首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yuk JS  Jung SH  Jung JW  Hong DG  Han JA  Kim YM  Ha KS 《Proteomics》2004,4(11):3468-3476
We have investigated whether surface plasmon resonance (SPR) sensors based on the wavelength interrogation are able to analyze protein interactions on protein arrays. The spectral SPR sensor was self-constructed and its detection limit, expressed as the minimal refractive index variation, was calculated to be 6.6x10(-5) with the signal fluctuation of 1.0x10(-5). The protein array surface was modified by a mixed thiol monolayer to immobilize proteins. Protein arrays were analyzed by the line-scanning mode of the SPR sensor, which scanned every 100 microm along the central line of array spots and the scanned results were presented by color spectra from blue to red. Glutathione S-transferase (GST)-rac1 caused a concentration-dependent increase of SPR wavelength shift on protein arrays. The surface structure of the protein arrays was analyzed by atomic force microscopy. Specific interactions of antigens with antibodies were analyzed on the protein arrays by using three antibodies and eight proteins. These results suggest that the wavelength interrogation-based SPR sensor can be used as the biosensor for the high-throughput analysis of protein interactions on protein arrays.  相似文献   

2.
We have investigated the sensitivity of ex situ (analysis under air condition) and in situ (analysis under liquid condition) spectral SPR sensors, which were self-constructed with fiber optic spectrometers. The sensitivity of SPR sensors was analyzed in the wavelength range of 550-780 nm by the interactions of streptavidin and biotinylated IgG, and the sensitivity was dependent on the wavelength of measurements. The sensitivity of an ex situ SPR sensor operated at the long wavelength range from 712 nm was approximately 2.6 times higher than that at the short wavelength range from 571 nm. In addition, the sensitivity of an ex situ spectral SPR sensor was about twice as high as that of an in situ spectral SPR sensor for the same resonance wavelength range. This was interpreted in that the difference in sensitivity between two SPR sensors was significantly caused by the evanescent field intensity at the metal/dielectric interface. Thus, it was suggested that ex situ spectral SPR sensors operated at the long wavelength range are sensitive biosensors for the high-throughput analysis of protein interactions on protein arrays.  相似文献   

3.
A surface plasmon resonance (SPR) waveguide immunosensor fabricated by germanium-doped silicon dioxide was investigated in this study. The designed waveguide sensor consisted of a 10 microm SiO(2) substrate layer (n=1.469), a 10 microm Ge-SiO(2) channel guide (n=1.492) and a 50 nm gold film layer for immobilization of biomolecules and SPR signal detection. The resultant spectral signal was measured by a portable spectrophotometer, where the sensor was aligned by a custom-designed micro-positioner. The results of the glycerol calibration standards showed that the resonance wavelength shifted from 628 to 758 nm due to changes of refractive index from 1.36 to 1.418. Flow-through immunoassay on waveguide sensors also showed the interactions of protein A, monoclonal antibody (mAb ALV-J) and avian leucosis virus (ALVs) resulted in wavelength shifting of 4.17, 3.03 and 2.18 nm, respectively. The SPR dynamic interaction could also be demonstrated successfully in 4 min as the sensor was integrated with a lateral flow nitrocellulose strip. These results suggest that SPR detection could be carried out on designed waveguide sensor, and the integration of nitrocellulose strip for sample filtering and fluid carrier would facilitate applications in point-of-care portable system.  相似文献   

