首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The effect of external Ca2+ and Ca2+-channel modulators on the phytochrome-controlled swelling of etiolated wheat ( Triticum aestivum L. cv. Arminda) mesophyll protoplasts has been studied. The red light (R)-stimulated swelling of the protoplasts requires Ca2+ in the surrounding medium and maximum response was observed in a medium containing I m M CaCI2. Far-red light (FR) irradiation of protoplasts in the presence or absence of Ca2+ does not influence the protoplast volume. The Ca2+-channel antagonist nifedipine prevents R-induced protoplast swelling at very low concentrations (0.1 μ M ). The Ca2+ -channel agonist Bay K-8644 stimulates the swelling of protoplasts incubated in darkness or irradiated with FR. Action of nifedipine depends on whether it is applied before or after the R pulse. The results are compatible with the hypothesis that phytochrome controls the activity of dihydropyridine-sensitive L-type Ca2+ channels.  相似文献   

2.
Abstract: Voltage-dependent 45Ca2+ uptake into rat whole brain synaptosomes was measured after 3-s KCl-induced depolarization to investigate possible inhibitory effects of calcium antagonists, nitrendipine, nimodipine, and nisoldipine. At a Ca2+ concentration of 1.2 m M , nitrendipine, in concentrations ranging from 0.1 n M to 10 μ M , had no effect on 45Ca2+ uptake. When the Ca2+ concentration was lowered to 0.06 and 0.12 m M , nitrendipine, 10 μ M , inhibited 45Ca2+ uptake in response to 109 m M KCl depolarization. However, in a separate concentration response study, nitrendipine, nimodipine, and nisoldipine, 0.1 n M to 10 μ M , failed to alter the uptake of 45Ca2+ (0.06 m M Ca2+) into 30 m M KCl-depolarized synaptosomes. The high concentrations of these agents required to depress 45Ca2+ uptake indicate that the dihydropyridine calcium antagonists are considerably less potent in brain tissue than in peripheral tissue.  相似文献   

3.
Abstract: N -Acetylaspartate (NAA) is characterized by a high tissue-to-extracellular concentration ratio under normal conditions and is released from neurons during hyposmotic cell swelling. As cell volume regulation and acid-base homeostasis share common processes, we have examined by microdialysis whether the extracellular concentration of NAA is altered by various acidotic challenges. Twenty-minute perfusion of 50 m M NH4+ through the microdialysis probe progressively lowered dialysate pH by 0.18, followed by a sudden, additional reduction after NH4+ removal. The latter effect indicated extrusion of cellular H+ because it was suppressed by blockade of Na+/H+ exchange with 5-( N,N -dimethyl)amiloride (1 or 5 m M in perfusion medium). NH4+ increased dialysate levels of NAA and lactate by approximately two- and threefold their initial values, respectively. These data demonstrate that pronounced intracellular acidosis is associated with NAA efflux, presumably from neurons. Whether this effect is linked directly to acid-base homeostasis or is secondary to acidosis-induced cell swelling remains to be clarified. Hypercapnia and perfusion of acid medium failed to increase dialysate NAA, probably because acidosis was not severe enough or the associated cellular swelling was not followed by regulatory volume decrease. As cellular swelling and acidosis are key features of cerebral ischaemia, further investigations into the role of NAA, and the development of sophisticated magnetic resonance spectroscopic methods capable of resolving intra-/extracellular NAA redistribution, would be especially relevant to clinical practice.  相似文献   

4.
The effects of K+ concentration, light intensity and CO2 levels on the volume of Commelina communis L. guard cell protoplasts were studied. Two degrees of swelling response were observed, both dependent on an external supply of K+, but not necessarily on the supply of a permeant anion. The presence of K+ itself, independent of light or CO2 level, stimulated swelling at a relatively slow rate. When K+, light and low CO2 conditions were supplied together, the swelling was relatively rapid and of high magnitude. The rapid swelling was specific for K+ and Rb+ giving a half maximal effect after 2 h at a KCl concentration of about 18 mmol m−3. The addition of CaCl2 at 1 mol m−3 inhibited K+-dependent swelling under all conditions tested. The response to light and low CO2 levels by Commelina guard cell protoplasts is thought to reflect a high degree of physiological integrity.  相似文献   

