首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects in kidney of streptozotocin-induced diabetes and of insulin supplementation to diabetic animals on glycogen-metabolizing enzymes were determined. Kidney glycogen levels were approximately 30-fold higher in diabetic animals than in control or insulintreated diabetic animals. The activities of glycogenolytic enzymes i.e., phosphorylase (both a and b), phosphorylase kinase, and protein kinase were not significantly altered in the diabetic animals. Glycogen synthase (I form) activity decreased in the diabetic animals whereas total glycogen synthase (I + D) activity significantly increased in these animals. The activities were restored to control values after insulin therapy. Diabetic animals also showed a 3-fold increase in glucose 6-phosphate levels. These data suggest that higher accumulation of glycogen in kidneys of diabetic animals is due to increased amounts of total glycogen synthase and its activator glucose 6-phosphate.  相似文献   

2.
Summary Alloxan diabetes induced in white rats by intraperitoneal injection of Aloxan-monohydrate (15 mg/100 g body weight) was used to study changes in the glycogen phosphorylase a and b, phosphoprotein phosphatases and hexokinase activities under insulin deficiency conditions. Among the enzymes studied, an increase in muscle phosphorylase a activity as well as the a/b ratio have been obtained. In diabetic muscle phosphoprotein phosphatases and hexokinase activities were diminished.AMP increased the liver glycogen phosphorylase activity twice in diabetic rats whereas in normal animals the enzyme was less sensitive to this effector. The changes in liver hexokinase activity at diabetes were not connected and correlated with the altered phosphorylase and protein phosphatase activities.The logical chain of probable molecular events taking place in muscle glycogen metabolism under the conditions of insulin deficiency is offered.  相似文献   

3.
The effects of hypothyroidism on glycogen metabolism in rat skeletal muscle were studied using the perfused rat hindlimb preparation. Three weeks after propylthiouracil treatment, serum thyroxine was undetectable and muscle glycogen and Glc-6-P were decreased. Basal and epinephrine-stimulated phosphorylase a and phosphorylase b kinase activities were also significantly reduced, as were epinephrine-stimulated cAMP accumulation and cAMP-dependent protein kinase activity. Conversely, basal and epinephrine-stimulated glycogen synthase I activities were significantly higher while the Ka of the enzyme for Glc-6-P was lower in hypothyroid animals. Propylthiouracil-treated rats also had increased phosphoprotein phosphatase activities towards phosphorylase and glycogen synthase and decreased activity of phosphatase inhibitor 1. beta-Adrenergic receptor binding and basal and epinephrine-stimulated adenylate cyclase activities were reduced in muscle particulate fractions from hypothyroid rats. Administration of triiodothyronine to rats for 3 days after 3 weeks of propylthiouracil treatment restored the altered metabolic parameters to normal. It is proposed that the decreased beta-adrenergic responsiveness of the enzymes of glycogen metabolism in hypothyroid rat skeletal muscle is due to increased activity of phosphoprotein phosphatases and to reduced beta-adrenergic receptors and adenylate cyclase activity.  相似文献   

4.
The insulin-like effects of vanadate were compared in streptozotocin-induced diabetic rats fed on high starch control and high sucrose diets for a period of six weeks. Diabetic rats in both diet groups were characterized by hypoinsulinemia, hyperglycemia (6.8–7.0 fold increase) and significant decreases (p<0.001) in the activities of glycogen synthase, phosphorylase and lipogenic enzymes, ATP-citrate lyase, glucose 6-phosphate dehydrogenase and malic enzyme in liver. There were no diet-dependent differences in these abnormalities. However, the insulin-mimetic agent vanadate was more effective in diabetic rats fed sucrose diet as compared to animals fed control starch diet. Vanadate administration resulted in 30% and 64% decreases in plasma glucose levels in diabetic rats fed control and sucrose diets, respectively. The activities of glycogen synthase (active) and phosphorylase (active and total) were restored significantly by vanadate in control (p<0.05–0.01) and sucrose (p<0.001) diets fed diabetic rats. This insulin-mimetic agent increased the activities of hepatic lipogenic enzymes in control diet fed rats to 38–47% of normal levels whereas in sucrose fed group it completely restored the activities. Sucrose diet caused a distinct effect on the plasma levels of triacylglycerol (4-fold increase) and apolipoprotein B (2.8-fold increase) in diabetic rats and vanadate supplementation decreased their levels by 65–75%. These data indicate that vanadate exerts insulin-like effects in diabetic rats more effectively in sucrose fed group than the animals fed control diet. In addition, vanadate also prevents sucrose-induced hypertriglyceridemia.  相似文献   

