首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two saturated (4a,b) and one unsaturated (5) bicyclic γ-lactones containing a dimethylcyclohexane ring were subjected to biotransformation using the fungal strain Absidia cylindrospora. Six new compounds (6–11) and one known (12) [K.W. Rosenmund, H. Herzberg, H. Schutt, Chem. Ber. 87 (1954) 1258] [2] were isolated. All substrates were stereoselectively hydroxylated by the microorganism at either the C-4 (in the case of 4a and 5) or C-2 position (in case of 4a and 4b) giving the corresponding hydroxylactones with tertiary (6 and 9) or secondary (8 and 10) hydroxy groups, respectively.

The hydroxy group was also introduced into C-3 (in the case of 4a) and C-6 (in the case of 4b) positions. The structures of all obtained products were established on the basis of their spectral data. In the case of lactones 8–10 these structures were undoubtedly confirmed by their X-ray analysis.  相似文献   


2.
Whole cells of Rhodococcus erythropolis DSM 44534 grown on ethanol, (R)- and (S)-1,2-propanediol were used for biotransformation of racemic 1,4-alkanediols into γ-lactones. The cells oxidized 1,4-decanediol (1a) and 1,4-nonanediol (2a) into the corresponding γ-lactones 5-hexyl-dihydro-2(3H)-furanone (γ-decalactone, 1c) and 5-pentyl-dihydro-2(3H)-furanone (γ-nonalactone, 2c), respectively, with an EE(R) of 40–75%. The transient formation of the γ-lactols 5-hexyl-tetrahydro-2-furanol (γ-decalactol, 1b) and 5-pentyl-tetrahydro-2-furanol (γ-nonalactol, 2b) as intermediates was observed by GC–MS. 1,4-Pentanediol (3a) was transformed into 5-methyl-dihydro-2(3H)-furanone (γ-valerolactone, 3c) whereas (R)- and (S)-2-methyl-1,4-butanediol (4a) was converted to the methyl-substituted γ-butyrolactones 4-methyl-dihydro-2(3H)-furanone (4c1) and 3-methyl-dihydro-2(3H)-furanone (4c2) in a ratio of 80:20 with a yield of 55%. Also cis-2-buten-1,4-diol (5a) was transformed resulting in the formation of 2(5H)-furanone (γ-crotonolactone, 5c). At the higher pH values of 8.8 the yield of lactone formed was improved; however, the enatiomeric excesses were slightly higher at the lower pH of 5.2.  相似文献   

3.
The strain Absidia cylindrospora was chosen among eight fungal strains for the biotransformation of unsaturated lactones 1a–c. The processes were carried out by means of shaken cultures. The compounds 1a and 1b were efficiently converted into the corresponding trans-epoxylactones (2a and 2b), whereas the transformation of 1c gave the unsaturated hydroxylactone 3, with the tertiary hydroxy group introduced in the allylic position. The compound 2b was obtained with 100% ee. The structures of compounds 2a and 2b were fully confirmed by the X-ray analysis, which showed the half boat and half chair conformation of cyclohexane ring in these molecules, respectively. All the products were not reported previously in the literature.  相似文献   

