首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Superhydrophobic materials, with surfaces possessing permanent or metastable non-wetted states, are of interest for a number of biomedical and industrial applications. Here we describe how electrospinning or electrospraying a polymer mixture containing a biodegradable, biocompatible aliphatic polyester (e.g., polycaprolactone and poly(lactide-co-glycolide)), as the major component, doped with a hydrophobic copolymer composed of the polyester and a stearate-modified poly(glycerol carbonate) affords a superhydrophobic biomaterial. The fabrication techniques of electrospinning or electrospraying provide the enhanced surface roughness and porosity on and within the fibers or the particles, respectively. The use of a low surface energy copolymer dopant that blends with the polyester and can be stably electrospun or electrosprayed affords these superhydrophobic materials. Important parameters such as fiber size, copolymer dopant composition and/or concentration, and their effects on wettability are discussed. This combination of polymer chemistry and process engineering affords a versatile approach to develop application-specific materials using scalable techniques, which are likely generalizable to a wider class of polymers for a variety of applications.  相似文献   

3.
Polymeric micelles represent an effective delivery system for poorly water-soluble anticancer drugs. With small size (10–100 nm) and hydrophilic shell of PEG, polymeric micelles exhibit prolonged circulation time in the blood and enhanced tumor accumulation. In this review, the importance of rational design was highlighted by summarizing the recent progress on the development of micellar formulations. Emphasis is placed on the new strategies to enhance the drug/carrier interaction for improved drug-loading capacity. In addition, the micelle-forming drug-polymer conjugates are also discussed which have both drug-loading function and antitumor activity.  相似文献   

4.
Microfabrication of dissolvable, swellable, and biodegradable polymeric microneedle arrays (MNs) were extensively investigated based in a nano sensitive fabrication style known as micromilling that is then combined with conventional micromolding technique. The aim of this study was to describe the polymer selection, and optimize formulation compounding parameters for various polymeric MNs. Inverse replication of micromilled master MNs reproduced with polydimethylsiloxane (PDMS), where solid out of plane polymeric MNs were subsequently assembled, and physicochemically characterized. Dissolvable, swellable, and biodegradable MNs were constructed to depth of less than 1 mm with an aspect ratio of 3.6, and 1/2 mm of both inter needle tip and base spacing. Micromolding step also enabled to replicate the MNs very precisely and accurate. Polymeric microneedles (MN) precision was ranging from ±0.18 to ±1.82% for microneedle height, ±0.45 to ±1.42% for base diameter, and ±0.22 to ±0.95% for interbase spacing. Although dissolvable sodium alginate MN showed less physical robustness than biodegradable polylactic-co-glycolic acid MN, their thermogravimetric analysis is of promise for constructing these polymeric types of matrix devices.  相似文献   

5.
Abstract

A suitably derivatized MercKogelR 1 as an efficient solid support for the large-scale synthesis of DNA for biomedical applications, is described. Partial hydrolysis of these polyvinylacetate resins with 0.5 M NaOH solution1 at room temperature for 30–80 min. yielded carriers 1 that could be loaded with 120, 150, 258, and 368 μmoles of nucleosides g?1.

  相似文献   

6.
Gold nanoshells (AuNSs) are currently being investigated as nanocarriers for drug delivery systems and have both diagnostic and therapeutic applications, including photothermal ablation, hyperthermia, drug delivery, and diagnostic imaging, particularly in oncology. AuNSs are valuable for their localized surface plasmon resonance, biocompatibility, low immunogenicity, and facile functionalization. AuNSs used for drug delivery can be spatially and temporally triggered to release controlled quantities of drugs inside the target cells when illuminated with a near-infrared (NIR) laser. Recently, many research groups have demonstrated that these AuNS complexes are able to deliver antitumor drugs (e.g., doxorubicin, paclitaxel, small interfering RNA, and single-stranded DNA) into cancer cells, which enhances the efficacy of treatment. AuNSs can also be functionalized with active targeting ligands such as antibodies, aptamers, and peptides to increase the particles’ specific binding to the desired targets. This article reviews the current research on NIR light-activatable AuNSs used as nanocarriers for drug delivery systems and cancer theranostics.  相似文献   

7.
Membrane technology is broadly applied in the medical field. The ability of membranous systems to effectively control the movement of chemical entities is pivotal to their significant potential for use in both drug delivery and surgical/medical applications. An alteration in the physical properties of a polymer in response to a change in environmental conditions is a behavior that can be utilized to prepare ‘smart’ drug delivery systems. Stimuli-responsive or ‘smart’ polymers are polymers that upon exposure to small changes in the environment undergo rapid changes in their microstructure. A stimulus, such as a change in pH or temperature, thus serves as a trigger for the release of drug from membranous drug delivery systems that are formulated from stimuli-responsive polymers. This article has sought to review the use of stimuli-responsive polymers that have found application in membranous drug delivery systems. Polymers responsive to pH and temperature have been extensively addressed in this review since they are considered the most important stimuli that may be exploited for use in drug delivery, and biomedical applications such as in tissue engineering. In addition, dual-responsive and glucose-responsive membranes have been also addressed as membranes responsive to diverse stimuli.  相似文献   