5.
Using substrates purified from liver, the apparent Km values of synthase phosphatase ([UDPglucose--glycogen glucosyltransferase-D]phosphohydrolase, EC 3.1.3.42) and phosphorylase phosphatase (phosphorylase a phosphohydrolase, EC 3.1.3.17) were found to be 0.7 and 60 units/ml respectively. The maximal velocity of phosphorylase phosphatase was more than a 100 times that of synthase phosphatase. In adrenalectomized, fasted animals there was a complete loss of synthase phosphatase but only a slight decrease in phosphorylase phosphatase when activity was measured using endogenous substrates in a concentrated liver extract. When assayed under optimal conditions with purified substrates, both activities were present but had decreased to very low levels. Mixing experiments indicated that synthase D present in the extract of adrenalectomized fasted animals was altered such that it was no longer a substrate for synthase phosphatase from normal rats. Phosphorylase a substrate on the other hand was unaltered and readily converted. When glucose was given in vivo, no change in percent of synthase in the I form was seen in adrenalectomized rats but the percent of phosphorylase in the a form was reduced. Precipitation of protein from an extract of normal fed rats with ethanol produced a large activation of phosphorylase phosphatase activity with no corresponding increase in synthase phosphatase activity. Despite the low phosphorylase phosphatase present in extracts of adrenalectomized fasted animals, ethanol precipitation increased activity to the same high level as obtained in the normal fed rats. Synthase phosphatase and phosphorylase phosphatase activities were also decreased in normal fasted, diabetic fed and fasted, and adrenalectomized fed rats. Both enzymes recovered in the same manner temporally after oral glucose administration to adrenalectomized, fasted rats. These results suggest an integrated regulatory mechanism for the two phosphatase.  相似文献   

6.
T B Miller 《Life sciences》1978,23(10):1083-1091
The large decreases in hepatic glycogen associated with alloxan diabetes in fed rats were accompanied by apparent decreases in total activities of glycogen synthase, phosphorylase, protein kinase and synthase phosphatase determined on 8000 × g supernatants of liver homogenates. Inclusion of 4% glycogen in the extraction buffer normalized total soluble activities of synthase in the diabetic. Whereas inclusion of 4% glycogen in the extraction buffer doubled total soluble phosphorylase, total activity remained lower in the diabetic than in the normal. Extraction and assay of soluble protein kinase were unaffected by added glycogen. When activities were determined on whole homogenates, total glycogen synthase activities were the same in normal and diabetic liver. Although the decreases in total activities of phosphorylase, kinase and phosphatase were less when determined on whole homogenates of livers from diabetic rats, the diabetes-related decreases in total activities remained significant. Therefore, it appears that while alloxan diabetes results in absolute decreases in total hepatic activities of phosphorylase, kinase and phosphatase, it may also result in redistribution of hepatic synthase and phosphorylase between soluble and particulate fractions, a phenomenon possibly related to tissue glycogen concentrations. Such a redistribution might be involved in the lack of control of hepatic glycogenesis observed in alloxan diabetic rats.  相似文献   

