首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Semaphorins not only function in axon guidance during development but also contribute to various other biological processes. We have now examined the expression of semaphorin 3A (Sema3A) and its receptor components neuropilin 1 (Npn1) and plexin A (PlxA) during development of the mouse retina. Immunohistofluorescence analysis revealed that the expression patterns of Sema3A and Npn1 were similar during embryonic and postnatal development. The expression pattern of PlxA was also similar to those of Sema3A and Npn1 during embryonic and early postnatal (before eye opening) developments. However, the pattern of PlxA expression changed markedly after eye opening, with the expression disappearing from the optic nerve and increasing in intensity in the retinal pigment epithelium. Immunoprecipitation analysis showed that Sema3A interacted with PlxA in the retinal pigment epithelial cell line ARPE19 but not in the retinal ganglion cell line RGC5, whereas the opposite pattern of association was apparent for Sema3A and Npn1. Given that atmospheric oxygen is thought to play a role in the differentiation and maintenance of various ocular cell types, our results suggest that Sema3A-PlxA signalling activated by an effect of ambient oxygen on PlxA expression may contribute to differentiation of the retinal pigment epithelium. Copyright ? 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Trigeminal sensory innervation of the cornea is critical for protection and synthesis of neuropeptides required for normal vision. Little is known about axon guidance during mammalian corneal innervation. In contrast to the chick where a pericorneal nerve ring forms via Npn/Sema signaling, mouse corneal axons project directly into the presumptive cornea without initial formation of an analogous nerve ring. Here we show that during development of the mouse cornea, Npn1 is strongly expressed by the trigeminal ganglion whereas Npn2 is expressed at low levels. At the same time Sema3A and Sema3F are expressed in distinct patterns in the ocular tissues. Npn1(sema-/-) mutant corneas become precociously and aberrantly innervated by nerve bundles that project further into the corneal stroma. In contrast, stromal innervation was not affected in Npn2(-/-) mutants. The corneal epithelium was prematurely innervated in both Npn1(sema-/-) and Npn2(-/-) mutants. These defects were exacerbated in Npn1(sema-/-);Npn2(-/-) double mutants, which in addition showed ectopic innervation of the region between the optic cup and lens vesicle. Collectively, our data show that Sema3A/Npn1 and Sema3F/Npn2 signaling play distinct roles and both are required for proper innervation of the mouse cornea.  相似文献   

3.
The cornea, one of the most highly innervated tissues of the body, is innervated by trigeminal sensory afferents. During development, axons are initially repelled at the corneal margin, resulting in the formation of a circumferential nerve ring. The nature and source of guidance molecules that regulate this process remain a mystery. Here, we show that the lens, which immediately underlies the cornea, repels trigeminal axons in vivo and in vitro. Lens ablation results in premature, disorganized corneal innervation and disruption of the nerve ring and ventral plexus. We show that Semaphorin3A (Sema3A) is expressed in the lens epithelium and its receptor Neuropilin-1 (Npn1) is expressed in the trigeminal ganglion during cornea development. Inhibition of Sema3A signaling abrogates axon repulsion by the lens and cornea in vitro and phenocopies lens removal in vivo. These results demonstrate that lens-derived Sema3A mediates initial repulsion of trigeminal sensory axons from the cornea and is necessary for the proper formation of the nerve ring and positioning of the ventral plexus in the choroid fissure.  相似文献   

4.
The neural guidance protein semaphorin 3A (Sema3A) is expressed in corneal epithelial cells of the adult rat. We have now further investigated the localization of Sema3A in the normal rat corneal epithelium as well as changes in its expression pattern during wound healing after central corneal epithelial debridement. The expression pattern of Sema3A was compared with that of the tight-junction protein zonula occludens-1 (ZO-1), the gap-junction protein connexin43 (Cx43), or the cell proliferation marker Ki67. Immunofluorescence analysis revealed that Sema3A was present predominantly in the membrane of basal and wing cells of the intact corneal epithelium. The expression of Sema3A at the basal side of basal cells was increased in the peripheral epithelium compared with that in the central region. Sema3A was detected in all layers at the leading edge of the migrating corneal epithelium at 6 h after central epithelial debridement. The expression of Sema3A was markedly up-regulated in the basal and lateral membranes of columnar basal cells apparent in the thickened, newly healed epithelium at 1 day after debridement, but it had largely returned to the normal pattern at 3 days after debridement. The expression of ZO-1 was restricted to superficial epithelial cells and remained mostly unchanged during the wound healing process. The expression of Cx43 in basal cells was down-regulated at the leading edge of the migrating epithelium but was stable in the remaining portion of the epithelium. Ki67 was not detected in basal cells of the central epithelium at 1 day after epithelial debridement, when Sema3A was prominently expressed. Immunoblot analysis showed that the abundance of Sema3A in the central cornea was increased 1 day after epithelial debridement, whereas that of ZO-1 or Cx43 remained largely unchanged. This increase in Sema3A expression was accompanied by up-regulation of the Sema3A coreceptor neuropilin-1. Our observations have thus shown that the expression of Sema3A is increased markedly in basal cells of the newly healed corneal epithelium, and that this up-regulation of Sema3A is not associated with cell proliferation. They further suggest that Sema3A might play a role in the regulation of corneal epithelial wound healing.  相似文献   

