首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Abstract Air grown cultures of the cyanobacterium Synechococcus 6301, when incubated under continuous illumination with nitrate as the sole nitrogen source, started to liberate nitrite from the second day of inoculation. Nitrite accumulation depended on culture density and was caused by CO2 deficiency since it could be prevented by addition of 5% CO2 to the gas stream. Nitrite excreted during growth with air (0.035% CO2) was taken up after an increase in CO2 concentration to 5%.
In sulfur depleted cultures, nitrite excretion took place also with saturating CO2 concentration. In this case nitrite accumulation could be reversed by addition of a suitable sulfur source.
Under both conditions for nitrite accumulation, carbon and sulfur deficiency, a significant decrease in nitrite reductase activity was observed which might account for nitrite liberation.  相似文献   

2.
The long-time effect of phosphinothricin (PPT) on gas exchange and nitrate metabolism in intact plants of lucerne ( Medicago sativa L. cv. Aragón) was investigated. Photosynthetic CO2 uptake, stomatal conductance, and transpiration were measured with an Infra-Red Gas Analyzer (IRGA). Under photorespiratory conditions, CO2 uptake continuously decreased after PPT treatment. The decrease of photosynthesis led to an increase in the internal CO2 concentration, which in turn caused stomatal closure and a reduction of transpiration rate. Nitrate reduction from plants sprayed with PPT was assayed both in vitro and in vivo. In vivo nitrate reductase was measured with and without nitrate in the infiltration medium. Both types of nitrate reductase assays indicated that the enzyme was inhibited in plants treated with PPT; however, the enzyme appeared more affected when the in vivo assay was used than when the one in vitro was applied. The nitrate reduction was pronouncedly affected after 24 h of PPT treatment, when glutamine synthetase (GS, EC 6.3.1.2.) activity and gas exchange were inhibited by more than 60%. The data suggest that the inhibition of GS leads to inhibition of photosynthesis, which, in turn, means lack of NADPH and nitrate, the substrates for nitrate reductase. The inhibition of GS also leads to a high ammonia level, which will produce a secondary inhibition of nitrate reductase activity.  相似文献   

3.
4.
Abstract Nitrate reduction to ammonia by marine Vibrio species was studied in batch and continuous culture. In pH-controlled batch cultures (pH 7.4; 50 mM glucose, 20 mM KNO3), the nitrate consumed accumulated to more than 90% as nitrite. Under these conditions, the nitrite reductase (NO2→ NH3) was severely repressed. In pH-controlled continuous cultures of V. alginolyticus with glucose or glycerol as substrates ( D = 0.045 h−1) and limiting N-source (nitrate or nitrite), nitrite reductase was significantly derepressed with cellular activities in the range of 0.7–1.2 μmol min−1 (mg protein)−1. The enzyme was purified close to electrophoretic homogeneity with catalytic activity concentrations of about 1800 nkat/mg protein. It catalyzed the reduction of nitrite to ammonia with dithionite-reduced viologen dyes or flavins as electron donors, had an M r of about 50 000 (determined by gel filtration) and contained c-type heme groups (probably 4–6 per molecule).  相似文献   

5.
Chlorella vulgaris Beijerinck, strain 211/12, uses nitrate, nitrite and ammonium at pH 8.2 but not at pH 6.4 when kept under conditions of CO2-deprivation, as observed in cell suspensions aerated with CO2-free air during a 20–30. h period Most of the nitrate absorbed at pH 8.2, however, was not assimilated but was released into the external medium as nitrite and ammonium. Cells of Chlorella previously grown in phosphate-limited continuous cultures were unable to absorb nitrate, nitrite or ammonium under conditions of phosphate starvation at either pH 6.4 or 8.2 in cell suspensions flushed with air containing 5% CO2, However, in cell suspensions flushed with CO2-free air, the capacity of the alga to absorb and reduce nitrate and to excrete nitrite and ammonium at pH 8.2 was restored.
It is hypothesized that in Chlorella the metabolism of nitrate, nitrite and ammonium is influenced by the availability of other nutrients and controlled by the cell's carbon status at the level of ion entry into the cell. With respect to nitrate this carbon-dependent control is distinct and works independently of that triggered by the cell's nitrogen status.  相似文献   