7.
Insulin alone at concentrations of less than 1 to 5 uU/ml increased the enzyme activities of glycogen synthase, synthase phosphatase, phosphorylase, and phosphorylase phosphatase in hepatoma H4 cells in culture in the presence and absence of serum. Increase in total and active forms of glycogen synthase and phosphorylase were observed. Cycloheximide blocked the action of insulin on glycogen synthase, glycogen synthase phosphatase and phosphorylase phosphatase. The enzymes with the exception of glycogen synthase phosphatase were expressed with greater hormonal sensitivity in the absence as compared to the presence of serum in terms of hormone concentration required and or time of onset.These results demonstrate that these glycogen metabolizing enzymes are under long term control by insulin, with glycogen synthase being the most sensitive of the enzymes studied to the action of the hormone.Supported by grants from NIH AM 14334 and AM 22125 (University of Virginia Diabetes Research and Training Center) and by a grant from Lilly Research Lab, and the March of Dimes  相似文献   

8.
The effect of insulin on glycogen synthesis and key enzymes of glycogen metabolism, glycogen phosphorylase and glycogen synthase, was studied in HepG2 cells. Insulin stimulated glycogen synthesis 1.83-3.30 fold depending on insulin concentration in the medium. Insulin caused a maximum of 65% decrease in glycogen phosphorylase 'a' and 110% increase in glycogen synthase activities in 5 min. Although significant changes in enzyme activities were observed with as low as 0.5 nM insulin level, the maximum effects were observed with 100 nM insulin. There was a significant inverse correlation between activities of glycogen phosphorylase 'a' and glycogen synthase 'a' (R2 = 0.66, p < 0.001). Addition of 30 mM glucose caused a decrease in phosphorylase 'a' activity in the absence of insulin and this effect was additive with insulin up to 10 nM concentration. The inactivation of phosphorylase 'a' by insulin was prevented by wortmannin and rapamycin but not by PD98059. The activation of glycogen synthase by insulin was prevented by wortmannin but not by PD98059 or rapamycin. In fact, PD98059 slightly stimulated glycogen synthase activation by insulin. Under these experimental conditions, insulin decreased glycogen synthase kinase-3 activity by 30-50% and activated more than 4-fold particulate protein phosphatase-1 activity and 1.9-fold protein kinase B activity; changes in all of these enzyme activities were abolished by wortmannin. The inactivation of GSK-3 and activation of PKB by insulin were associated with their phosphorylation and this was also reversed by wortmannin. The addition of protein phosphatase-1 inhibitors, okadaic acid and calyculin A, completely abolished the effects of insulin on both enzymes. These data suggest that stimulation of glycogen synthase by insulin in HepG2 cells is mediated through the PI-3 kinase pathway by activating PKB and PP-1G and inactivating GSK-3. On the other hand, inactivation of phosphorylase by insulin is mediated through the PI-3 kinase pathway involving a rapamycin-sensitive p70s6k and PP-1G. These experiments demonstrate that insulin regulates glycogen phosphorylase and glycogen synthase through (i) a common signaling pathway at least up to PI-3 kinase and bifurcates downstream and (ii) that PP-1 activity is essential for the effect of insulin.  相似文献   

9.
Normal and streptozotocin-induced diabetic rats were fasted for 24 hours and refed for 4 hours. Changes in the activities of glycogen metabolizing enzymes in liver were followed during this period. In normal rats, hepatic glycogen content increased gradually after the onset of food intake. The percent of active glycogen synthase increased to a peak value at 1h which coincided with a significant (P less than 0.02) increase in synthase phosphatase activity. Phosphorylase alpha and the percent of alpha increased significantly (P less than 0.01) after the meal which correlated with similar increases in cAMP-dependent protein kinase and phosphorylase kinase activities. Activation of enzymes involved in both synthesis and degradation of glycogen during fasted to refed transition indicate a probable substrate cycling. In diabetic livers, there was marked decrease in the activities of glycogen metabolizing enzymes and their levels did not alter significantly in response to the meal indicating a poor turnover of glycogen.  相似文献   

