首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lipid lamellae in the stratum corneum (SC) play a key role in the barrier function of the skin. The major lipids are ceramides (CER), cholesterol (CHOL) and free fatty acids (FFA). In pig SC at least six subclasses of ceramides (referred to as CER 1, 2-6) are present. Recently it was shown that in mixtures of isolated pig SC ceramides (referred to as CER(1-6)) and CHOL two lamellar phases are formed, which mimic SC lipid organisation very closely [J.A. Bouwstra et al., 1996, J. Lipid Res. 37, 999-1011] [1]. Since the CER composition in SC originating from different sources/donors often varies, information on the effect of variations in CER composition on the SC lipid organisation is important. The results of the present study with mixtures of CHOL including two different CER mixtures that lack CER 6 (CER(1-5) mixtures) revealed that at an equimolar molar ratio their lipid organisation was similar to that of the equimolar CHOL:CER(1-6) and CHOL:CER(1,2) mixtures, described previously. These observations suggest that at an equimolar CHOL:CER ratio the lipid organisation is remarkably insensitive toward a change in the CER composition. Similar observations have been made with equimolar CHOL:CER:FFA mixtures. The situation is different when the CHOL:CER molar ratio varies. While in the CHOL:CER(1-6) mixture the lamellar organisation hardly changed with varying molar ratio from 0.4 to 2, the lamellar organisation in the CHOL:CER(1-5) mixtures appeared to be more sensitive to a change in the relative CHOL content, especially concerning the changes in the periodicities of the lamellar phases. In summary, these findings clearly indicate that at an equimolar CHOL:CER molar ratio the lamellar organisation is least sensitive to a variation in CER composition, while at a reduced CHOL:CER molar ratio the CER composition plays a more prominent role in the lamellar phases. This observation may have an implication for the in vivo situation when both the CER composition and the CHOL:CER molar ratio change simultaneously.  相似文献   

2.
The conformational disordering and lateral packing of lipids in porcine and human isolated stratum corneum (SC) was compared using Fourier transform infrared spectroscopy (FTIR). It was shown that SC of both species differ markedly, porcine SC lipids being arranged predominantly in a hexagonal lattice while lipids in human SC are predominantly packed in the denser orthorhombic lattice. However, the lipid organization of equimolar ceramide:cholesterol:free fatty acid (CER:CHOL:FFA) mixtures prepared with isolated porcine CER or human CER is very similar, only the transition temperatures differed being slightly lower in mixtures with porcine CER. Therefore, the difference in lateral packing between human and porcine stratum corneum is not due to the difference in CER composition. Furthermore, it is possible to use more readily available porcine CER in model lipid mixtures to mimic lipid organization in human SC. As the equimolar porcine CER:CHOL:FFA mixtures closely mimic the lipid organization in human SC, both human SC and this mixture were selected to examine the effect of glycerol on the lipid phase behaviour. It was found that high concentrations of glycerol change the lamellar organization slightly, while domains with an orthorhombic lateral packing are still observed.  相似文献   

3.
The conformational disordering and lateral packing of lipids in porcine and human isolated stratum corneum (SC) was compared using Fourier transform infrared spectroscopy (FTIR). It was shown that SC of both species differ markedly, porcine SC lipids being arranged predominantly in a hexagonal lattice while lipids in human SC are predominantly packed in the denser orthorhombic lattice. However, the lipid organization of equimolar ceramide:cholesterol:free fatty acid (CER:CHOL:FFA) mixtures prepared with isolated porcine CER or human CER is very similar, only the transition temperatures differed being slightly lower in mixtures with porcine CER. Therefore, the difference in lateral packing between human and porcine stratum corneum is not due to the difference in CER composition. Furthermore, it is possible to use more readily available porcine CER in model lipid mixtures to mimic lipid organization in human SC. As the equimolar porcine CER:CHOL:FFA mixtures closely mimic the lipid organization in human SC, both human SC and this mixture were selected to examine the effect of glycerol on the lipid phase behaviour. It was found that high concentrations of glycerol change the lamellar organization slightly, while domains with an orthorhombic lateral packing are still observed.  相似文献   