6.
In the marine diatom Skeletonema costatum , carbonic anhydrase activity exterior to the plasma membrane (CAext) was detected only when the available CO2 concentration was less than 5·0 mmol m–3, this activity being unaffected by the total dissolved inorganic carbon concentration. The inhibition of CAext by dextran bound sulphonamide (DBS) demonstrated the key role of this enzyme in maintaining photosynthetic rate under CO2-limited conditions. Treatment with trypsin followed by affinity chromatography on p-aminomethylbenzene-sulphamide agarose and subsequent SDS-PAGE analysis revealed a polypeptide from carbon-replete cells of identical molecular mass to the CAext released by trypsin from CO2-limited cells. Redox activity in the plasma membrane of intact cells was measured by following the light-dependent reduction of ferricyanide or NADP, the greatest activity being shown by CO2-limited cells. Overall the results suggest that high rates of redox activity under conditions of CO2-limitation were required for the activation of CAext.  相似文献   

7.
Nitrate reductase activity (NRA; NADH-nitrate reductase, E. C. 1.6.6.1) has been measured in extracts from leaves of spinach ( Spinacia oleracea L.) in response to rapid changes in illumination, or supply of CO2 or oxygen. Measured in buffers containing magnesium, NRA from leaves decreased in the dark and increased again upon illumination. It decreased also, when CO2 was removed in continuous light, and was reactivated when CO2 was added. Nitrate reductase (NR) from roots of pea ( Pisum sativum L.) was also rapidly modulated in vivo. It increased under anaerobiosis and decreased in air or pure oxygen. The half time for inactivation or reactivation in roots and leaves was 5 to 30 min.
When spinach leaves were harvested during a normal day/night cycle, extractable NRA was low during the night, and high during daytime. However, at any point of the diurnal cycle, NR could be brought to a similar maximum activity by preincubation of the desalted leaf extract with AMP and/or EDTA. Thus, the observed diurnal changes appeared to be mainly a consequence of enzyme modulation, not of protein turnover. In vivo, the reactivation of the inactivated enzyme from both leaves and roots was prevented by okadaic acid, and inhibitor of certain protein phosphatases. Artificial lowering of the ATP-levels in leaf or root tissues by anaerobiosis (dark), mannose or the uncoupler carbonyl cyanide m -chlorophenyl hydrazon (CCCP), always brought about full activation of NR.
By preincubating crude leaf or root extracts with MgATP, NR was inactivated in vitro. Partial purification from spinach leaves of two enzymes with molecular masses in the 67 kD and 100 kD range, respectively, is reported. Both participate in the ATP-dependent inactivation of NR.
Alltogether these data indicate that NR can be rapidly modulated by reversible protein phosphorylation/dephosphorylation, both in shoots and in roots.  相似文献   

8.
Abstract. Mass spectrometry has been used to measure the rates of CO2 uptake of acid- and alkali-grown cells of the green algae Chlorella ellipsoidea (UTEX 20) and C. saccharophila (UTEX 27). The time course of CO2 formation on addition of 100mmol m−3 K2CO3 to cells in the dark was used as an assay for external carbonic anhydrase (CA). No external CA was detected in acid-grown cells of either species or in alkali-grown cells of C. ellipsoidea but was present in alkali-grown C. saccharophila . In the absence of external CA, or when it was inhibited by 5mmol m−3 acetazolamide, cells of both species, on illumination, rapidly depleted the free CO2 in the medium at pH 7.5 to near zero concentrations before maximum photosynthetic O2 evolution rates were established. Addition of bovine CA rapidly restored the equilibrium CO2 concentration in the medium, indicating that the cells were selectively taking up CO2. Transfer of cells to the dark caused a rapid increase in the CO2 concentration in the medium largely due to the efflux of inorganic carbon from the cells as CO2. This rapid light-dependent CO2 uptake takes place against pH and concentration gradients and, thus, has the characteristics of active transport.  相似文献   