10.
The smooth endoplasmic reticulum (ER) and cytosol fractions of liver homogenates exhibit phosphoprotein phosphatase activity towards glycogen synthase D and phosphorylase a. The following observations suggest that liver contains multiple forms of these phosphatases. Synthase phosphatase activity in either fraction was more readily inactivated by heating than phosphorylase phosphatase activity. Both synthase phosphatase and phosphorylase phosphatase activities in smooth ER were non-competitively inhibited by Mg2+, but were activated by this ion in the cytosol. Synthase phosphatase activities in cytosol and smooth ER were stimulated by a number of sugar phosphates, particularly glucose-1-phosphate, galactose-6-phosphate and fructose-6-phosphate. Erythrose-4-phosphate stimulated synthase phosphatase activity in the cytosol, but inhibited the microsomal enzyme. Phosphorylase phosphatase activities in either fraction were inhibited by most sugar phosphates. Adenosine mono-, di- and tri-phosphates inhibited phosphatase activities in both fractions. Low concentrations of AMP and ADP inhibited phosphorylase phosphatase activities to a greater extent than synthase phosphatase activities. Chromatography of the smooth ER fraction on DEAE-cellulose resulted in the separation of synthase phosphatase from phosphorylase phosphatase, as soluble proteins. The elution profile for the microsomal phosphatase was different from that for the cytosol enzymes. It is concluded that: both synthase phosphatase and phosphorylase phosphatase in liver have at least two isoenzyme forms; synthase phosphatase and phosphorylase phosphatase are separate enzymes; the different behaviour of microsomal and cytosol phosphatases towards divalent cations and sugar phosphates provides a potential mechanism for the differential regulation of these activities in liver.  相似文献   

11.
Defects in the deposition of glycogen and the regulation of glycogen synthesis in the livers of severely insulin-deficient rats can be reversed, in vivo, within hours of insulin administration. Using primary cultures of hepatocytes isolated from normal and diabetic rats in a serum-free chemically defined medium, the present study addresses the chronic action of insulin to facilitate the direct effects of insulin and glucose on the short term regulation of the enzymes controlling glycogen metabolism. Primary cultures were maintained in the presence of insulin, triiodothyronine, and cortisol for 1-3 days. On day 1 in alloxan diabetic cultures, 10(-7) M insulin did not acutely activate glycogen synthase over a period of 15 min or 1 h, whereas insulin acutely activated synthase in cultures of normal hepatocytes. By day 3 in hepatocytes isolated from alloxan diabetic rats, insulin effected an approximate 30% increase in per cent synthase I within 15 min as was also the case for normal cells. The acute effect of insulin on synthase activation was independent of changes in phosphorylase alpha. Whereas glycogen synthase phosphatase activity could not be shown to be acutely affected by insulin, the total activity in diabetic cells was restored to normal control values over the 3-day culture period. The acute effect of 30 mM glucose to activate glycogen synthase in cultured hepatocytes from normal rats after 1 day of culture was missing in hepatocytes isolated from either alloxan or spontaneously diabetic (BB/W) rats. After 3 days in culture, glucose produced a 50% increase in glycogen synthase activity during a 10-min period under the same conditions. These studies clearly demonstrate that insulin acts in a chronic manner in concert with thyroid hormones and steroids to facilitate acute regulation of hepatic glycogen synthesis by both insulin and glucose.  相似文献   

12.
1. Control of glycogen metabolism by various substrates and hormones was studied in ruminant liver using isolated hepatocytes from fed sheep. 2. In these cells glucose appeared uneffective to stimulate glycogen synthesis whereas fructose and propionate activated glycogen synthase owing to (i) a decrease in phosphorylase a activity and (ii) changes in the intracellular concentrations of glucose 6-phosphate and adenine nucleotides. 3. The activation of hepatic glycogenolysis by glucagon and alpha 1-adrenergic agents was associated with increased phosphorylase a and decreased glycogen synthase activities. 4. The simultaneous changes in these two enzyme activities suggest that in sheep liver, activation of phosphorylase a is not a prerequisite step for synthase inactivation. 5. In sheep hepatocytes, in the presence of propionate and after a lag period, insulin activated glycogen synthase without affecting phosphorylase a. 6. This latter result suggests that the direct activation of glycogen synthase by insulin is mediated by a glycogen synthase-specific kinase or phosphatase. Insulin also antagonized glucagon effect on glycogen synthesis by counteracting the rise of cAMP.  相似文献   