5.
The effect of the nitrogen source on carbohydrate and protein contents and on several enzymatic activities involved in the carbon and nitrogen metabolism was studied in Anabaena variabilis ATCC 29413 cells grown under a constant supply of either N, NO3 or NH+4 at different concentrations. An enhancement of protein content accompanied by a parallel decrease of carbohydrates was observed with increasing NO3 or NH+4 concentrations in the medium. In cultures containing 0.1 m M NO3 or 0.1 m M NH+4 nitrogenase (EC 1.18.6.1) activity was 74 and 66%, respectively, of that found in N2-grown cells. This activity was still present with 1 m M NO3 or 1 m M NH+4 in the medium and even with 10 m M NO3, but it was completely inhibited by 5 m M NH+4. Ferredoxin-nitrate reductase (EC 1.7.7.2) activity was detected only in NO3 grown cells and simultaneously with nitrogenase activity. Increasing concentrations of combined nitrogen in the medium, especially NH+4, promoted a concomitant decline of glutamine synthetase (EC 6.3.1.2), NADP+-isocitrate dehydrogenase (EC 1.1.1.42), and NAD+-malate dehydrogenase (EC 1.1.1.37) activities, suggesting that these enzymes play an important role in the regulation of carbon-nitrogen metabolism in cyanobacteria.  相似文献   

6.
Abstract: The present study reports the ion dependency of 2β-carbomethoxy-3β-(4-fluorophenyl)[3H]tropane ([3H]- CFT) binding to the dopamine transporter in the rat striaturn. The results indicate that [3H]CFT binding to synaptosomal P2 membranes requires low concentrations of Na+ (peak binding between 20 and 50 m M Na+), is stimulated by phosphate anion or l-, but is unaffected or only slightly affected by F-, Cl-, Br-, NO3-, or SO42-, Concentrations of Na+ of >50 m M become inhibitory except in the presence of l-, which shifts peak binding levels toward higher Na+ concentrations and also elevates the peak binding level. K+ strongly decreased [3H]CFT binding with a shallow inhibition curve, and Na+ could not overcome this effect. Saturation analysis of [3H]CFT binding revealed a single binding site changing its affinity for CFT depending on the concentration of sodium phosphate buffer (6, 10, 30, 50, 130, or 200 m M ; 1 mM plus 49 mM NaCIversus 10 m M plus 40 m M NaCI; or 1 mM plus 129 m M Nal versus 10 m M plus 120 m M Nal). No differences were observed in the density of CFT binding sites between any of the conditions examined.  相似文献   

7.
Ethylene production and overall levels of free and conjugated 1-aminocyclopropane-1-carboxylic acid (ACC) were studied in parenchymatous tissues, excised from clmacteric apples ( Malus domestica Borkh. cv. Granny Smith) and infiltrated with an incubation medium containing 0, 1, 10 or 100 m M Ca2+, with or without exogenous ACC (2 m M ). Irrespective of whether exogenous ACC was applied or not, ethylene production was inhibited to the same extent (40%) by an apoplastic effect of 100 m M Ca2+. In the absence of external ACC, the inhibition was associated with an increase in total endogenous ACC and may be related to a reduction in the rate of the last step of ethylene pathway. This suggests that the ethylene-forming enzyme (EFE) is localized in the plasma membrane. Low Ca2+ concentrations (1 m M ) enhanced basal ethylene synthesis due to influx of Ca2+ into the cytosol, while overall concentrations of ACC in the tissue decreased. However, 1 m M Ca2+ did not stimulate ACC-dependent ethylene formation. Thus, Ca2+ influx may stimulate the translocation of endogenous ACC from synthesis or storage compartment (s) to reactive site(s) of the plasma membrane. The concentration of 10 m M Ca2+ had no effect on basal ethylene production and appears to represent a balance point between the stimulating and inhibiting effects of 1 and 100 m M Ca2+, respectively, Furthermore, the charge-times of exogenous ACC observed with 0, 1 and 10 m M Ca2+ suggest that EFE is located on the inner side of the plasma membrane.  相似文献   