4.
Reaction of RuCl(η5-C5H5(pTol-DAB) with AgOTf (OTf = CF3SO3) in CH2Cl2 or THF and subsequent addition of L′ (L′ = ethene (a), dimethyl fumarate (b), fumaronitrile (c) or CO (d) led to the ionic complexes [Ru(η5-C5H5)(pTol-DAB)(L′)][OTf] 2a, 2b and 2d and [Ru(η5-C5H5)(pTol-DAB)(fumarontrile-N)][OTf] 5c. With the use of resonance Raman spectroscopy, the intense absorption bands of the complexes have been assigned to MLCT transitions to the iPr-DAB ligand. The X-ray structure determination of [Ru(η5-C5H5)(pTol-DAB)(η2-ethene)][CF3SO3] (2a) has been carried out. Crystal data for 2a: monoclinic, space group P21/n with A = 10.840(1), b = 16.639(1), C = 14.463(2) Å, β = 109.6(1)°, V = 2465.6(5) Å3, Z = 4. Complex 2a has a piano stool structure, with the Cp ring η5-bonded, the pTol-DAB ligand σN, σN′ bonded (Ru-N distances 2.052(4) and 2.055(4) Å), and the ethene η2-bonded to the ruthenium center (Ru-C distances 2.217(9) and 2.206(8) Å). The C = C bond of the ethene is almost coplanar with the plane of the Cp ring, and the angle between the plane of the Cp ring and the double of the ethene is 1.8(0.2)°. The reaction of [RuCl(η5-C5H5)(PPh)3 with AgOTf and ligands L′ = a and d led to [Ru(η5-C5H5)(PPh3)2(L′)]OTf] (3a) and (3d), respectively. By variable temperature NMR spectroscopy the rottional barrier of ethene (a), dimethyl fumarate (b and fumaronitrile (c) in complexes [Ru(η5-C5H5)(L2)(η2-alkene][OTf] with L2 = iPr-DAB (a, 1b, 1c), pTol-DAB (2a, 2b) and L = PPh3 (3a) was determined. For 1a, 1b and 2b the barrier is 41.5±0.5, 62±1 and 59±1 kJ mol−1, respectively. The intermediate exchange could not be reached for 1c, and the ΔG# was estimated to be at least 61 kJ mol. For 2a and 3a the slow exchange could not be reached. The rotational barrier for 2a was estimated to be 40 kJ mol. The rotational barier for methyl propiolate (HC≡CC(O)OCH3) (k) in complex [Ru(η5-C5H5)(iPr-DAB) η2-HC≡CC(O)OCH3)][OTf] (1k) is 45.3±0.2 kJ mol−1. The collected data show that the barrier of rotational of the alkene in complexes 1a, 2a, 1b, 2b and 1c does not correlate with the strength of the metal-alkene interaction in the ground state.  相似文献   

5.
The interaction of 1,3,5-triamino-1,3,5-trideoxy-cis-inositol (taci) and its N-methylated derivative 1,3,5-trideoxy-1,3,5-tris(dimethylamino)-cis-inositol (tdci) with the incomplete [Mo3S4]4+ cube and the heterometallic [Mo3S4Cu]4+ cube have been investigated by X-ray analysis. The crystal structures of [Mo3S4(taci+ rmC3H6O-H2O)3-4H]·2OH2O (1a, rhombohedral, space group R32, A = 15.964(3), C = 40.59(1) Å, Z = 6), [Mo3S4(tdci)3]Br4·9.5EtOH·5H2O (2a, triclinic, space group and [CuBrMo3S4(tdci)3]Br3·11 H2O·EtOH (3a, monoclinic, space group P2,/n, A = 14.887(3), B = 22.570(4), C = 21.974(5) Å, β = 98.54(2)°, Z = 4) revealed andN-N-O and an N-O-O coordination mode for taci and tdci, respectively. In 1a, taci is coordinated as an anion with deprotonated oxygen and nitrogen donors. In addition, the non-coordinating amino group reacted with one equivalent; of acetone, forming a Schiff base condensation product. For 2a, short Mo---O bonds and high pKa values (compared to the aqua ion [Mo3S4(H2O)9]4+) indicate the formation of a zwitterionic form of the tdci ligand with coordinated alkoxo groups and peripheral dimethylammonium groups. No significant differences were found for the structural properties of the Mo-tdci fragment in 2a and 3a. The coordination modes of taci and tdci, as observed in the solid state, are in agreement with the previously reported solution structures, established by NMR spectroscopy. They are attributed to the specific steric requirements of the two ligands and to a pronounced preference of the [Mo3(μS)33S)]4+ core to coordinate a nitrogen donor trans to μ3S.  相似文献   