13.
The loss of glucose regulation of glycogen synthase in perfused livers from diabetic rats was associated with a substantial reduction in synthase phosphatase activity. Treatment of diabetic rats with insulin alone resulted in total restoration of the glucose effect and synthase phosphatase activity, while simultaneous treatment with cycloheximide severely reduced the hormonal effect. Although treatment of normal rats with cycloheximide had no effect on glucose activation of synthase, it did result in severe depletion of liver glycogen increased liver glycogen phosphorylase activity, and elevation of liver adenosine 3′,5′-monosphosphate (cyclic AMP), but without elevation of liver protein kinase activity. Simultaneous treatment of alloxan-diabetic rats with insulin and cycloheximide resulted in reduction of total liver glycogen, increased phosphorylase activity, a reduction in the ability of insulin to lower hepatic cyclic AMP, and a further reduction of protein kinase activity.In summary, the effect of insulin treatment of diabetic rats to restore glucose regulation of hepatic glycogen synthase probably involves synthesis of new protein, and the data remain consistent with the hypothesis that the defect may be due to a diabetes-related deficiency in a specific synthase phosphatase and/or alteration of the synthase molecule itself.  相似文献   

14.
The loss of glucose regulation of glycogen synthase in perfused livers from diabetic rats was associated with a substantial reduction in synthase phosphatase activity. Treatment of diabetic rats with insulin alone resulted in total restoration of the glucose effect and synthase phosphatase activity, while simultaneous treatment with cycloheximide severely reduced the hormonal effect. Although treatment of normal rats with cycloheximide had no effect on glucose activation of synthase, it did result in severe depletion of liver glycogen, increased liver glycogen phosphorylase activity, and elevation of liver adenosine 3',5'-monophosphate (cyclic AMP), but without elevation of liver protein kinase activity. Simultaneous treatment of alloxan-diabetic rats with insulin and cycloheximide resulted in reduction of total liver glycogen, increased phosphorylase activity, a reduction in the ability of insulin to lower hepatic cyclic AMP, and a further reduction of protein kinase activity. In summary, the effect of insulin treatment of diabetic rats to restore glucose regulation of hepatic glycogen synthase probably involves synthesis of new protein, and the data remain consistent with the hypothesis that the defect may be due to a diabetes-related deficiency in a specific synthase phosphatase and/or alteration of the synthase molecule itself.  相似文献   

15.
The MgATP-dependent phosphorylase phosphatase was found to have a broad substrate specificity. Its activity against all phosphoproteins tested was dependent upon preincubation with the activating factor FA and MgATP. The enzyme dephosphorylated and inactivated phosphorylase kinase and inhibitor 1, and dephosphorylated and activated glycogen synthase and acetyl-CoA carboxylase. Glycogen synthase was dephosphorylated at similar rates whether it had been phosphorylated by cyclic-AMP-dependent protein kinase, phosphorylase kinase or glycogen synthase kinase 3. The enzyme also catalysed the dephosphorylation of ATP citrate lyase, initiation factor eIF-2, and troponin I. The properties of the MgATP-dependent protein phosphatase from either dog liver or rabbit skeletal muscle showed a remarkable similarity to highly purified preparations of protein phosphatase 1 from rabbit skeletal muscle. The relative activities of the two enzymes against all phosphoproteins tested was very similar. Both enzymes dephosphorylated the beta-subunit of phosphorylase kinase 40-fold faster than the alpha-subunit, and both enzymes were inhibited by identical concentrations of the two proteins termed inhibitor 1 and inhibitor 2, which inhibit protein phosphatase 1 specifically. These results demonstrate that the MgATP-dependent protein phosphatase is a type-1 protein phosphatase, and is distinct from type-2 protein phosphatases which dephosphorylate the alpha-subunit of phosphorylase kinase and are unaffected by inhibitor 1 and inhibitor 2. The possibility that the MgATP-dependent protein phosphatase is an inactive form of protein phosphatase 1 and that both proteins share the same catalytic subunit is discussed.  相似文献   