8.
The effects of copper (CuCl2) on active and passive Rb+(86Rb+) influx in roots of winter wheat grown in water culture for 1 week were studied. External copper concentrations in the range of 10–500 μ M in the uptake nutrient solution reduced active Rb+ influx by 20–70%, while passive influx was unaffected (ca 10% of the Rb+ influx in the Cu-free solution). At external Rb+ concentrations of up to 1 m M , Cu exposure (50 μ M decreased Vmax to less than half and increased Km to twice the value of the control. Short Cu exposure reduced the K+ concentration in roots of low K+ status. Pretreatment for 5 min in 50 μ M CuCl2 prior to uptake experiments reduced Rb+ influx by 26%. After 60 min pretreatment with Cu, the corresponding reduction was 63%. Cu in the cultivation solution impeded growth, especially of the roots. The Cu concentration in the roots increased linearly with external Cu concentration (0–100 μ M ) while Cu concentration in the shoots was relatively unchanged. The K+ concentration in both roots and shoots decreased significantly with increased Cu in the cultivation solutions. Possible effects of Cu on membranes and ion transport mechanisms are discussed.  相似文献   

9.
The influence of plant ontogeny on xylem exudate K+ concentrations and K+ transport to the shoot was studied in both nutrient-solution and field-grown tomato plants ( Lycopersicon esculentum ).
K+ concentrations in xylem exudate from decapitated plants decreased during tomato plant development from a high of 12 m M to a low of 5 m M . In the nutrient-solution plants, the most rapid decline occurred during the vegetative growth phase, while in field-grown plants, the xylem K+ concentrations remained high during an-thesis and then subsequently declined. The rapid decline in nutrient-solution plants might be related to a decrease in the absorptive efficiency of the root system. In field-grown plants, a reduction in the availability of assimilates to the root might account in part for the decrease in xylem exudate K+ concentrations. The volume (ml h−1 plant−1) and the net rates of K+ exudation (mmol h−1 plant−1) decreased dramatically as the fruits approached maturity. Since only a small reduction in xylem exudate K+ concentrations occurred during fruiting, the hydraulic conductivity of the root system decreased as the tomato plants aged. It is proposed that the ontogenetic changes in xylem transport of K+ contribute to a reduction in leaf free space K+ concentration which would explain the decline in tomato leaf K+ concentrations.  相似文献   

10.
Salt tolerance of the reed plant Phragmites communis   总被引:6,自引:0,他引:6  
Reed plants ( Phragmites communis Trinius) were grown at NaCl concentrations up to 500 m M and their growth, mineral contents and leaf blade osmotic potential were determined. Addition of NaCl up to 300 m M did not affect growth significantly. Sucrose, Cl-and Na+ concentrations in the shoots increased with the salinity of the medium and the shoot water content decreased. K+ always contributed most to the leaf osmotic potential. Even in the presence of 250 m M NaCl in the rooting medium, the leaf blade contained only 50 mM Na+, suggesting that the plants have an efficient mechanism for Na+ exclusion. 22Na+ uptake experiments suggested that the retranslo-cation of absorbed Na+ from shoots to the rooting medium lowered the uptake of Na+.  相似文献   

11.
Abstract: To study mechanisms of K+ transport in peripheral nerve, uptake of rubidium (Rb+), a K+ tracer, was characterized in rat tibial nerve myelinated axons and glia. Isolated nerve segments were perfused with zero-K+ Ringer's solutions containing Rb+ (1–20 m M ) and x-ray microanalysis was used to measure water content and concentrations of Rb, Na, K, and Cl in internodal axoplasm, mitochondria, and Schwann cell cytoplasm and myelin. Both axons and Schwann cells were capable of removing extracellular Rb+ (Rb+o) and exchanging it for internal K+. Uptake into axoplasm, Schwann cytoplasm, and myelin was a saturable process over the 1–10 m M Rb+o concentration range, although corresponding axoplasmic uptake rates were higher than respective glial velocities. Mitochondrial accumulation was a linear function of axoplasmic Rb+ concentrations, which suggests involvement of a nonenzymatic process. At 20 m M Rb+o, a differential stimulatory response was observed; i.e., axoplasmic Rb+ uptake velocities increased more than fivefold relative to the 10 m M rate, and glial cytoplasmic uptake rose almost threefold. Finally, Rb+o uptake rate into axons and glia was completely inhibited by ouabain (2–4 m M ) exposure or incubation at 4°C. These results suggest that Rb+ uptake into peripheral nerve internodal axons and Schwann cells is mediated by Na+,K+-ATPase activity and implicate the presence of axonal- and glial-specific Na+ pump isozymes.  相似文献   