5.
6.
7.
8.
9.
Cranial neural crest cells migrate into the periocular region and later contribute to various ocular tissues including the cornea, ciliary body and iris. After reaching the eye, they initially pause before migrating over the lens to form the cornea. Interestingly, removal of the lens leads to premature invasion and abnormal differentiation of the cornea. In exploring the molecular mechanisms underlying this effect, we find that semaphorin3A (Sema3A) is expressed in the lens placode and epithelium continuously throughout eye development. Interestingly, neuropilin-1 (Npn-1) is expressed by periocular neural crest but down-regulated, in a manner independent of the lens, by the subpopulation that migrates into the eye and gives rise to the cornea endothelium and stroma. In contrast, Npn-1 expressing neural crest cells remain in the periocular region and contribute to the anterior uvea and ocular blood vessels. Introduction of a peptide that inhibits Sema3A/Npn-1 signaling results in premature entry of neural crest cells over the lens that phenocopies lens ablation. Furthermore, Sema3A inhibits periocular neural crest migration in vitro. Taken together, our data reveal a novel and essential role of Sema3A/Npn-1 signaling in coordinating periocular neural crest migration that is vital for proper ocular development.  相似文献   

10.
Timing and patterning of dental pulp innervation are strictly spatio-temporally regulated but it is still not known how they are controlled at molecular level. We analyzed postnatal innervation of the dental pulp in the mandibular first molar of mice deficient for Semaphorin 3A (Sema3A) axon repellant molecule. Immunohistochemical localization of nerve fibers on serial sections covering the whole tooth germs using anti-peripherin antibody revealed that nerve fibers were prematurely present within the preodontoblast layer next to the inner enamel epithelium already at PN0 in Sema3A−/− mice. In contrast, in the wild-type (Sema3A+/+) mice nerve fibers were seen in the pulp only after enamel formation at PN3. The nerves in Sema3A−/− pulp were notably defasciculated and thinner compared to that of Sema3A+/+ mice. A premature formation of an abnormal, enlarged nerve plexus with a high number of arborizations was apparent in the pulp–dentin border target area in Sema3A−/− already at PN2 whereas in the wild-type mice the first sign of plexus formation was seen at PN7. The expression of mRNAs for Ngf, Gdnf and Ncam neuroregulatory molecules in mandibular molar as well as receptors for neurotrophic factors and class 3 semaphorins including Sema3A (TrkA, p75, TrkB, TrkC, Ret, Npn1, Npn2, PlxA4) in trigeminal ganglia were not altered in the Sema3A−/− mice. Collectively, this data show that Sema3A serves an essential role in molar tooth pulp innervation controlling the timing of nerve fiber penetration into the pulp, their patterning and the formation of nerve plexus at pulp–dentin border area, and provide further support for the hypothesis that tooth innervation is regulated by the coordinated activity of locally expressed neuroregulatory molecules exerting positive and negative influences on growing dental nerve fibers.  相似文献   