6.
Benzene solutions of Cp*2ZrCl2 (1) (Cp* = η5-C5Me5) react with the alkynes Me3SiC≡CPh, Me3SiC≡C(c-C5H9) and Me3SiC≡CCMe3 in the presence of Na/Hg amalgam to afford high yields of the respective alkyne complexes Cp*2Zr(Me3SiC≡CPh) (2), Cp*2Zr{Me3SiC≡C(c-C5H9)} (3) and Cp*2Zr(Me3SiC≡CCMe3) (4) as crystalline compounds. Complex 2 crystallizes in the triclinic space group with a = 9.791(6), b = 10.466(6), c = 15.756(12) Å, = 86.09 (5), β = 72.09(5), γ = 72.06(4)° and Z = 2. The least-squares refinement converged to R(F) = 0.0604 and R(wF) = 0.0628 for the 3655 unique data with Fo > 4σ (Fo). Salient metrical parameters of the bound alkyne include the following: C(30)-C(31) = 1.340(9) Å; Zr-C(30) = 2.178(6) Å; Zr-C(31) = 2.219(5) Å; C(30)-C(31)-Si = 141.0(5)°; C(31)-C(30)-C(26) = 135.5(5)°. Nitrous oxide reacts with 2 or 3 to afford ((5) R = Ph; (6) R = c-C5H9) and 1 equiv. of N2 via an intermediate, , which is unstable with respect to loss of dinitrogen to give the oxametallacyclobutene derivatives 5 and 6. The oxygen-atom insertion is regiospecific for the Zr-C bond that is attached to the carbyl (Ph or c-C5H9) substituent. Under similar conditions, complex 4, in which the alkyne is particularly labile, gives a myriad of products in its reaction with N2O.  相似文献   

7.
The reaction of the bis(triflates) 1,2-bis[2-(trifluoromethylsulfonyloxy)ethyl]benzene (1), 1,2-bis[3-(trifluoromethylsulfonyloxy)propyl]benzene (3) and 1,2-bis{2-[2-(trifluoromethylsulfonyloxy)ethyl]phenyl}ethane (6), respectively, with the carbonyl metalates [M(CO)4]2- (M=Os (a), Ru (b), Fe (c)) results in the formation of the osmaorthocyclophanes 2a, 4a, 7a and 8a, the ruthenacylophane 2b and the ferracyclophanes 2c and 7c, respectively. Carbon monoxide insertion into the Fe-Cσ bonds of the ferracycles 2c and 7c, respectively, affords the ketones 3-oxo[5]orthocyclophane (9) and 3-oxo[5.2]orthocyclophane (11). The structure of 2a was investigated by an X-ray structural analysis. 2a crystallizes in the monoclinic space group P21/n with Z=4.  相似文献   

8.
Studies on the application of commercially available enzymes to resolution of the racemic unsaturated γ-lactones: 5-(3-methylbutylidene)-4-methyl-tetrahydrofuran-2-one (1a) and 5-(3,3-dimethylbutylidene)-4-methyl-tetrahydrofuran-2-one (2a) are presented. Lipase PS, Rhizopus niveus lipase, Rhizopus arrhizus lipase, porcine pancreas lipase and hog liver esterase transformed substrates into their respective γ-keto acids with good efficiency (50-75%). Three of them hydrolysed the studied lactones with moderate enantioselectivity. Enantiomeric excesses determined by GC for the unreacted lactones were in the range of 20-60%. Lipase PS preferentially hydrolysed the (+) enantiomers of lactones 1a and 2a whereas R. niveus lipase hydrolysed the (-) enantiomers, respectively.  相似文献   

9.
Carbon isotope ratios (13C/12C) were measured for the leaves of the seagrass Thalassia testudinum Banks ex König and carbonates of shells collected at the seagrass beds from seven sites along the coast of southern Florida, U.S.A. The δ13C values of seagrass leaves ranged from −7.3 to −16.3‰ among different study sites, with a significantly lower mean value for seagrass leaves from those sites near mangrove forests (−12.8 ± 1.1‰) than those far from mangrove forests (−8.3 ± 0.9‰; P < 0.05). Furthermore, seagrass leaves from a shallow water area had significantly lower δ13C values than those found in a deep water area (P < 0.01). There was no significant variation in δ13C values between young and mature leaves (P = 0.59) or between the tip and base of a leaf blade (P = 0.46). Carbonates of shells also showed a significantly lower mean δ13C value in the mangrove areas (−2.3 ± 0.6‰) than in the non-mangrove areas (0.6 ± 0.3‰; P <0.025). In addition, the δ13C values of seagrass leaves were significantly correlated with those of shell carbonates (δ13C seagrass leaf = −9.1 + 1.3δ13C shell carbonate (R2 = 0.83, P < 0.01)). These results indicated that the input of carbon dioxide from the mineralization of mangrove detritus caused the variation in carbon isotope ratios of seagrass leaves among different sites in this study.  相似文献   