4.
A simple and rapid continuous-flow immunosensor based on surface plasmon resonance (SPR) has been developed for detection of insulin as low as 1 ng ml-1 (ppb) with a response time of less than 5 min. At first, a heterobifunctional oligo(ethyleneglycol)-dithiocarboxylic acid derivative (OEG-DCA) containing dithiol and carboxyl end groups was used to functionalize the thin Au-film of SPR chip. Insulin was covalently bound to the Au-thiolate monolayer of OEG-DCA for activating the sensor surface to immunoaffinity interactions. An on-line competitive immunosensing principle is examined for detection of insulin, in which the direct affinity binding of anti-insulin antibody to the insulin on sensor surface is examined in the presence and absence of various concentrations of insulin. Immunoreaction of anti-insulin antibody with the sensor surface was optimized with reference to antibody concentration, sample analysis time and flow-rate to provide the desired detection limit and determination range. With the immunosensor developed, the lowest detectable concentration of insulin is 1 ng ml-1 and the determination range covers a wide concentration of 1-300 ng ml-1. The developed OEG-monolayer based sensor chip exhibited high resistance to non-specific adsorption of proteins, and an uninterrupted highly sensitive detection of insulin from insulin-impregnated serum samples has been demonstrated. After an immunoreaction cycle, active sensor surface was regenerated simply by a brief flow of an acidic buffer (glycine.HCl; pH 2.0) for less than 1 min. A same sensor chip was found reusable for more than 25 cycles without an appreciable change in the original sensor activity.  相似文献   

5.
Schubert F  Zettl H  Häfner W  Krauss G  Krausch G 《Biochemistry》2003,42(34):10288-10294
We report a kinetic and thermodynamic analysis of interactions between ssDNA and replication protein A (RPA) using surface plasmon resonance (SPR) and fluorescence correlation spectroscopy (FCS) at variable temperature. The two methods yield different values for the Gibbs free energy but nearly the same value for the reaction enthalpy of ssDNA-RPA complex formation. The Gibbs free energy was determined by SPR and FCS to be -62.6 and -54.7 kJ/mol, respectively. The values for the reaction enthalpy are -64.4 and -66.5 kJ/mol. It is concluded that the difference in Gibbs free energy measured by the two methods is due to different reaction entropies. The entropic contribution to the free energy at 25 degrees C is -1.8 kJ/mol for SPR and -11.8 kJ/mol for FCS. In SPR, the reaction is restricted to two dimensions because of immobilization of the DNA molecules to the sensor surface. In contrast, FCS is able to follow complex formation without spatial restrictions. In consequence, the reaction entropy determined from SPR experiments is lower than for FCS experiments.  相似文献   

6.
Surface plasmon resonance (SPR) is a powerful technique for measuring molecular interaction in real-time. SPR can be used to detect molecule to cell interactions as well as molecule to molecule interactions. In this study, the SPR-based biosensing technique was applied to real-time monitoring of odorant-induced cellular reactions. An olfactory receptor, OR I7, was fused with a rho-tag import sequence at the N-terminus of OR I7, and expressed on the surface of human embryonic kidney (HEK)-293 cells. These cells were then immobilized on a SPR sensor chip. The intensity of the SPR response was linearly dependent on the amount of injected odorant. Among all the aldehyde containing odorants tested, the SPR response was specifically high for octanal, which is the known cognate odorant for the OR I7. This SPR response is believed to have resulted from intracellular signaling triggered by the binding of odorant molecules to the olfactory receptors expressed on the cell surface. This SPR system combined with olfactory receptor-expressed cells provides a new olfactory biosensor system for selective and quantitative detection of volatile compounds.  相似文献   

7.
A novel sensing method based on surface plasmon resonance (SPR) was developed for the highly sensitive quantification of low molecular weight (LMW) analytes (colloidal Au replacement assay). Gold nanoparticles (diameter = 20 nm) functionalized with lactosyl-poly(ethylene glycol) (PEG) were prepared and were specifically adsorbed onto a Ricinus communis agglutinin (RCA120)-immobilized SPR sensor chip surface. Subsequent injection of free d-galactose elicited the elution of the preadsorbed lactosyl-PEGylated gold nanoparticles in a manner proportional to the galactose concentration, achieving a substantial and quantitative analysis over a wide range of galactose concentrations (0.1-50 ppm). This method of d-galactose sensing through the substituted elution of preadsorbed nanoparticles from the sensor chip surface would be applicable for the highly sensitive SPR quantification of various LMW analytes, which are known to be difficult to detect by the conventional SPR sensing regime.  相似文献   