4.
The lipid lamellae present in the outermost layer of the skin, the stratum corneum (SC), form the main barrier for diffusion of molecules across the skin. The main lipid classes in SC are cholesterol (CHOL), free fatty acids (FFA) and at least nine classes of ceramides (CER), referred to as CER1 to CER9. In the present study the phase behaviour of four synthetic CER, either single or mixed with CHOL or CHOL and FFA, has been studied using small and wide angle X-ray diffraction. The lipid mixtures showed complex phase behaviour with coexistence of several phases. The results further revealed that the presence of synthetic CER1 as well as a proper composition of the other CER in the mixture were crucial for the formation of a phase with a long periodicity, characteristic for SC lipid phase behaviour. Only a mixture containing synthetic CER1 and CER3, CHOL and FFA showed similar phase behaviour to that of SC.  相似文献   

5.
The barrier function of the skin is provided by the stratum corneum (SC), the outermost layer of the skin. Ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs) are present in SC and form highly ordered crystalline lipid lamellae. These lamellae are crucial for a proper skin barrier function. In the present study, Fourier transform infrared spectroscopy was used to examine the lipid organization of mixtures prepared from synthetic CERs with CHOL and FFAs. The conformational ordering and lateral packing of these mixtures showed great similarities to the lipid organization in SC and lipid mixtures prepared with native CERs. Therefore, mixtures with synthetic CERs serve as an excellent tool for studying the effect of molecular architecture of CER subclasses on the lipid phase behavior. In SC the number of OH-groups in the head groups of CER subclasses varies. Furthermore, acylCERs with a linoleic acid chemically bound to a long acyl chain are also identified. The present study revealed that CER head group architecture affects the lateral packing and conformational ordering of the CER:CHOL:FFA mixtures. Furthermore, while the majority of the lipids form a crystalline packing, the linoleate moiety of the acylCERs participates in a “pseudo fluid” phase.  相似文献   

6.
Cholesterol (CHOL), free fatty acids (FFA) and nine classes of ceramides (CER1-CER9) form the main constituents of the intercellular lipid lamellae in stratum corneum (SC), which regulate the skin barrier function. Both the presence of a unique 13-nm lamellar phase, of which the formation depends on the presence of CER1, and its dense lateral packing are characteristic for the SC lipid organisation. The present study focuses on the lipid organisation in mixtures prepared with CHOL, FFA and a limited number of synthetic CER, namely CER1, CER3 and bovine brain CER type IV (SigmaCERIV). The main objective is to determine the optimal molar ratio of CER3 to SigmaCERIV for the formation of the 13-nm lamellar phase. CER3 contains a uniform acyl chain length, whereas SigmaCERIV contains fatty acids with varying chain lengths. Using small angle X-ray diffraction (SAXD), it is demonstrated that the CER3 to SigmaCERIV ratio affects the formation of the 13-nm lamellar phase and that the optimal ratio depends on the presence of FFA. Furthermore, the formation of the 13-nm lamellar phase is not very sensitive to variations in the total CER level, which is similar to the in vivo situation.  相似文献   

7.
Cholesterol (CHOL), free fatty acids (FFA) and nine classes of ceramides (CER1-CER9) form the main constituents of the intercellular lipid lamellae in stratum corneum (SC), which regulate the skin barrier function. Both the presence of a unique 13-nm lamellar phase, of which the formation depends on the presence of CER1, and its dense lateral packing are characteristic for the SC lipid organisation. The present study focuses on the lipid organisation in mixtures prepared with CHOL, FFA and a limited number of synthetic CER, namely CER1, CER3 and bovine brain CER type IV (∑CERIV). The main objective is to determine the optimal molar ratio of CER3 to ∑CERIV for the formation of the 13-nm lamellar phase. CER3 contains a uniform acyl chain length, whereas ∑CERIV contains fatty acids with varying chain lengths. Using small angle X-ray diffraction (SAXD), it is demonstrated that the CER3 to ∑CERIV ratio affects the formation of the 13-nm lamellar phase and that the optimal ratio depends on the presence of FFA. Furthermore, the formation of the 13-nm lamellar phase is not very sensitive to variations in the total CER level, which is similar to the in vivo situation.  相似文献   