9.
Single leaf photosynthetic rates and various leaf components of potato ( Solanum tuberosum L.) were studied 1–3 days after reciprocally transferring plants between the ambient and elevated growth CO2 treatments. Plants were raised from individual tuber sections in controlled environment chambers at either ambient (36 Pa) or elevated (72 Pa) CO2. One half of the plants in each growth CO2 treatment were transferred to the opposite CO2 treatment 34 days after sowing (DAS). Net photosynthesis (Pn) rates and various leaf components were then measured 34, 35 and 37 DAS at both 36 and 72 Pa CO2. Three-day means of single leaf Pn rates, leaf starch, glucose, initial and total Rubisco activity, Rubisco protein, chlorophyll ( a + b ), chlorophyll ( a/b ), α -amino N, and nitrate levels differed significantly in the continuous ambient and elevated CO2 treatments. Acclimation of single leaf Pn rates was partially to completely reversed 3 days after elevated CO2-grown plants were shifted to ambient CO2, whereas there was little evidence of photosynthetic acclimation 3 days after ambient CO2-grown plants were shifted to elevated CO2. In a four-way comparison of the 36, 72, 36 to 72 (shifted up) and 72 to 36 (shifted down) Pa CO2 treatments 37 DAS, leaf starch, soluble carbohydrates, Rubisco protein and nitrate were the only photosynthetic factors that differed significantly. Simple and multiple regression analyses suggested that negative changes of Pn in response to growth CO2 treatment were most closely correlated with increased leaf starch levels.  相似文献   

10.
Abstract. The uptake and accumulation of inorganic carbon has been investigated in Chlorella ellipsoidea cells grown at acid or alkaline pH. Carbonic anhydrase (CA) was detected in ceil extracts but not in intact cells and CA activity in acid-grown cells was considerably less than that in alkali-grown cells. Both cell types demonstrates low K1/2 (CO2) values in the range pH 7.0–8.0 and these were unaffected by O2 concentration. The CO2 compensation concentrations of acid- and alkali-grown cells suspended in aqueous media were not significantly different in the range of pH 6.0–8.0, but at pH 5.0, the CO2 compensation concentrations of acid-grown cells (57.4cm3 m−3) were lower than those of alkali-grown cells (79.2cm3 m−3). The rate of photo-synthetic O2 evolution in the range pH 7.5–8.0 exceeded the calculated rate of CO2 supply two- to three-fold, in both acid- and alkali-grown cells, indicating that HCO3 was taken up by the cells. Accumulation of inorganic carbon was measured at pH 7.5 by silicone-oil centri-fugation, and the concentration of unfixed inorganic carbon was found to be 5.1 mol m−3 in acid-grown and 6.4mol m−3 in alkali-grown cells. These concentrations were 4.6- and 5.9-fold greater than in the external medium. These results indicate that photorespiration is suppressed in both acid- and alkali-grown cells by an intracellular accumulation of inorganic carbon due, in part, to an active uptake of bicarbonate.  相似文献   

11.
Addition of 2 mM nitrite or ammonium to aerobically incubated cultures of Gloeothece rapidly inhibited N2 fixation (measured as acetylene reduction). In contrast, 2 mM nitrate inhibited N2 fixation less rapidly and less extensively, and often temporarily stimulated nitrogenase activity. The inhibitory effects of both nitrate and ammonium could be prevented by addition of 3 mM L-methionine-DL-sulphoximine, suggesting that the true inhibitor of N2 fixation was an assimilatory product of ammonium rather than either ammonium or nitrate itself. The inhibition of N2 fixation by nitrite could not, however, be prevented by addition of L-methionine-DL- sulphoximine. On the other hand, nitrite (unlike nitrate and ammonium) did not inhibit N2 fixation in cultures incubated under a gas phase lacking oxygen. These findings suggest that the mechanism whereby nitrite inhibits N2 fixation in Gloeothece differs from that of either nitrate or ammonium. The inhibitory effect of nitrite on N2 fixation did not involve reduction of nitrite to nitric oxide, though nitric oxide was a potent inhibitor of nitrogenase activity in Gloeothece . Nitrate and nitrite inhibited the synthesis of nitrogenase in Gloeothece , while ammonium not only inhibited nitrogenase synthesis but also stimulated degradation of the enzyme. In addition, all three compounds favoured the appearance of the Fe-protein of nitrogenase in its larger, presumed inactive, form.  相似文献   