16.
A procedure was developed for determination of glycogen synthase and phosphorylase activities in liver after various in vivo physiological treatments. Liver samples were obtained from anaesthetised rats by freeze-clamping in situ. Other procedures were shown to stimulate the activity of phosphorylase and depress the activity of glycogen in the liver. The direction of glycogen metabolism appears to be regulated by the relative proportions of the two enzymes, as shown by a strong positive correlation between total activities and active forms of phosphorylase and synthase. The enzyme activities responded as expected to stimuli such as insulin and glucose, which depressed phosphorylase and increased synthase activity, and glucagon, which increased phosphorylase and decreased synthase activity. In fasted animals approximately 50% of each enzyme was in the active form, which suggests the existence of a potential futile cycle for glycogen metabolism. The role for such a cycle in the regulation of glycogen synthesis and degradation is discussed.  相似文献   

17.
A procedure was developed for determination of glycogen synthase and phosphorylase activities in liver after various in vivo physiological treatments. Liver samples were obtained from anaesthetised rats by freeze-clamping in situ. Other procedures were shown to stimulate the activity of phosphorylase and depress the activity of glycogen in the liver. The direction of glycogen metabolism appears to be regulated by the relative proportions of the two enzymes, as shown by a strong positive correlation between total activities and active forms of phosphorylase and synthase. The enzyme activities responded as expected to stimuli such as insulin and glucose, which depressed phosphorylase and increased synthase activity, and glucagon, which increased phosphorylase and decreased synthase activity. In fasted animals approximately 50% of each enzyme was in the active form, which suggests the existence of a potential futile cycle for glycogen metabolism. The role for such a cycle in the regulation of glycogen synthesis and degradation is discussed.  相似文献   

18.
Two cyclic AMP-independent protein kinases (ATP: protein phosphotransferase, EC 2.7.1.37) (casein kinase 1 and 2) have been purified from rat liver cytosol by a method involving chromatography on phosphocellulose and casein-Sepharose 4B. Both kinases were essentially free of endogeneous protein substrates and capable of phosphorylating casein, phosvitin and I-form glycogen synthase, but were inactive on histone IIA, protamine and phosphorylase b. They were neither stimulated by cyclic AMP, Ca2+ and calmodulin, nor inhibited by the cyclic AMP-dependent protein kinase inhibitor protein. The casein and glycogen synthase kinase activities of each enzyme decreased at the same rate when incubated at 50 degrees C. Casein kinase 1 and casein kinase 2 showed differences in molecular weight, sensitivity to KCl, Km for casein and phosvitin and Ka for Mg2+, whereas their Km values for ATP and I-form glycogen synthase were similar. The phosphorylation of glycogen synthase by these kinases correlated with a decrease in the +/- glucose 6-phosphate activity ratio (independence ratio). However, casein kinase 1 catalyzed the incorporation of about 3.6 mol of 32P/85000 dalton subunit, decreasing the independence ratio from 83 to about 15, whereas the phosphorylation achieved by casein kinase 2 was only about 1.9 mol of 32P/850000 dalton subunit, decreasing the independence ratio to about 23. The independence ratio decrease was prevented by the presence of casein but was unaffected by phosphorylase b. These data indicate that casein/glycogen synthase kinases 1 and 2 are different from cyclic AMP-dependent protein kinase and phosphorylase kinase.  相似文献   