10.
An improved synthetic procedure for pentabenzylcyclopentadiene Bz5C5H was developed. Six new organomolybdenum and organotungsten halides η5-Bz5C5M(CO)3X(M = Mo, W; X = Cl, Br, I) were syntesized through the reaction of η5-Bz5C5M(CO)3Li (derived from Bz5C5H, n-BuLi and M(CO)6) with PCl3, PBr3 or I2 and characterized by elemental analysis, IR and 1H NMR spectroscopy. The structure of η5-Bz5C5Mo(CO)3I was determined by single-crystal X-ray diffraction techniques. It crystallized in the monoclinic space groupp P2/c with cell parameters a = 13.294(4), B = 15.147(4), C = 19.027(3) Å, β = 108.32(2)°, V = 3637(2) Å3, Z = 4 and Dx = 1.50 g cm−3. The final R value was 0.035 for 4564 observed reflections.  相似文献   

11.
A new method has been developed for the preparation of nitroaryl transition metal complexes using copper(II) nitrate in the presence of acetic anhydride (Menke conditions) to directly nitrate an aryl group which is already σ-bound to a transition metal centre. Under these conditions ruthenium(II) aryl complexes of the type: (where R1=R2=H; R1=H, R2=CH3; R1=CH3, R2=H) react to yield three distinct types of nitroaryl-containing products (I–III).

The preparation and characterisation of these compounds are described. X-ray crystallographic data for one example of each of the three types of compound, are also reported. The compounds that have been studied crystallographically are Ru(C6H4NO2-4)(η2-O2CCH3)(CO)(PPh3)2 (1a), C45H37NO5P2Ru·(CH2Cl2)0.5, a = 20.254(5), b=19.437(8), c=22.629(3) Å, β=115.390(10)°, monoclinic, space group C2/c, Z=8; Ru(C6H4N[O]O-2)- Cl(CO)(PPh3)2 (4a), C43H34ClNO3P2Ru, a=9.331(3), b=12.443(2), c=16.346(3) Å, =82.81(2), β=85.03(2), γ=74.76(2)°, triclinic, space group P , Z=2; Ru(C6H2CH3-2,NO2-4,N[O]O-6)Cl(CO)(PPh3)2 (5b), C44H35Cl- N2O5P2Ru·(CH2Cl2)2, a=19.497(3), b=14.502(3), c=19.340(5) Å, β=122.79(1)°, monoclinic, space group Cc, Z=4.  相似文献   