12.
Oxic–anoxic interfaces harbor significant numbers and activity of chemolithoautotrophic microorganisms, known to oxidize reduced sulfur or nitrogen species. However, measurements of in situ distribution of bulk carbon dioxide (CO2) assimilation rates and active autotrophic microorganisms have challenged the common concept that aerobic and denitrifying sulfur oxidizers are the predominant autotrophs in pelagic oxic–anoxic interfaces. Here, we provide a comparative investigation of nutrient, sulfur, and manganese chemistry, microbial biomass distribution, as well as CO2 fixation at the pelagic redoxcline of the eastern Gotland Basin, Baltic Sea. Opposing gradients of oxygen, nitrate, and sulfide approached the detection limits at the chemocline at 204 m water depth. No overlap of oxygen or nitrate with sulfide was observed, whereas particulate manganese was detected down to 220 m. More than 70% of the bulk dark CO2 assimilation, totaling 9.3 mmol C m−2 day−1, was found in the absence of oxygen, nitrite, and nitrate and could not be stimulated by their addition. Maximum fixation rates of up to 1.1 μmol C L−1 day−1 were surprisingly susceptible to altered redox potential or sulfide concentration. These results suggest that novel redox-sensitive pathways of microbial sulfide oxidation could account for a significant fraction of chemolithoautotrophic growth beneath pelagic chemoclines. A mechanism of coupled activity of sulfur-oxidizing and sulfur-reducing microorganisms is proposed.  相似文献   

13.
The photosynthetic contribution of a fruit to its carbon requirement throughout ontogeny and under different growing conditions was quantified in cucumber ( Cucumis sativus L. cv. Corona). In addition, the effects of shading on fruit dry matter accumulation and the diurnal course of the elongation rate were studied. Fruit darkening had no photomorphogenic effect on fruit growth, while the cumulative photosynthetic contribution of a fruit to its own carbon requirement ranged from 1 to 5%. During the day there was always a net CO2 efflux. The photosynthetic rate per fruit, calculated as the difference between rates of CO2 exchange in light and dark, increased during fruit ontogeny, while the photosynthetic rate per unit fruit surface area declined. The latter was not dependent on fruit size. The photosynthetic activity per unit surface area of fruits was estimated to be about 20–30% as efficient as that of leaves. The rate of calculated photosynthesis was reduced by 60–65% when the photosynthetically active radiation incident on the fruit decreased from 200 to 50 μmol m−2 s−1. Temperature (20–30°C) had no pronounced effect on the rate of calculated fruit photosynthesis when fruits of the same developmental stage (temperature sum) were compared. However, the relative photosynthetic contribution of a fruit to its carbon requirement increased when temperature decreased. Moreover, this contribution increased when irradiance increased or fruit growth was reduced by competing fruits. During fruit ontogeny the daily photosynthetic contribution was highest (up to 15%) in young and old fruits, with a small growth rate.  相似文献   

