental disomy has recently been recognized to cause human disorders, including Prader-Willi syndrome (PWS). We describe a particularly instructive case which raises important issues concerning the mechanisms producing uniparental disomy and whose evaluation provides evidence that trisomy may precede uniparental disomy in a fetus. Chorionic villus sampling performed for advanced maternal age revealed trisomy 15 in all direct and cultured cells, though the fetus appeared normal. Chromosome analysis of amniocytes obtained at 15 wk was normal in over 100 cells studied. The child was hypotonic at birth, and high-resolution banding failed to reveal the deletion of 15q11-13, a deletion which is found in 50%-70% of patients with PWS. Over time, typical features of PWS developed. Molecular genetic analysis using probes for chromosome 15 revealed maternal disomy. Maternal nondisjunction with fertilization of a disomic egg by a normal sperm, followed by loss of the paternal 15, is a likely cause of confined placental mosaicism and uniparental disomy in this case of PWS, and advanced maternal age may be a predisposing factor.  相似文献   

20.
Thirty-seven patients presenting features of the Prader-Willi syndrome (PWS) have been examined using cytogenetic and molecular techniques. Clinical evaluation showed that 29 of these patients fulfilled diagnostic criteria for PWS. A deletion of the 15q11.2-q12 region could be identified molecularly in 21 of these cases, including several cases where the cytogenetics results were inconclusive. One clinically typical patient is deleted at only two of five loci normally included in a PWS deletion. A patient carrying a de novo 13;X translocation was not deleted for the molecular markers tested but was clinically considered to be "atypical" PWS. In addition, five cases of maternal heterodisomy and two of isodisomy for 15q11-q13 were observed. All of the eight patients who did not fulfill clinical diagnosis of PWS showed normal maternal and paternal inheritance of chromosome 15 markers; however, one of these carried a ring-15 chromosome. A comparison of clinical features between deletion patients and disomy patients shows no significant differences between the two groups. The parental ages at birth of disomic patients were significantly higher than those for deletion patients. As all typical PWS cases showed either a deletion or disomy of 15q11.2-q12, molecular examination should provide a reliable diagnostic tool. As the disomy patients do not show either any additional or more severe features than typical deletion patients do, it is likely that there is only one imprinted region on chromosome 15 (within 15q11.2-q12).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号