12.
Unsymmetrical di(phosphine) ligands (dpp)2Rop (1a, b = bis(diphenylphosphino)-2-alkyl-3-oxapropane (alkyl = methyl and ethyl)) and (dpp)2oCy (1c = trans-2-diphenylphosphinocyclohexyl diphenylphosphinite) and their Pt(II) dichloride complexes, PtCl2((dpp)2mop) (2a), PtCl2((dpp)2eop) (2b) and PtCl2((dpp)2oCy) (2c), have been synthesized and characterized by NMR spectroscopy. The crystal structures of 2b and 2c show that the geometry about the platinum centers is square planar. In 2b, the metal and di(phosphine) ligand chelate ring are in a chair conformation, whereas in 2c, the chelate ring conformation is a skewed boat. Initial reaction of sodium borohydride with 2a, b, c yields the monohydride monochloride complexes PtHCl((dpp)2mop) (5a), PtHCl((dpp)2eop) (5b) and PtHCl((dpp)2oCy) (5c). At longer reaction times, fluxional dimeric species are obtained, [PtH((dpp)2mop)]2 (4a), [PtH((dpp)2eop)]2 (4b) and [PtH((dpp)2oCy)]2 (4c),and in the case of 4c two different isomers exist. The dihydride complexes PtH2((dpp)2mop) (3a), PtH2((dpp)2eop) (3b) and PtH2((dpp)2oCy) (3c), are prepared by further reaction of NaBH4 and 2. Hydrogen cycling is facile in the dihydride complexes 3a, b, c, and oxidative addition of H2 proceeds in a pairwise manner as determined by the observation of parahydrogen induced polarization (PHIP) in the 1H NMR spectra. The reductive elimination of H2 is also shown to be concerted by reaction of dihydride complexes with D2. Crystal data: 2b (C30H32Cl6OP2Pt), monoclinic, space group P21/c (No. 14), a = 13.7040(1), b = 11.3430(7), c = 21.3880(9) Å, β = 97.923(9)°, V = 3292.9(2) Å3 and Z = 4; 2c (C30H30Cl2OP2Pt), monoclinic, space group P21 (No. 4), a = 11.7360(2), b = 8.4311(2), c = 14.2789(2) Å, β = 101.290(1)°, V = 1385.52(4) Å3 and Z = 2.  相似文献   

13.
Reaction of (NEt4)2MS4 (M = Mo, W) with CuCl and KSCN (or NH4SCN) in acetone or acetonitrile affords a new set of mixed metal–sulfur compounds: infinite anionic chains Cu4(NCS)5MS43− (1,2), (CuNCS)3WS42− (3) and two dimensional polymeric dianions (CuNCS)4MS42− (4,5). Crystal of 1 (M = W) and 3 are triclinic, space group P1(1:a = 10.356(2),b = 15.039(1),c = 17.356(2)Å, = 78.27(1)°, β = 88.89(2)° and γ = 88.60(1)°,Z = 2,R = 0.04 for 3915 independent data;3:a = 8.449(2),b = 14.622(4),c = 15.809(8)Å, = 61.84(3)°, β = 73.67(3)° and γ = 78.23(2)°,Z = 2,R = 0.029 for 6585 independent data). Crystals of 4 (M = W) and 5 (M = Mo) are monoclinic, space group P21/m,Z = 2 (4:a = 12.296(4),b = 14.794(4),c = 10.260(3)Åand β = 101.88(3)°,R = 0.034 for 4450 independent data;5:a = 12.306(2),b = 14.809(3),c = 10.257(2)Åand β = 101.99(3)°,R = 0.043 for 3078 independent data). The crystal structure determinations of 4 and 5 show that four edges of the tetrahedral MS42− core are coordinated by copper atoms forming WS4Cu4 aggregates linked by eight-membered Cu(NCS)2Cu rings. A two-dimensional network is thus formed in the diagonal (101) plane. The space between the anionic two-dimensional networks is filled with the NEt4+ cations. Additional NCS groups lead to the [Cu4(NCS)5WS4]3− (1) trianion connected by NCS bridges forming pseudo-dimers. These latter are held together by weak CuS(NCS) interactions giving rise to infinite chains along a direction parallel to [100]. In contrast complex3 develops infinite chains from WS4Cu3 aggregates with the same Cu(NCS)2Cu bridges as in 4 and 5. These chains are running along a direction parallel to [010]. The structural data of the different types of polymeric compounds containing MS42− and CuNCS have been used to interpret vibrational spectroscopic data of the thiocyanate groups.  相似文献   

14.
Stearidonic acid (18:4ω3), which is reported to be of rare occurrence in the plant kingdom and which is of considerable dietary and pharmaceutical interest has been found in three closely related Primula species. It occurs, together with γ-linolenic acid (3–4% of the seed oil total fatty acids), in significant percentages in Primula florindae (11%), P. sikkimensis (14%) and P. alpicola (14%). 18:4(ω3 may also be of chemotaxonomic interest in the genus Primula, as high levels may be typical for section Sikkimensis. The only commercial plant source of stearidonic acid known so far is the seed oil of Ribes nigrum.  相似文献   