11.
12.
Although the conjunctival fornix appears to contain the greatest proportion of stem cells, it is likely that pockets of conjunctival epithelial stem cells may also exist throughout the conjunctival epithelium. This study was to investigate the potential localization of putative stem/progenitor cells in the human bulbar conjunctival epithelium by evaluating 6 keratins and 13 molecules that have been previously proposed stem cell associated or differentiation markers. We found that cornea specific cytokeratin (CK) 3 was not expressed by the bulbar conjunctival epithelial cells. In contrast, CK4 and CK7 were expressed by the superficial cells of bulbar conjunctival epithelium. CK14 and CK15 were confined to the basal cell layer. CK19 was strongly expressed by all layers of the bulbar conjunctival epithelium. The expression patterns of molecular markers in the basal cells of human bulbar conjunctival epithelium were found to be similar to the corneal epithelium. Basal conjunctival epithelial cells strongly expressed stem cell associated markers, including ABCG2, p63, nerve growth factor (NGF) with its receptors tyrosine kinase receptor A (TrkA) and neurotrophin low‐affinity receptor p75NTR, glial cell‐derived neurotrophic factor (GDNF) with its receptor GDNF family receptor alpha 1 (GFRα‐1), integrin β1, α‐enolase, and epidermal growth factor receptor (EGFR). The differentiation associated markers nestin, E‐cadherin and involucrin were not expressed by these cells. These findings indicate that the basal cells of bulbar conjunctival epithelium shares a similar expression pattern of stem cell associated markers to the corneal epithelium, but has a unique pattern of differentiation associated cytokeratin expression. J. Cell. Physiol. 225: 180–185, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Semaphorin signaling plays integral roles in multiple developmental processes. Branching morphogenesis is one such role that has not been thoroughly explored. Here, we show in mice that functional blockage of neuropilin 1 (Npn1) inhibits cleft formation in the developing submandibular gland (SMG) cultured ex vivo. This Npn1-dependent morphogenesis is mediated by Sema3A and Sema3C in an additive manner, and can be abolished by decreasing the expression of plexin A2 or plexin D1. VEGF, another known Npn1 ligand, has no apparent effects on SMG development. FGF signaling, which also mediates SMG branching morphogenesis, acts in parallel with semaphorin signaling. Finally, in contrast to the effect of FGF signaling, we find that semaphorins do not stimulate the proliferation of SMG epithelial cells. Instead, the semaphorin signals act locally on the epithelial cells to facilitate SMG cleft formation.  相似文献   

14.
15.
Basonuclin is a zinc finger protein with highly restricted tissue distribution. It has been found in abundance only in keratinocytes of stratified epithelia and the germ cells of the testis and ovary. We studied the expression pattern of basonuclin in relation to cellular proliferation and differentiation in murine corneal and lens epithelia, two self-renewing tissues in the eye which contain cells that proliferate throughout life. Mouse corneal and lens epithelial cells at various stages of development were labeled with BrdU for 90 min to detect cells in S phase and to establish proliferative rates. Whole eyes of mouse or rat were processed for frozen sections and cellular basonuclin was detected by either a rabbit antimouse- or a rabbit anti-human-basonuclin antibody. Basonuclin was expressed in virtually all cells in the basal layer of corneal epithelium and in the pre-equatorial lens epithelium, the respective proliferative compartments of adult corneal and lens epithelia. Basonuclin expression in corneal epithelium began at post-natal life day 4, first in a few cells and then spread to virtually all basal cells at day 20. Basonuclin was consistently absent in limbal epithelium. Lens basonuclin, which was detected earlier than that of the cornea, was confined to the pre-equatorial epithelium and was absent in equatorial cells that expressed p57KIP2, an early differentiation marker for these cells. An important distinction between corneal and lens basonuclin is that the former is predominantly nuclear whereas the latter cytoplasmic.  相似文献   

16.
17.
Around the fifth week after birth, the vaginal cavity in female mouse pups opens to the overlaying skin. This postnatal tissue remodeling of the genital tract occurs during puberty, and it largely depends upon hormonally induced apoptosis that mainly occurs in the epithelium at the lower part of the mouse vaginal cavity. Previously, we showed that most BALB/c mice lacking the class IV Semaphorin (Sema4D) develop imperforate vagina and hydrometrocolpos; therefore, we reasoned that the absence of Sema4D-induced apoptosis in vaginal epithelial cells may cause the imperforate vagina. Sema4D signals via the Plexin-B1 receptor; nevertheless detailed mechanisms mediating this hormonally triggered apoptosis are not fully documented. To investigate the estrogen-dependent control of Sema4D signaling during the apoptosis responsible for mouse vaginal opening, we examined structural and functional modulation of Sema4D, Plexin-B1, and signaling molecules by analyzing both wild-type and Sema4D−/− mice with or without ovariectomy. Both the release of soluble Sema4D and the conversion of Plexin-B1 by proteolytic processing in vaginal tissue peaked 5 weeks after birth of wild-type BALB/c mice at the time of vaginal opening. Estrogen supplementation of ovariectomized wild-type mice revealed that both the release of soluble Sema4D and the conversion of Plexin-B1 into an active form were estrogen-dependent and concordant with apoptosis. Estrogen supplementation of ovariectomized Sema4D−/− mice did not induce massive vaginal apoptosis in 5-week-old mice; therefore, Sema4D may be an essential apoptosis-inducing ligand that acts downstream of estrogen action in vaginal epithelium during this postnatal tissue remodeling. Analysis of ovariectomized mice also indicated that Sema4D contributed to estrogen-dependent dephosphorylation of Akt and ERK at the time of vaginal opening. Based on our results, we propose that apoptosis in vaginal epithelium during postnatal vaginal opening is induced by enhanced Sema4D signaling that is caused by estrogen-dependent structural changes of Sema4D and Plexin-B1.  相似文献   