8.
Electrical impedance of a medium helps to predict the behavior of electrical currents in a medium. Electrical impedance refers indeed to the “difficulty”, for an electrical current, to spread through the medium. While the first impedance measurements were focused on cardiovascular parameters, techniques are now being applied to the whole body, as electrical impedance present important variations through the human body and could then offer a new source of contrast.Combining electrical current, magnetic fields, and acoustics in various ways have led to interesting techniques to image this parameter: Electrical Impedance Tomography, Magnetic Resonance Electrical Impedance Tomography, Acousto-Electric Imaging, Lorentz Force Electrical Impedance Tomography and Magneto-Acoustic Tomography. These techniques are detailed in this review.  相似文献   

9.
Microparticulate drug delivery systems have shown a great interest in the pharmaceutical area. They allow the increase of drug therapeutic efficacy and the reduction of side effects. In this context, microsponges represent a new model of porous polymer microspheres, which allow the entrapment of a wide range of active agents. During the development, it is necessary the characterization of the system and among of the most important tests are the release and permeation profile analysis. They can demonstrate the behavior of drug in a specific site with a particular application condition and are related to therapeutic efficacy. Therefore, this review provides an overview of drug delivery profile from microsponges. Methods for determination of in vitro release and ex vivo permeation studies are detailed. Examples of drug delivery from microsponges administered in different sites are also discussed with aim to provide an understanding of the use of this strategy to modify the drug delivery.  相似文献   

10.
pH-sensitive N-naphthyl-N,O-succinyl chitosan (NSCS) and N-octyl-N,O-succinyl chitosan (OSCS) polymeric micelles carriers have been developed to incorporate curcumin (CUR) for colon-targeted drug delivery. The physical entrapment methods (dialysis, co­solvent evaporation, dropping, and O/W emulsion) were applied. The CUR-loaded micelles prepared by the dialysis method presented the highest loading capacity. Increasing initial amount of CUR from 5 to 40 wt% to polymer resulted in the increase in loading capacity of the polymeric micelles. Among the hydrophobic cores, there were no significant differences in the loading capacity of CUR-loaded micelles. The particle sizes of all CUR-loaded micelles were in the range of 120–338 nm. The morphology of the micelles changed after being contacted with medium with different pH values, confirming the pH-responsive properties of the micelles. The release characteristics of curcumin from all CUR-loaded micelles were pH-dependent. The percent cumulative release of curcumin from all CUR-loaded micelles in simulated gastric fluid (SGF) was limited to about 20%. However, the release amount was significantly increased after contacted with simulated intestinal fluid (SIF) (50–55%) and simulated colonic fluid (SCF) (60–70%). The released amount in SIF and SCF was significantly greater than the release of CUR from CUR powder. CUR-loaded NSCS exhibited the highest anti-cancer activity against HT-29 colorectal cancer cells. The stability studies indicated that all CUR-loaded micelles were stable for at least 90 days. Therefore, the colon targeted, pH-sensitive NSCS micelles may have potential to be a prospective candidate for curcumin delivery to the colon.  相似文献   

11.
《IRBM》2022,43(3):229-249
Biodegradable materials offer many advantages over the conventionally used non-biodegradable biomaterials. A number of biodegradable material-based (BMB) alloys have been developed for biomedical applications. Such alloys are increasingly used for manufacturing orthopaedic implants. The elimination of secondary surgery depends on the efficacy of the BMB implant which needs to fulfill two essential requirements. While such an implant has to be strong enough to provide adequate support to the damaged structure in skeleton, it should also be capable of maintaining just the right balance between rate of healing of the damaged structure and rate of degradation of the implant. The complexities involved in striking a balance between these two apparently conflicting requirements makes it imperative to optimize the design and preparation strategy of the BMB alloy. Many biodegradable metals, ceramics and polymers have been investigated for this application and the Magnesium (Mg)-based alloys have been found to be amongst the most suited ones. This review focuses on preparation techniques employed in development of Mg – alloys for biodegradable orthopaedic implants (fracture fixation implants). The process can essentially be split into: material optimization, processing techniques, and surface modifications.  相似文献   

12.
Among a plethora of nano-sized therapeutics, metal-organic frameworks (MOFs) have been some of the most investigated novel materials for, predominantly, cancer drug delivery applications. Due to their large drug uptake capacities and slow-release mechanisms, MOFs are desirable drug delivery vehicles that protect and transport sensitive drug molecules to target sites. The inclusion of other guest materials into MOFs to make MOF-composite materials has added further functionality, from externally triggered drug release to improved pharmacokinetics and diagnostic aids. MOF-composites are synthetically versatile and can include examples such as magnetic nanoparticles in MOFs for MRI image contrast and polymer coatings that improve the blood-circulation time. From synthesis to applications, this review will consider the main developments in MOF-composite chemistry for biomedical applications and demonstrate the potential of these novel agents in nanomedicine. It is concluded that, although vast synthetic progress has been made in the field, it requires now to develop more biomedical expertise with a focus on rational model selection, a major comparative toxicity study, and advanced targeting techniques.  相似文献   