15.
[Pt(COD)Cl2] (1) reacts with PPh2(C6H4COOH) (2a,b,c), PPh2(C6H4COONa) (2d), PPh(C6H4COOH)2 (4b,c) and P(C6H4COOH)3 (6b,c) with formation of the corresponding complexes [Pt(L)2Cl2] (3a,b,c,d, 5b,c, 7b,c). Halide abstraction from 3a by Ag+ promotes coordination of the ortho-carboxylate function to platinum, yielding [ -2)}{PPh2(C6H4COOH-2)}Cl] (bd8) and [ovbar|{PPh2(C6H4COO-2)}2] (bd9). Reaction of 1 with CO and 2a or 2b gives [Pt(CO)(L)Cl2] (10a,b), wherea 1 and 2,3-bis(diphenylphosphino) maleic anhydride yields (bd12) and [Pt{Ph2PC(COOH)=C(COOMe)-PPh2}Cl2] (13). The 1H, 13C and 31P NMR spectra are reported and discussed. The X-ray structural analysis of 3b showed the compound to be monoclinic, space group P21/n, Z=4, with a=1038.5(3), B=1792.6(4), C=2311.5(4) pm, β=91.6(2)° and Dcalc=1.353 g cm−3. The structure was solved from 4832 observed reflections with F0 > 4 σ(F0) and refined to a final R value of 0.0743. The Pt atom is surrounded by two Cl and two P atoms in a square planar arrangement.  相似文献   

16.
Ganglioside GM3 analogs containing 4-, 7-, 8-, and 9-deoxy-N-acetylneuraminic acids in the place of N-acetylneuraminic acid (Neu5Ac) have been synthesized. Glycosylation of 2-(trimethylsilyl)ethyl O-(6-O-benzoyl-β- - galactopyranosyl)-(1 → 4)-2,6-di-O-benzoyl-β- -glucopyranoside with the methyl 2-thioglycoside derivatives of the respective deoxy-N-acetylneuraminic acids, using dimethyl(methylthio)sulfonium triflate as a promoter, gave the four required 2-(trimethylsilyl)ethyl -sialosyl-(2 → 3b)-β-lactosides. These were converted via O-acetylation, selective removal of the 2-(trimethylsilyl)ethyl group, and subsequent imidate formation, into the corresponding -sialosyl-(2 → 3b)--lactose trichloroacetimidates 15, 17, 19, and 21. Glycosylation of (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol with 15, 17, 19, and 21 in the presence of boron trifluoride etherate afforded the expected β glycosides, which were transformed in good yields, via selective reduction of the azido group, coupling with octadecanoic acid, O-deacylation, and de-esterification, into the target compounds.  相似文献   

17.
A microbial process for the production of optically-active γ-decalactone from the ricinoleic acid present as triglycerides in castor oil has been developed, γ-decalactone (γDL) is a component of some fruit flavours, being an important organoleptic component of peach flavours. Screening showed two red yeast microorganisms, Rhodotorula glutinis and Sporobolomyces odortts to be especially suitable for this biotransformation. The process involves lipase-mediated hydrolysis of the castor oil to give free ricinoleic acid, uptake of the acid by the cells and aerobic fermentation to achieve abbreviated β-oxidation of the ricinoleic acid (12-hydroxyoleic acid) into 4-hydroxydecanoic acid (4HDA), lactonisation of the acid into γ-DL, followed by solvent extraction and distillation. γ-DL broth concentrations of 0.5-1.2g · 1-t were obtained after 3-5 days from fermentation media containing 10 g · 1-1 castor oil, representing an 8.3-20.0% theoretical yield. Intermediates detected were consistent with the operation of the β-oxidation pathway. Appreciable amounts of novel metabolites identified as cis and trans isomers of a tetrahydrofuran (C10) were also produced. Their formation from 4HDA appeared to be non-enzymic and was favoured by anaerobic conditions. Yields of γ-DL were inversely proportional to the concentration of castor oil present in the medium, indicating that substrate inhibition takes place. The highest yields of γ-DL were obtained when castor oil was present from the beginning of the fermentation, rather than when added once the fermentation had become established, demonstrating that the β-oxidation pathway and/or transport system require continual induction. Significant amounts of γ-DL were not produced from other fatty acids, including ricinelaidic acid, the trans isomer of ricinoleic acid. γ-DL formation was dramatically inhibited by antibiotic inhibitors of oxidative phosphorylation, indicating the importance of intact β-oxidation pathways, whereas inhibitors of protein synthesis and cell-wall synthesis had much less marked effects. Selective extraction of 4HDA from the fermentation broths, and of γDL from broth lactonised by heating at low pH, could be achieved by adsorption to Amberlite XAD-1 and XAD-7 resins respectively. Some product could be recovered from the exit gases of the fermenter by passing through propylene glycol traps. This pathway is unusual in that it is a rare example of the truncated β-oxidation of a fatty acid by microorganisms. This effect probably occurs because of partial inhibition of one or more enzymes of the β-oxidation pathway by the C10 hydroxylated fatty acid intermediate(s) allowing intracellular accumulation of the 4HDA, followed by leakage out of the cell; although further metabolism of this C10 intermediate does take place slowly.  相似文献   