12.
The tolerances of Columbia Arabidopsis thaliana (L.) Heynh. to NaCl, L-asparagine (L-Asn) and D-asparagine (D-Asn) during seedling establishment on sterile agar medium were determined. Germination and the establishment of upright seedlings with expanded green cotyledons were increasingly inhibited by NaCl concentrations from 20 to 180 m M and radicle growth was prevented at 225 m M NaCl. Tolerance of established seedlings to NaCl was similar at these concentrations. Seedling establishment was prevented at 20 m M L-Asn and 60 m M D-Asn, but L-Asn was not toxic to established seedlings. At lower concentrations, exogenous L- and D-Asn enhanced NaCl tolerance during germination and seedling establishment. Inhibition of seedling establishment by NaCl concentrations below 225 m M was reduced by the addition of L- and D-Asn to the medium. Maximal reduction of NaCl inhibition occurred between 2 and 4 m M for both L- and D-Asn. Higher concentrations of NaCl prevented establishment whether exogenous Asn was present or not. Reduction of NaCl inhibition occurred to the same extent whether L-Asn was presented simultaneously with the NaCl or preloaded for up to 24 h. The total seedling content of Na+ increased about 4-fold to 55 μg (mg dry weight)−1 as the medium concentration of NaCl was increased from 9 μ M to 150 m M NaCl. Total K+ content declined about 80% from about 34 μg (mg dry weight)−1 over the same range of NaCl concentrations. The Na+ uptake and K+ efflux by whole seedlings were similar whether or not NaCl tolerance was increased by exogenous Asn.  相似文献   

13.
Abstract: Na+ flux was studied in cultured neuroblastoma cells grown in medium containing increased glucose or L - fucose concentrations. Chronic exposure of neuroblastoma cells to 30 m M glucose or 30 m M L-fucose caused a decrease in ouabain-sensitive and veratridine-stimulated 22Na+ uptake compared with cells cultured in unsupplemented medium. The Na+ current, determined by using whole-cell configuration of the patch clamp, was also decreased in these cells. Tetrodotoxin (3 μ M ), which blocked whole cell Na+ currents, also blocked veratridine-stimulated 22Na+ accumulation. Culturing cells in medium containing 30 m M fructose as an osmotic control had no effect on Na+ flux. Specific [3H] saxitoxin binding was not affected by 30 m M glucose or 30 m M L-fucose compared with cells grown in unsupplemented medium, suggesting that the number of Na+ channels was not decreased. These studies suggest that exposing cultured neuronal cells to conditions that occur in the diabetic milieu alters Na+ transport and Na+-channel activity.  相似文献   

14.
The effects of the naturally occurring polyamines, spermine, putrescine, and spermidine were explored on mitochondrial state 3. state 4, and uncoupled respiration activities, ADP/O ratio, respiratory control ratio of pepper ( Capsicum annuum L. cv. Early Cal Wonder) and avocado ( Persea americana Mill. cv. Booth-8 or Simmonds) mitochondria oxidizing either succinate, external NADH, malate, α-ketoglutarate or tetramethyl- p -phenylenediamine. Abnormally high concentrations of spermine and spermidine such as might occur during chilling stress of these chilling-sensitive fruits were detrimental to several oxidase activities, especially to external NADH oxidase. State 3 respiration for NADH oxidase was inhibited more than 70% by 10 m M spermine. The spermine inhibition of uncoupled NADH oxidase was not reversed by the presence of divalent cations including Ca2+, Mg2+, Mn2+, and Sr2+ at concentrations up to 10 m M or by 100 m M KCl. The inhibition primarily affected the Vmax. Other possible sites of polyamine interactions are discussed.  相似文献   