8.
A surface plasmon resonance (SPR) sensor probe with integrated reference surface is described. In order to fabricate the integrated reference surface, two dielectric layers with different thickness were deposited on the single gold SPR sensor surface via plasma polymerization of hexamethyldisiloxane. The working sensor surface was a 34 nm dielectric layer with immobilized bovine serum albumin (BSA) antigen and an adjacent thin 1 nm dielectric layer without BSA provided reference surface. A specific immunoreaction of anti-BSA antibody was detected after immersion of the SPR probe into sample solution. Simultaneous observation of reference and working surface response enabled determination of the immunoreaction without the need for the baseline measurement. Moreover, compensation of nonspecific adsorption could be confirmed using anti-human serum albumin antibody.  相似文献   

9.
A surface plasmon resonance (SPR) based flow chamber device was designed for real time detection of blood coagulation and platelet adhesion in platelet rich plasma (PRP) and whole blood. The system allowed the detection of surface interactions throughout the 6mm length of the flow chamber. After deposition of thromboplastin onto a section of the sensor surface near the inlet of the flow chamber, coagulation was detected downstream of this position corresponding to a SPR signal of 7 to 8 mRIU (7 to 8 ng/mm2). A nonmodified control surface induced coagulation 3.5 times slower. Platelet adhesion to gold and fibrinogen coated surfaces in the magnitude of 1.25 and 1.66 mRIU was also shown with platelets in buffer, respectively. SPR responses obtained with PRP and whole blood on surfaces that were methylated or coated with von Willebrand factor (vWF), fibrinogen, or collagen, coincided well with platelet adhesion as observed with fluorescence microscopy in parallel experiments. The present SPR detection equipped flow chamber system is a promising tool for studies on coagulation events and blood cell adhesion under physiological flow conditions, and allows monitoring of short-range surface processes in whole blood.  相似文献   

10.
We have investigated the use of multilayer films of polyelectrolytes as selective surfaces to analyze protein interactions with a self-assembled SPR wavelength-shift sensor. Charged arrays were prepared by alternating adsorption of the charged polyelectrolytes, poly(diallyldimethylammonium chloride) (PDDA) and poly(sodium 4-styrenesulfonate) (PSS). Multilayer formation was monitored with the SPR wavelength-shift sensor and a Spreeta SPR sensor. Protein immobilization on the charged surfaces, which was also analyzed by the SPR sensors, was dependent on the pI of the proteins. Tissue transglutaminase (tTGase) and beta-galactosidase (pIs, 5.1 and 5.3, respectively) were preferentially bound to the positively charged PDDA surface, whereas lysozyme (pI, 11.0) was selectively bound to the negatively charged PSS surface. Immobilization of tTGase on the PDDA surface was also dependent on the buffer pH. The interaction of tTGase with RhoA(V14), a constitutively active form of Rho, could be detected on the charged arrays with the wavelength-shift sensor. The arrays could be reutilized at least 5 times. Thus, it is likely that charged surfaces, assembled by the layer-by-layer method using polyelectrolytes, will prove useful for preparing selective protein arrays.  相似文献   

11.
Advances in surface plasmon resonance biosensor analysis   总被引:31,自引:0,他引:31  
The number and diversity of surface plasmon resonance (SPR) biosensor applications continue to increase. Evolutions in instrument and sensor chip technology, experimental methodology, and data analysis are making it possible to examine a wider variety of biomolecular interactions in greater mechanistic detail. SPR biosensors are poised to make a significant impact in basic research and pharmaceutical discovery.  相似文献   

12.
五种SPR传感芯片的再生制备及其应用   总被引:3,自引:0,他引:3  
基于表面等离子体共振技术(surface plasmon resonance, SPR)的生物传感器,能够实时监测生物分子间的相互作用,且无需标记,已被广泛应用于蛋白质组学、药物研发、临床诊断、食品安全和环境监测等领域,并且显示出广阔的应用前景。传感芯片是Biacore系列仪器的核心部件,目前芯片只能从Biacore公司购买,价格昂贵,导致很多仪器利用率低下,资源处于闲置状态。阐述了用于Biacore系列仪器的五种传感芯片(J1,C1,CM5,SA和NTA芯片)的再生制备方法,并列举了应用实例,制备方法操作简单,成本低廉。通过多年的改进与优化,制备的芯片能够达到Biacore芯片同等品质。此方法的推广,将有助于推动表面等离子共振技术在各个领域的广泛应用。  相似文献   

