首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorylation of histone H3 at serine 10 (S10) is essential for the onset of mitosis. Here, we show that basal c-Jun N-terminal kinases (JNKs) are required for mitotic histone H3 S10 phosphorylation in human primary fibroblast IMR90 cells. Inhibition of JNKs by specific pharmacologic inhibitors, expression of dominant-negative JNK1 and 2 mutants, or RNAi of JNK1 and 2 prevented phosphorylation of histone H3 at S10 in vivo. The JNK-specific inhibitor SP600125 blocked mitotic entry, as shown by its ability to prevent CDK1 dephosphorylation and cyclin A degradation. Basal JNK phosphorylation increased at G2/M-phase, although total JNK protein levels remained unchanged. In addition, basal JNKs were localized in nuclei and centrosomes during this time, suggesting that the nuclear localization of JNKs during G2/M is tightly coupled with histone H3 phosphorylation. Basal JNKs were able to phosphorylate histone H3 in vitro and co-precipitation of histone H3 and JNKs was only detected at G2/M. Taken together, these data strongly suggest that basal JNKs play a key role in controlling histone H3 phosphorylation for mitotic entry at G2/M-phase.  相似文献   

2.
3.
4.
5.
We present evidence that increases in intracellular calcium, induced by treatment with calcium ionophore A23187 or the endoplasmic reticulum calcium-ATPase inhibitor thapsigargin, dephosphorylated histone H3 at serine10 (histone H3-Ser10) in a dose-dependent manner in human hepatoma HepG2 cells. Inhibition of p42/44MAPK, pp90RSK, or p38MAPK did not affect the ability of A23187 to dephosphorylate histone H3-Ser10. This response is significantly blocked by okadaic acid, indicating a requirement for protein phosphatase 2A (PP2A). A23187 increased the activity of PP2A towards phosphorylated histone H3-Ser10. Furthermore, pretreatment with calphostin C, a selective protein kinase C (PKC) inhibitor, blocked A23187-dependent dephosphorylation of histone H3-Ser10, and coimmunoprecipitation analysis showed PP2A association with the PKCbetaII isoform. Unlike untreated cells, coimmunoprecipitated complex from A23187-treated cells showed greater dephosphorylation of histone H3-Ser10 in a PP2A-dependent manner. Inhibition of PP2A increased phosphorylation at Ser660 that determines calcium sensitivity and activity of PKCbetaII isoform, thus supporting a role for intracomplex regulation. Finally, chromatin immunoprecipitation assays following exposure to A23187 and okadaic acid revealed regulatory role of histone H3-Ser10 phosphorylation in selective gene induction. Altogether, our findings suggest a novel role for calcium in modulating histone H3-Ser10 phosphorylation level and led us to propose a model emphasizing PP2A activation, occurring downstream following perturbations in calcium homeostasis, as key event in dephosphorylating histone H3-Ser10 in mammalian cells.  相似文献   