15.
The effects of 0.01 to 5 m M salicyclic acid on the increase in nitrite reductase or glutamate dehydrogenase activities in maize roots by nitrate or ammonium respectively, were examined. Nitrite reductase activity was inhibited by the highest concentration of the acid. The activity of NADH-glutamate dehydrogenase was stimulated slightly (but consistently) by the lowest concentration and was inhibited by higher concentrations. Total protein content was also inhibited at high concentrations. When the crude enzyme extract was stored at 25°C in light, the glutamate dehydrogenase activity in the control decreased after 4 h of incubation. Low concentrations of the acid had no effect on this decrease but higher concentration accelerated the process. The divalent cations Caz2+, Mn2+, Mg2+ and Zn2+ protected against loss of enzyme activity during storage, both in the absence and presence of the acid. The inhibitory effect of 5 m M salicylic acid on glutamate dehydrogenase activity is apparent due to interference with the activity of the enzyme rather than with its synthesis.  相似文献   

16.
Purified plasmalemma vesicles were isolated in the presence of 250 m M sucrose from roots of 14-day-old seedlings of winter wheat ( Triticum aestivum L. Martonvásári-8) by phase partitioning of salt-washed microsomal fractions in a Dextran-polyethylene glycol two-phase system, and both Mg2+- and Ca2+-ATPase activities were detected. Orthovanadate-sensitive Mg2+-ATPase activity associated with the inside of right side-out plasmalemma (PM) vesicles (latency 98%) was inhibited 76% by 0.3 m M Ca2+, Ca2+-dependent ATPase activity located partly on the inside and partly on the outside of plasmalemma vesicles (latency 47%) was not affected by Mg2+.
Mg2+-ATPase activity was inhibited by 68% and inhibition of Mg2+ activation by 0.3 m M Ca2+ partly disappeared in the presence of 10 p M tentoxin, a fungal phytotoxin. Mg2+-ATPase activity remained inhibited up to 10 n M tentoxin while at 1 μ M tentoxin Mg2+ activation was as high as without tentoxin. K+-stimulation and vanadate inhibition was increased and decreased, respectively, by 100 p M -10 n M tentoxin. Ca2+-dependent ATPase activity was continuously increased by 1 p M -10 n M tentoxin, but at 1 μ M tentoxin the stimulation disappeared. The effects of p M tentoxin on plasma-lemma Mg2+-ATPase are discussed in relation to its influence on K+ transport in wheat seedlings.  相似文献   

17.
Turgor- dependent membrane permeability in relation to calcium level   总被引:1,自引:0,他引:1  
The relationship between the inhibiting effect of Ca2+ and of low turgor pressure on K+ release from fresh-cut discs of carrot ( Daucus carota var. Nantes) storage tissue was studied. A range of Ca2+ concentrations in the tissue was obtained by adding 0.5 m M EDTA or CaSO4 at different concentrations to the medium. Calcium inhibited K+ release in fully turgid cells (2.5 μmol K+ g−1 h−1 in 0.5 m M EDTA vs 0.4 μmol K+ g−1 h−1 in 10 m M CaSO4). Less turgid cells, obtained by equilibration with 0.2 M mannitol, released K+ at only 30% of the rate of the turgid cells, yet the pattern of K+ release as a function of Ca2+ level was similar in both turgid and non-turgid cells. Removal of calcium by EDTA occasionally injured cell membranes in the fully turgid discs but never in the less turgid ones. In view of the additive effect of Ca2+ and low turgor on K+ release regardless of the treatment order, it is suggested that the two factors exert their effect on membrane permeability independently of each other.  相似文献   