19.
The insulin-mimetic action of vanadate is well established but the exact mechanism by which it exerts this effect is still not clearly understood. The role of insulin in the regulation of hepatic glycogen metabolizing and lipogenic enzymes is well known. In our study, we have, therefore, examined the effects of vanadate on these hepatic enzymes using four different models of diabetic and insulin-resistant animals. Vanadate normalized the blood glucose levels in all animal models. In streptozotocin-induced diabetic rats, the amount of liver glycogen and the activities of the active-form of glycogen synthase, both active and inactive-forms of phosphorylase, and lipogenic enzymes like glucose 6-phosphate dehydrogenase and malic enzyme were decreased and vanadate treatment normalized all of these to near normal levels. The other three animal models (db/db mouse, sucrose-fed rats and fa/fa obese Zucker rats) were characterized by hyperinsulinemia, hypertriglyceridemia, increases in activities of lipogenic enzymes, and marginal changes in glycogen metabolizing enzymes. Vanadate treatment brought all of these values towards normal levels. It should be noted that vanadate shows differential effects in the modulation of lipogenic enzymes activities in type I and type II diabetic animals. It increases the activities of lipogenic enzymes in streptozotocin-induced diabetic animals and prevents the elevation of activities of these enzymes in hyperinsulinemic animals. The insulin-stimulated phosphorylation of insulin receptor subunit and its tyrosine kinase activity was increased in streptozotocin-induced diabetic rats after treatment with vanadate. Our results support the view that insulin receptor is one of the sites involved in the insulin-mimetic actions of vanadate.  相似文献   

20.
The type-1 protein phosphatase associated with hepatic microsomes has been distinguished from the glycogen-bound enzyme in five ways. (1) The phosphorylase phosphatase/synthase phosphatase activity ratio of the microsomal enzyme (measured using muscle phosphorylase a and glycogen synthase (labelled in sites-3) as substrates) was 50-fold higher than that of the glycogen-bound enzyme. (2) The microsomal enzyme had a greater sensitivity to inhibitors-1 and 2. (3) Release of the catalytic subunit from the microsomal type-1 phosphatase by tryptic digestion was accompanied by a 2-fold increase in synthase phosphatase activity, whereas release of the catalytic subunit from the glycogen-bound enzyme decreased synthase phosphatase activity by 60%. (4) 95% of the synthase phosphatase activity was released from the microsomes with 0.3 M NaCl, whereas little activity could be released from the glycogen fraction with salt. (5) The type-1 phosphatase separated from glycogen by anion-exchange chromatography could be rebound to glycogen, whereas the microsomal enzyme (separated from the microsomes by the same procedure, or by extraction with NaCl) could not. These findings indicate that the synthase phosphatase activity of the microsomal enzyme is not explained by contamination with glycogen-bound enzyme. The microsomal and glycogen-associated enzymes may contain a common catalytic subunit complexed to microsomal and glycogen-binding subunits, respectively. Thiophosphorylase a was a potent inhibitor of the dephosphorylation of ribosomal protein S6, HMG-CoA reductase and glycogen synthase, by the glycogen-associated type-1 protein phosphatase. By contrast, thiophosphorylase a did not inhibit the dephosphorylation of S6 or HMG-CoA reductase by the microsomal enzyme, although the dephosphorylation of glycogen synthase was inhibited. The I50 for inhibition of synthase phosphatase activity by thiophosphorylase a catalysed by either the glycogen-associated or microsomal type-1 phosphatases, or for inhibition of S6 phosphatase activity catalysed by the glycogen-associated enzyme, was decreased 20-fold to 5-10 nM in the presence of glycogen. The results suggest that the physiologically relevant inhibitor of the glycogen-associated type-1 phosphatase is the phosphorylase a-glycogen complex, and that inhibition of the microsomal type-1 phosphatase by phosphorylase a is unlikely to play a role in the hormonal control of cholesterol or protein synthesis. Protein phosphatase-1 appears to be the principal S6 phosphatase in mammalian liver acting on the serine residues phosphorylated by cyclic AMP-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号