13.
Surface plasmon resonance (SPR) has become one of the most important techniques for studying macromolecular interactions. The most obvious advantages of SPR over other techniques are: direct and rapid determination of association and dissociation rates of binding process, no need for labelling of protein or lipids, and small amounts of sample used in the assay (often nM concentrations of proteins). In biochemistry, SPR is used mainly to study protein-protein interactions. On the other hand, protein-membrane interactions, although crucial for many cell processes, are less well studied. Recent advances in the preparation of stable membrane-like surfaces and the commercialisation of sensor chips has enabled widespread use of SPR in protein-membrane interactions. One of the most popular is Biacore's L1 sensor chip that allows capture of intact liposomes or even subcellular preparations. Lipid specificity of protein-membrane interactions can, therefore, be easily studied by manipulating the lipid composition of the immobilised membrane. The number of published papers has increased steadily in the last few years and the examples include domains or proteins that participate in cell signalling, pore-forming proteins, membrane-interacting peptides, coagulation factors, enzymes, amyloidogenic proteins, prions, etc. This paper gives a brief overview of different membrane-mimetic surfaces that can be prepared on the surface of SPR chips, properties of liposomes on the surface of L1 chips and some selected examples of protein-membrane interactions studied with such system.  相似文献   

14.
A new sensing area for a sensor based on surface plasmon resonance (SPR) was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI) conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU) were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+) and Hg(2+) ions. The Pb(2+) ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+) compared to Hg(2+). The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.  相似文献   

15.
表面等离子体共振(surface plasmon resonance, SPR)生物传感器,作为一种适时快捷,无需标记的生物分子相互作用研究工具,已广泛应用于生物化学分析与研究。羧甲基化葡聚糖修饰的CM5传感芯片是Biacore 系列仪器应用最为普遍的核心部件,目前CM5芯片主要从法玛西亚公司购买,价格昂贵,且一旦共价交联的受体分子失活,就不能重复利用。阐述了一种简便、低成本、用于SPR生物传感器的葡聚糖修饰金膜芯片的再生方法及其表征和应用。用此方法再生的芯片能被循环伏安法和原子力显微镜很好地表征,并成功地用于抗前列腺特异性抗原(prostate-specific antigen,PSA)固定和PSA检测, 同时测定了PSA与其抗体之间的动力学和亲和常数。  相似文献   

16.
A biosensor based on surface plasmon resonance (SPR) is developed for the detection of 2-hydroxybiphenyl (HBP). A monoclonal antibody against HBP (abbreviated hereafter as HBP-mAb) is developed and used for the detection of HBP by competitive SPR-based immunoassay and enzyme linked immunosorbent assay (ELISA) methods. A novel HBP-hapten compound, HBP-bovine serum albumin conjugate (HBP-BSA), derived by binding several HBP units with BSA by an aliphatic chain spacer is used in the development of antibody and for the functionalization of immunoprobes. HBP-BSA linked to the Au surface of the SPR sensor chip undergoes inhibitive immunoreaction with HBP-mAb in the presence of free HBP. The SPR-based immunoassay provides a rapid determination (response time: approximately 20 min) of the concentration of HBP in the range of 0.1-1000 ppb (ng/ml). Regeneration of the sensor chip is gained by treating the antibody-anchored SPR sensor chip with a pepsin solution (100 ppm (microg/ml); pH 2.0) for few minutes. The SPR sensor chip is reusable for the detection of HBP for more than 20 cycles with average loss of 0.35% reactivity per regeneration step. HBP concentration is determined as low as 0.1 and 3 ppb using the SPR sensor and ELISA measurements, respectively. The developed SPR sensor for HBP is free from interference by coexisting benzo[a]pyrene (BaP), 2,4-dichlorophenoxyacetic acid (2,4-D) and benz[a]anthracene; SPR angle shift obtained to the flow of HBP is almost same irrespective to the presence or absence of a same concentration of these carcinogenic polycyclic aromatic hydrocarbons together. The SPR sensor for HBP is proved to be applicable in simultaneous detection of HBP and BaP in parallel with another SPR sensor for BaP.  相似文献   