14.
The presence of NaCl in the nutrient solution promoted nitrate uptake in parent Anabaena sp. PCC 7120, mutants SP7 (defective in nitrate reductase activity) and SP17 (partially defective in nitrate reductase activity), but not in the mutant SP9 (defective in nitrate transport and reduction). Nitrate reductase activity of the parent and mutant SP17 increased with increasing concentration of nitrate in saline medium, while mutants SP7 and SP9 did not respond to the altered salinity. Although Na+ was not required for nitrate reductase activity, its presence in the nutrient solution enhanced nitrate reduction. Complete removal of Na+ from the nutrient solution markedly reduced nitrogenase activity in all the strains, while raising the concentration of NaCl to 50 mmol l−1 or above, was equally toxic to nitrogenase activity. External NaCl at 200 mmol l−1 brought down the nitrogenase activity to the same residual level as observed without Na+.  相似文献   

15.
Inhibition by NO3 of acetylene reduction in bean ( Phaseolus vulgaris L. cv. Contender) and soybean ( Glycine max L. cv. Amsoy 71) was measured in parallel with nodule carbohydrate and nitrate metabolism. In bean the onset of inhibition of C2H2 reduction (6 h) coincided with decreased import of assimilates and a lowering of carbohydrate pools (sucrose, glucose and starch). Nitrate reductase (EC 1.6.6.1) activity was induced in all plant organs after 3 h but no nitrite was detected in the nodules. In soybean, nodule carbohydrate concentrations and import of assimilates into the nodules increased markedly between 6 to 24 h after supply of nitrate when the nitrogenase (EC 1.7.99.2) was progressively inhibited. High nitrate reductase activity was observed in the nodules and nitrites accumulated because of insufficient nitrite reductase activity. The nitrate-induced inhibition of nitrogenase was compared with the inhibition observed with low oxygen around the roots (1% O2) or with direct assimilate deprivation (girdling or decapitation). Soybean and bean appeared equally sensitive to these treatments as regards to acetylene reduction. The results are discussed in relation to the current hypotheses explaining nitrate-induced inhibition of dinitrogen fixation: assimilate deprivation or nitrite poisoning. Present data are in favour of the first for bean and of the second for soybean.  相似文献   

16.
The effect of long-term exposure to different inorganic carbon, nutrient and light regimes on CAM activity and photosynthetic performance in the submerged aquatic plant, Littorella uniflora (L.) Aschers was investigated. The potential CAM activity of Littorella was highly plastic and was reduced upon exposure to low light intensities (43 μmol m−2 s−1), high CO2 concentrations (5.5 mM, pH 6.0) or low levels of inorganic nutrients, which caused a 25–80% decline in the potential maximum CAM activity relative to the activity in the control experiments (light: 450 μmol m−2 s−1; free CO2: 1.5 mM). The CAM activity was regulated more by light than by CO2, while nutrient levels only affected the activity to a minor extent. The minor effect of low nutrient regimes may be due to a general adaptation of isoetid species to low nutrient levels.
The photosynthetic capacity and CO2 affinity was unaffected or increased by exposure to low CO2, irrespective of nutrient levels. High CO2, low nutrient and low light, however, reduced the capacity by 22–40% and the CO2 affinity by 35-45%, relative to control.
The parallel effect of growth conditions on CAM activity and photosynthetic performance of Littorella suggest that light and dark carbon assimilation are interrelated and constitute an integrated part of the carbon assimilation physiology of the plant. The results are consistent with the hypothesis that CAM is a carbon-conserving mechanism in certain aquatic plants. The investment in the CAM enzyme system is beneficial to the plants during growth at high light and low CO2 conditions.  相似文献   

17.
The filamentous non-N2-fixing cyanobacterium Phormidium laminosum (strain OH-1-p.Cl1) was able to utilize glutamine as the sole nitrogen source. The addition to ammonium-grown cultures of the irreversible inhibitor of glutamine synthetase activity L-methionine-D, L-sulfoximine (MSX) inhibited cell growth. Supplying glutamine to the culture restored cell growth. This re-established growth was not due to interference by glutamine of MSX uptake by the cells, since glutamine synthetase (GS, EC 6.3.1.2) activity remained completely inhibited by MSX even when glutamine was simultaneously present. Both glutamine and ammonium exerted a negative effect on nitrate reductase (NR. EC 1.7.7.2) and nitrite reductase (NiR, EC 1.7.7.1) in vivo. This negative effect was reversed by MSX. When glutamine was added to MSX-treated cells, intracellular glutamine level was high, but the activity of both reductases remained at a high level. These results suggest that the presence of the active form of glutamine synthetase is required for the in vivo prevention of nitrate assimilation caused by ammonium and glutamine.  相似文献   