6.
7.
The c-Jun NH(2)-terminal kinase (JNK) subgroup of mitogen-activated protein kinases has been implicated largely in stress responses, but an increasing body of evidence has suggested that JNK also plays a role in cell proliferation and survival. We examined the effect of JNK inhibition, using either SP600125 or specific antisense oligonucleotides, on cell proliferation and cell cycle progression. SP600125 was selective for JNK in vitro and in vivo versus other kinases tested including ERK, p38, cyclin-dependent protein kinase 1 (CDK1), and CDK2. SP600125 inhibited JNK activity and KB-3 cell proliferation with the same dose dependence, suggesting that inhibition of proliferation was a direct consequence of JNK inhibition. Inhibition of proliferation by SP600125 was associated with an increase in the G(2)-M and apoptotic fractions of cells but was not associated with p53 or p21 induction. Antisense oligonucleotides to JNK2 but not JNK1 caused highly significant inhibition of cell proliferation. Wild-type mouse fibroblasts responded similarly with proliferation inhibition and apoptosis induction, whereas c-jun(-/-) fibroblasts were refractory to the effects of SP600125, suggesting that JNK signaling to c-Jun is required for cell proliferation. Studies in synchronized KB-3 cells indicated that SP600125 delayed transit time through S and G(2)-M phases. Correspondingly, JNK activity increased in late S phase and peaked in late G(2) phase. During synchronous mitotic progression, cyclin B levels increased concomitant with phosphorylation of c-Jun, H1 histone, and Bcl-2. In the presence of SP600125, mitotic progression was prolonged, and c-Jun phosphorylation was inhibited, but neither H1 nor Bcl-2 phosphorylation was inhibited. However, the CDK inhibitor roscovitine inhibited mitotic Bcl-2 phosphorylation. These results indicate that JNK, and more specifically the JNK2 isoform, plays a key role in cell proliferation and cell cycle progression. In addition, conclusive evidence is presented that a kinase other than JNK, most likely CDK1 or a CDK1-regulated kinase, is responsible for mitotic Bcl-2 phosphorylation.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Histones are subject to numerous post-translational modifications that correlate with the state of higher-order chromatin structure and gene expression. However, it is not clear whether changes in these epigenetic marks are causative regulatory factors in chromatin structure changes or whether they play a mainly reinforcing or maintenance role. In Drosophila phosphorylation of histone H3S10 in euchromatic chromatin regions by the JIL-1 tandem kinase has been implicated in counteracting heterochromatization and gene silencing. Here we show, using a LacI-tethering system, that JIL-1 mediated ectopic histone H3S10 phosphorylation is sufficient to induce a change in higher-order chromatin structure from a condensed heterochromatin-like state to a more open euchromatic state. This effect was absent when a ;kinase dead' LacI-JIL-1 construct without histone H3S10 phosphorylation activity was expressed. Instead, the 'kinase dead' construct had a dominant-negative effect, leading to a disruption of chromatin structure that was associated with a global repression of histone H3S10 phosphorylation levels. These findings provide direct evidence that the epigenetic histone tail modification of H3S10 phosphorylation at interphase can function as a causative regulator of higher-order chromatin structure in Drosophila in vivo.  相似文献   

15.
16.
Histone acetylation and phosphorylation have separately been suggested to affect chromatin structure and gene expression. Here we report that these two modifications are synergistic. Stimulation of mammalian cells by epidermal growth factor (EGF) results in rapid and sequential phosphorylation and acetylation of H3, and these dimodified H3 molecules are preferentially associated with the EGF-activated c-fos promoter in a MAP kinase-dependent manner. In addition, the prototypical histone acetyltransferase Gcn5 displays an up to 10-fold preference for phosphorylated (Ser-10) H3 over nonphosphorylated H3 as substrate in vitro, suggesting that H3 phosphorylation can affect the efficiency of subsequent acetylation reactions. Together, these results illustrate how the addition of multiple histone modifications may be coupled during the process of gene expression.  相似文献   

17.
18.
19.
20.
Cytosolic phospholipase A(2) (cPLA(2)) plays a pivotal role in mediating agonist-induced arachidonic acid (AA) release for prostaglandin (PG) synthesis during inflammation triggered by tumor necrosis factor-α (TNF-α). However, the mechanisms underlying TNF-α-induced cPLA(2) expression and PGE(2) synthesis in human tracheal smooth muscle cells (HTSMCs) remain unknown. Here, we report that TNF-α-induced cPLA(2) protein and mRNA expression, PGE(2) production, and phosphorylation of p42/p44 MAPK, p38 MAPK, and JNK1/2, which were attenuated by pretreatment with a ROS scavenger [N-acetyl-L-cysteine, (NAC)] and the inhibitors of NADPH oxidase [apocynin (APO) and diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), and JNK1/2 (SP600125) or transfection with siRNA of Nox2, p47(phox) , MEK1, p42, p38, or JNK2. TNF-α-induced cPLA(2) expression was also inhibited by pretreatment with a selective NF-κB inhibitor [helenalin (HLN)] or transfection with dominant negative mutants of NF-κB inducing kinase (NIK) or IκB kinase (IKK)α/β. TNF-α-induced NF-κB translocation was blocked by pretreatment with NAC, DPI, APO, or HLN, but not by U0126, SB202190, or SP600125. In addition, pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA blocked cPLA(2) expression and PGE(2) synthesis induced by TNF-α. We further confirmed that p300 was associated with the cPLA(2) promoter which was dynamically linked to histone H4 acetylation stimulated by TNF-α, determined by chromatin immunoprecipitation assay. Association of p300 and histone H4 to cPLA(2) promoter was inhibited by U0126, SB202190, and SP600125. These results suggested that in HTSMCs, activation of p47(phox) , MAPKs, NF-κB, and p300 is essential for TNF-α-induced cPLA(2) expression and PGE(2) release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号