13.
壳聚糖是一种天然多糖,具有无毒、可生物降解、生物相容性等诸多优点,但水溶性差的自身特点限制了其在药剂学中的应用,而其经合理的结构设计、修饰和优化,可获得性能良好的两亲性壳聚糖衍生物,这些衍生物在水溶液中能自组装成具有良好药物传输性能(如载药量、稳定性、刺激敏感性、靶向性等)的胶束,并被广泛应用于构建药物传递系统,以改善药物的溶解性、靶向性、生物利用度及耐药性,降低药物的毒副作用。综述壳聚糖衍生物结构对其胶束药物传输性能的影响以及壳聚糖衍生物及其胶束的功能化修饰和在药物传递系统中的应用。  相似文献   

14.
Macromolecular drugs hold great promise as novel therapeutics of several major disorders, such as cancer and cardiovascular disease. However, their use is limited by lack of efficient, safe, and specific delivery strategies. Successful development of such strategies requires interdisciplinary collaborations involving researchers with expertise on e.g., polymer chemistry, cell biology, nano technology, systems biology, advanced imaging methods, and clinical medicine. This poses obvious challenges to the scientific community, but also provides opportunities for the unexpected at the interface between different disciplines. This review summarizes recent studies of macromolecular delivery that should be of interest to researchers involved in macromolecular drug synthesis as well as in vitro and in vivo drug delivery studies.  相似文献   

15.
16.
环境敏感型聚合物纳米抗肿瘤药物传递系统能够响应外界环境的微小刺激,引起自身结构的变化,释放出药物,在肿瘤治疗方面具长效低毒、可控及高载药量等优势,已被广泛应用于生物医学领域.本文介绍了聚合物环境响应型纳米药物传输系统的发展近况,并从pH 值敏感型、温度敏感型、氧化还原敏感型、酶敏感型以及其他敏感型给药系统角度,阐述了环境敏感型药物传输系统在抗肿瘤领域的研究现状及未来展望.  相似文献   

17.
金纳米粒是一种新型纳米载体,具有独特的理化、光学和生物学性质,且具有低毒性、低免疫原性、生物相容性好、体表面积大、易制备、粒径和形态可控、表面易修饰等优点,在生物医学领域和药物传递系统中具有广阔的应用前景。综述金纳米粒在小分子药物和基因药物传递系统中的应用研究新进展。  相似文献   

18.
Urease is a highly efficient catalyst for the hydrolysis of urea with a rate approximately 10 14 times the rate of the noncatalyzed reaction. It has a long and distinguished history in the development of enzymology. In this work the properties of urease and its applications in biotechnology are reviewed, including urea content analysis in blood, urine, alcoholic beverages, natural water and environmental wastewaters; analysis of heavy metal content in natural waters, wastewaters and soil; determination of creatinine, arginine and IgG; urea removal from artificial kidney dialyzates, alcohol beverages and fertilizer wastewaters; wastewater reclamation for life support systems in space; pH control or shift for multi-enzyme reaction system; and urea hydrolysis as sources of ammonia or carbon dioxide in special cases. Future research trends are also outlined.  相似文献   

19.
Urease is a highly efficient catalyst for the hydrolysis of urea with a rate approximately 10 14 times the rate of the noncatalyzed reaction. It has a long and distinguished history in the development of enzymology. In this work the properties of urease and its applications in biotechnology are reviewed, including urea content analysis in blood, urine, alcoholic beverages, natural water and environmental wastewaters; analysis of heavy metal content in natural waters, wastewaters and soil; determination of creatinine, arginine and IgG; urea removal from artificial kidney dialyzates, alcohol beverages and fertilizer wastewaters; wastewater reclamation for life support systems in space; pH control or shift for multi-enzyme reaction system; and urea hydrolysis as sources of ammonia or carbon dioxide in special cases. Future research trends are also outlined.  相似文献   

20.
孢粉素是类聚乙烯醇链通过酯键和缩醛高度交联的天然生物高分子,构成花粉和孢子的外壁,能够抵抗物理、化学、生物腐蚀,堪称自然界最坚固的有机物,被誉为植物界的金刚石。孢粉素微囊(SEC)自然界来源丰富、生物相容性好、无免疫原性,表面含有丰富的羧基、羟基和酚基,能够功能化或者与其他纳米材料构建复合材料;其表面丰富的纳米孔道增加了材料的比表面积,有利于捕获癌细胞或目标生物分子。SEC独特的性质使其在药物载体、口服疫苗载体、影像诊断、生物传感、细胞生长支架、微反应器、微型机器人等方面得到广泛的应用。阐述了孢粉素的结构、物理化学性质、制备方法和功能化方面的研究进展, 探讨了孢粉素的应用前景、存在的问题以及未来的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号