18.
The Rho-family of small GTPase specific guanine nucleotide exchange factor, GEFT, is expressed at high levels in adult human excitable tissues including the brain, heart, and skeletal muscle. Previously, we demonstrated that GEFT is specifically expressed in the adult mouse hippocampus and cerebellum, and that overexpression of this protein can result in neurite and dendrite remodeling. This finding prompted us to explore the expression of GEFT in other tissues, which share common developmental ancestry to the nervous system, specifically the ocular system. Using immunohistochemical analysis specific for GEFT protein expression, we observed the highest ocular expression of GEFT occurring in the neuroblastic layer and differentiating lens fibers of the late-stage mouse embryo, and in the postnatal corneal epithelium, lens epithelium, and throughout the retina. Exogenous expression of GEFT in N/N1003A rabbit lens epithelial cells induced lens fiber differentiation as reflected by cell elongation and lentoid formation, as well as a strong increase in β-crystallin and filensin expression. Moreover, transfection of lens epithelial cells with GEFT resulted in a Rac-1 mediated up-regulation of αA-, αB-, βB-, γC-, or γF-crystallin promoter activities that is in part dependent on the nuclear localization of Rac1. Furthermore, pharmacological inhibition of Rac1 blocked GEFT-induced N/N1003A lens fiber differentiation and βB-crystallin expression in ex vivo mouse lens explants. These results demonstrate for the first time a role for GEFT in lens cell differentiation and mouse eye development. Moreover, GEFT regulation of lens differentiation and eye development occurs through a Rac1-dependent mechanism.  相似文献   

19.
角膜缘干细胞是角膜上皮更新与修复的来源,角膜上皮受损严重常会导致角膜盲。尽管近几年通过角膜缘干细胞移植术(LSCT)治愈角膜上皮受损的临床应用已被推广,但是对于角膜缘干细胞移植受损机体后的修复机理并不明确。为了实现角膜缘干细胞移植后的活体追踪,使用G418筛选标记有Venus荧光蛋白的角膜缘干细胞株(GLSC-V),并以其为种子细胞接种于去上皮羊膜上,体外培养21d构建成荧光角膜上皮植片。荧光倒置显微镜下观察GLSC-V的细胞质和细胞核均有绿色荧光表达,在体外培养荧光至少持续3个月。免疫荧光检测GLSC-V细胞P63、Integrinβ1均呈阳性表达,对GLSC-V细胞及未转染的GLSCs进行半定量RT-PCR检测显示,两组细胞皆未表达终末分化角膜上皮细胞基因k3、k12,GLSC-V中p63及pcna较未转染组细胞略上调,venus强表达。经HE染色观察构建的人工角膜组织由5~6层上皮细胞组成,组织中上表皮细胞个数少、体积大且呈扁平状;基底部细胞密集、体积小且成立方状。经免疫荧光检测仅组织基底部最基层细胞表达P63,上表皮细胞不表达。该人工角膜与正常角膜上皮组织结构特性相似,可用于移植,为研究角膜缘干细胞修复严重受损角膜上皮机理奠定基础。  相似文献   

20.
In this study, we investigated the effect of caffeine overexposure on corneal innervation in the early chicken embryo. Caffeine administration restricted corneal innervation by affecting trigeminal nerve development. Immunohistochemistry for phospho-Histone3 (pHIS3) and C-caspase3 revealed that cell survival was repressed by caffeine administration. Whole-mount in situ hybridization against semaphorin 3A (Sema3A) and neuropilin-1 (Nrp1) showed that both caffeine and 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH, a free radical generator) administration upregulates the expression of both Sema3A and Nrp1. Next, we demonstrated that lens ablation in the developing chicken embryos significantly affected NF-labeled periocular nerve fascicles and innervation to the central eye region. Subsequently, we used a neuroblastoma cell line to investigate in vitro whether or not Sema3A–Nrp1 signaling exerts a key role on the caffeine-suppressed neuron survival. Knocking-down Sema3A through transfection with Sema3A-siRNA dramatically decreased the responsiveness of cells to caffeine administration, as well as cell apoptosis. We suggest that Sema3A–Nrp1 signaling regulates Trp53 and Cdkn1a through Slit2–Robo1 and Ephb2. Taken together, we speculate here that caffeine-enhanced reactive oxygen species upregulates Sema3A–Nrp1 expression in the lens and periocular tissues, resulting in corneal cell apoptosis, accompanied by its chemorepellent role on the invasion of the developing cornea by trigeminal sensory fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号