18.
Beech plants ( Fagus sylvatica L. provenance Maramures) were grown in nutrient solution at low pH (4.2) and exposed to different concentrations of AlCl3. Uptake and leakage of Ca2+(45Ca2+) and H2PO4-(32P) were studied. A high external aluminium concentration (1.0m M ) reduced the uptake and export to the shoot of both calcium and phosphate, while 0.1 m M Al increased the phosphorus level in the roots. To determine the impact of aluminium on the localization of calcium and phosphate, leakage of the elements from both intact plants and plants frozen prior to the leakage experiment was studied. The leakage of Ca2+ from intact plants was not affected by prior exposure to 0.1 m M Al. Freezing of the beech plants before the leakage experiment increased leakage of calcium slightly more from roots of control plants than for roots exposed to 0.1 m M Al, indicating that even low concentrations of alminium may impede the influx of calcium across the plasma membrane in the roots. The patterns of Ca2+ leakage from roots previously exposed to 1.0 m M Al indicated that very little Ca2+ was located extracellularly. The extracellular fraction of phosphate increased with increasing Al concentration in the nutrient solution. Low Al concentration (0.1 m M ) only reduced the intracellular phosphate concentration to a minor extent, while 1.0 m M Al profoundly decreased it. It is concluded that 0.1 m M AlCl3 has a limited effect upon the localization of Ca2+ and phosphate in the roots. At higher levels of Al, 0.1–1.0 m M , there is a more dramatic change in nutrient localization in the free space and uptake over the plasma membrane.  相似文献   

19.
A rapid assay for aluminium phytotoxicity at submicromolar concentrations   总被引:1,自引:0,他引:1  
Investigations of Al phytotoxicity, including the identification of the Al species responsible for toxicity, require a rapid assay procedure employing very low concentrations of Al and a chemically simple rooting medium. Root elongation in newly germinated red clover ( Trifolium pratense L. cv. Kenland) was inhibited by submicromolar concentrations of Al. Ca2+ at concentrations of at least 0.2 m M was essential for optimal elongation in control seedlings. Ca2+ also relieved Al toxicity with the net effect that maximum reduction of elongation by 1 μ M Al was achieved at 0.2 m M Ca2+. Elongation in control seedlings was at least 90% of maximum from pH 4.5 to 5.7. Increases in pH relieved Al toxicity so that maximum sensitivity to 1 μ M Al occurred at pH 4.7. As a consequence of these experiments and other considerations we chose for our basic assay a medium composed of 0.2 m M CaSO4 adjusted to pH 4.5 with H2SO4, variously supplemented with Al2(SO4)3.
Day-old seedlings were incubated in this aerated medium in the dark at 23°C for one day. No additions of other solutes increased the sensitivity of the assay, but amelioration of Al toxicity was effected by Mg2+, F-, phosphate and citrate. Increases in ionic strength per se had comparatively little effect on the toxic effects of Al. Two barley cultivars ( Hordeum vulgare L. cv. Dayton and Kearney) and two wheat cultivars ( Triticum aestivum L. cv. Hart and Thorne) known to differ in sensitivity to Al were reliably separated at submicromolar Al concentrations by the assay procedure, which was slightly modified. Suggestions for the improvement of the assay and for applications to future research are offered.  相似文献   

20.
Abstract: The effects of alcohol and Ca2+ transport inhibitors on depolarization-induced stimulation of oxidative phosphorylation and free-Ca2+ concentrations in rat synaptosomes were investigated. Glucose oxidation was stimulated by depolarization with K+ or veratridine and by the Ca2+ ionophore ionomycin. The stimulation by K+, veratridine, and ionomycin was correlated with elevation of synaptosomal free Ca2+. Depolarization-stimulated respiration was inhibited by verapamil, Cd2+, and ruthenium red but not by diltiazem. Synaptosomal Ca2+ elevation was inhibited by verapamil but not by ruthenium red. These results indicate that the stimulation depends on elevation of mitochondrial free Ca2+. Ethanol, at pharmacological concentrations (50–200 m M ), inhibited the Ca2+-dependent stimulation of oxidative phosphorylation. This inhibition resulted, in part, from the inhibition of voltage-gated Ca2+ channels, which inhibited the elevation of synaptosomal free Ca2+, and, in part, from the stimulation of the mitochondrial Ca2+/Na+ antiporter, which inhibited the elevation of the mitochondrial matrix free Ca2+. The inhibition by ethanol of the excitation-induced stimulation of oxidative phosphorylation in the synapse may contribute to the depressant and narcotic effects of alcohol and enhance excitotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号