18.
The β-galactosidase from Aspergillus oryzae has been shown to catalyze the synthesis of β-galactosides of antibiotics such as chlorphenisin and chloramphenicol using β-lactose as the galactosyl donor. Among the water-miscible organic solvents tested, 20% (v/v) acetonitrile in the reaction mixture gave the highest yield in galactoside synthesis. The products obtained were purified by preparative TLC and liquid chromatography and analyzed by 1H-and 13C-NMR, and MS (FAB). Chlorphenisin and chloramphenicol were galactosylated exclusively at their primary hydroxy groups. The pH optimum for the transgalactosylation reaction was between pH 4–5. Increasing concentrations of galactosyl donor and aglycon caused increasing yields of galactosides. When the resulting galactosylated antibiotic was withdrawn from the sample, further synthesis was observed. This could be accelerated either by withdrawing the resulting monosaccharides (glucose and galactose) or exchanging them for mannose.  相似文献   

19.
The thermal and photochemical reactions of CpRe(PPh3)2H4 and CpRe(PPh3)H4 (Cp = η5-C5H5) with PMe3, P(p-tolyl)3, PMe2Ph, DMPE, DPPE, DPPM, CO, 2,6-xylylisocyanide and ethylene have been examined. While CpRe(PPh3)2H2 is thermally inert, it will undergo photochemical substitution of one or two PPh3 ligands. With ethylene, substitution is followed by insertion of the olefin into the C-H bond of benzene, giving ethylbenzene. CpRe(PPh3)H4 undergoes thermal loss of PPh3, which leads to substituted products of the type CpRe(L) H4. Photochemically, reductive elimination of dihydrogen occurs preferentially. The complex trans-CpRe(DMPE)H2 was structurally characterized, crystallizing in the monoclinic space group P21/n (No. 14) with a = 6.249(6), b = 16.671(8), c = 13.867(7) Å, β = 92.11(6)°, V = 1443.7(2.9) Å and Z = 4. The complex trans-CpRe(PMe2Ph)2H2 was structurally characterized, crystallizing in the monoclinic space group P21/n (No. 14) with a = 7.467(3), b = 23.874(14), c = 11.798(6) Å, β = 100.16(4)°, V = 2070.2(3.4) Å3 and Z = 4.  相似文献   

20.
A series of pyrimidine were synthesized, characterized and evaluated for their antioxidant properties using the human cyclin-dependent kinase-2 protein model. Data shows that the pyrimidine derivatives (compound ID 4G) with para fluoro groups substitution at phenyl ring attached to the 4th position (IC50: 98.5µg/ml), compound 4B bearing hydroxy group at para position of phenyl ring (IC50: 117.8 µg/ml) have significant antioxidant activity. Docking data infer that compounds 4c, 4a, 4h and 4b possess binding energy (-7.9, -7.7, -7.5 and -7.4 kcal.mol-1) with 1HCK (PDB ID) receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号