17.
We presented a novel surface plasmon resonance (SPR) imaging method for analysis of protein arrays based on a wavelength interrogation-based SPR biosensor. The spectral imaging was performed by the combination of position control and resonance wavelengths calculated from SPR reflectivity spectra. The imaging method was evaluated by analyzing interactions of glutathione S-transferase-fusion proteins with their antibodies. Antigen-antibody interactions were successfully analyzed on glutathione S-transferase-fusion protein arrays by using the spectral imaging method, and the results were confirmed by a parallel analysis using a previously used spectral SPR biosensor based on wavelength interrogation. Specific binding of anti-Rac1 and anti-RhoA to Rac1 and RhoA on the protein arrays was qualitatively and quantitatively analyzed by the spectral SPR imaging. Thus, it was suggested that the novel spectral SPR imaging was a useful tool for the high-throughput analysis of protein-protein interactions on protein arrays.  相似文献   

18.
We report a new surface plasmon resonance (SPR) protein sensor using the Vroman effect for real-time, sensitive and selective detection of protein. The sensor relies on the competitive nature of protein adsorption onto the surface, directly depending upon protein's molecular weight. The sensor uses SPR for highly sensitive biomolecular interactions detection and the Vroman effect for highly selective detection. By using the Vroman effect we bypass having to rely on bio-receptors and their attachment to transducers, a process known to be complex and time-consuming. The protein sensor is microfabricated to perform real-time protein detection using four different proteins including aprotinin (0.65kDa), lysozyme (14.7kDa), streptavidine (53kDa), and isolectin (114kDa) on three different surfaces, namely a bare-gold surface and two others modified by OH- and COOH-terminated self-assembled monolayer (SAM). The real-time adsorption and displacement of the proteins are observed by SPR and evaluated using an atomic force microscope (AFM). The sensor can distinguish proteins of at least 14.05kDa in molecular weight and demonstrate a very low false positive rate. The protein detector can be integrated with microfluidic systems to provide extremely sensitive and selective analytical capability.  相似文献   

19.
To measure the interactions of diacylglycerol acyltransferase (DGAT) by surface plasmon resonance (SPR), we immobilized Saccharomyces cerevisiae DGAT2 encoded by DGA1 on a BIACORE sensor chip surface. We used N-terminally truncated Dga1p with a FLAG tag at the C-terminus, which was purified to apparent homogeneity, maintaining significant DGAT activity (Kamisaka et al., Appl. Microbiol. Biotechnol., 88, 105-115 (2010)). Truncated Dga1p with a FLAG tag was immobilized with an anti-FLAG antibody that had been coupled with an L1 chip surface consisting of a carboxymethyl dextran matrix with additional hydrophobic alkane groups. The Dga1p-immobilized chip surface was analyzed for interactions of Dga1p with oleoyl-CoA, its substrate, and anti-Dga1p IgG, its interacting protein, by SPR. The binding of these analytes with the Dga1p-immobilized chip surface was specific, because butyryl-CoA, which cannot be used as a substrate for DGAT, and anti-glyceraldehyde-3-phosphate dehydrogenase IgG, did not induce any signals on SPR. Furthermore, injection of organic compounds such as xanthohumol, a DGAT inhibitor, into the Dga1p-immobilized chip surface induced significant SPR signals, probably due to interaction with DGAT. Another DGAT inhibitor, piperine, did not induce SPR signals on application, but induced them due to piperine on application together with oleoyl-CoA, in which piperine can be incorporated into the micelles of oleoyl-CoA. The results indicate that the Dga1p-immobilized L1 chip surface recognized DGAT inhibitors. Taking all this together, SPR measurement using the Dga1p-immobilized L1 chip surface provided a useful system to elucidate the structure-function relationships of DGAT and screen DGAT inhibitors.  相似文献   

20.
表面等离子体共振(surface plasmon resonance,SPR)技术作为一种新型的免标记、实时在线研究生物分子间相互作用的高灵敏传感技术,已经在生命科学领域中得到了大量应用。该文简要介绍了SPR生物传感器的基本原理,重点评述了其在新药筛选和药物作用机制方面的研究进展,并对其前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号