18.
A significant progress in the knowledge of different aspects of nitrate transport in the unicellular cyanobacterium Anacystis (Synechococcus ) has been achieved in the last few years. The main contributions of our group are summarized in this article and discussed in relation to other information available. Endergonic accumulation of nitrate into the cells, indicative of the operation of an active nitrate transport system, has been experimentally substantiated and methods established to evaluate and analyze the activity of the system. Nitrate transport activity is sensitive to regulation exerted by products of both ammonium and CO2 assimilation, thus providing evidence that photosynthetic nitrate assimilation in cyanobacteria is primarily controlled at the level of substrate supply to the cell. The expression of nitrate transport was also shown to be under nitrogen control, being repressed when ammonium is used as the nitrogen source. A 47-kDa polypeptide, which is a major plasma membrane component in nitrate-grown cells but is virtually absent in ammonium-grown cells, was identified as an essential component of the nitrate transporter. More recently, evidence of a strict Na'-dependence of active nitrate transport has been obtained, Δμ(Na+) appearing as the driving force of a sodium-nitrate symport system. Kinetic studies indicate also that the nitrate transporter may transport nitrite into the cell.  相似文献   

19.
The addition of nitrate to cultures of Spirillum itersonii incubated under low aeration produced a diauxic growth pattern in which the second exponential phase was preceded by the appearance of nitrite in the medium. The organism also grew anaerobically in the presence of nitrate. Nitrate reductase activity could be demonstrated in cell-free extracts by use of reduced methyl viologen as the electron donor. The enzyme was located in the supernatant fraction after centrifugation of extracts for 2 hr at 40,000 x g, and it sedimented as a single peak when centrifuged in a sucrose gradient. Nitrate reductase activity was found in cells grown with low aeration without nitrate, but was increased about twofold by addition of nitrate. Enzyme activity was negligible in cells grown with high aeration. The proportion of soluble cytochrome c was increased two- to threefold in cells grown with nitrate. The specific activities of nitrate reductase and soluble cytochrome c rose when nitrate or nitrite was added to cell suspensions incubated with low aeration; nitrite was more effective than nitrate during the early stages of incubation. A nitrate reductase-negative mutant synthesized increased amounts of soluble cytochrome c in response to nitrate or to nitrite in the cell suspension system. It is concluded that enhanced synthesis of soluble cytochrome c does not require the presence of a functional nitrate reductase.  相似文献   

20.
Abstract Denitrification was measured in intact sediment cores and in homogenised slurries using membrane inlet mass spectrometry. Dissolved concentrations of O2, N2, N2O and CO2 were simultaneously monitored. Using a 0.8 mm diameter needle probe, a comparison was made of the gas profiles of intact cores obtained under different conditions, i.e. with air or argon as the headspace gas and after the addition of nitrate and/or a carbon source to the sediment surface. O2 was detectable to a depth of 1 cm under a headspace of air and the depth at which the maxima of denitrification products occurred was 1.5–2 cm. Denitrification products (N2O, N2) occurred in the surface layers where O2 was above the minimum level of detectability (> 0.25 μM): diffusion of N2 and N2O upwards from the anoxic zone, local anaerobic microenvironments or aerobic denitrification are alternative explanations for this observation. The addition of nitrate and/or acetate increased the concentrations of N2, N2O and CO2 in the sediment core. In sediment slurries, the pH, nitrate concentration, carbon source and the depth from which the sample was taken affected the rate of denitrification. Nitrogen was the sole detectable end product. Maximum denitrification occurred at pH 7.5 and at 20 mM nitrate. Denitrification was at a maximum in those slurries prepared from sections of core at 1–2 cm depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号