8.
Lipophilic moisturizers are widely used to treat dry skin. However, their interaction with the lipids in the upper layer of the skin, the stratum corneum (SC), is largely unknown. In the present study this interaction of three moisturizers, isostearyl isostearate (ISIS), isopropyl isostearate (IPIS) and glycerol monoisostearate (GMIS), has been elucidated using lipid mixtures containing isolated ceramides (CER), cholesterol (CHOL) and free fatty acids (FFA), mimicking the lipid composition and organization in SC. The conformational ordering and the lateral packing of the lipid mixtures were examined by Fourier transformed infrared spectroscopy. Equimolar CER:CHOL:FFA mixtures show an orthorhombic to hexagonal phase transition between 22 and 30 degrees C and an ordered-disordered phase transition between 46 and 64 degrees C. Addition of 20% m/m ISIS or IPIS increased the thermotropic stability of the orthorhombic lateral packing, while GMIS had no influence. Furthermore, small amounts of all three moisturizers are incorporated into the CER:CHOL:FFA lattice, while the majority of the moisturizer exists in separate domains. Especially the thermotropic stabilization of the orthorhombic lateral packing, which might reduce water loss from the skin, is considered to contribute to the moisturizing effect of IPIS and ISIS in stratum corneum.  相似文献   

9.
Lipophilic moisturizers are widely used to treat dry skin. However, their interaction with the lipids in the upper layer of the skin, the stratum corneum (SC), is largely unknown. In the present study this interaction of three moisturizers, isostearyl isostearate (ISIS), isopropyl isostearate (IPIS) and glycerol monoisostearate (GMIS), has been elucidated using lipid mixtures containing isolated ceramides (CER), cholesterol (CHOL) and free fatty acids (FFA), mimicking the lipid composition and organization in SC. The conformational ordering and the lateral packing of the lipid mixtures were examined by Fourier transformed infrared spectroscopy. Equimolar CER:CHOL:FFA mixtures show an orthorhombic to hexagonal phase transition between 22 and 30 °C and an ordered-disordered phase transition between 46 and 64 °C. Addition of 20% m/m ISIS or IPIS increased the thermotropic stability of the orthorhombic lateral packing, while GMIS had no influence. Furthermore, small amounts of all three moisturizers are incorporated into the CER:CHOL:FFA lattice, while the majority of the moisturizer exists in separate domains. Especially the thermotropic stabilization of the orthorhombic lateral packing, which might reduce water loss from the skin, is considered to contribute to the moisturizing effect of IPIS and ISIS in stratum corneum.  相似文献   

10.
The lipid regions in the outermost layer of the skin (stratum corneum) form the main barrier for diffusion of substances through the skin. In this layer the main lipid classes are ceramides, cholesterol (CHOL), and FFA. Previous studies revealed a coexistence of two crystalline lamellar phases with periodicities of approximately 13 nm (referred to as long periodicity phase) and 6 nm (short periodicity phase). Additional studies showed that lipid mixtures prepared with isolated pig ceramides (pigCER) mimic lipid phase behavior in stratum corneum closely. Because the molecular structure of pigCER differs in some important aspects from that of human ceramides (HCER), in the present study the phase behavior of mixtures prepared with HCER has been examined. Phase behavior studies of mixtures based on HCER revealed that in CHOL:HCER mixtures the long periodicity phase dominates. In the absence of HCER1 the short periodicity phase is dominant. Addition of FFA promotes the formation of the short periodicity phase and induces a transition from a hexagonal sublattice to an orthorhombic sublattice. Furthermore, the presence of FFA promotes the formation of a liquid phase. Finally, cholesterol sulfate, a minor but important lipid in the stratum corneum, reduces the amount of cholesterol that phase separates in crystalline domains. From these observations it can be concluded that the phase behavior of mixtures prepared from HCER differs in some important aspects from that prepared from pigCER. The most prevalent differences are the following: i) the addition of FFA promotes the formation of the short periodicity phase; and ii) liquid lateral packing is obviously present in CHOL:HCER:FFA mixtures. These changes in phase behavior might be due to a larger amount of linoleic acid moiety in HCER mixtures compared with that in pigCER mixtures.  相似文献   

11.
The lipid matrix in stratum corneum (SC) plays a key role in the barrier function of the mammalian skin. The major lipids are ceramides (CER), cholesterol (CHOL) and free fatty acids (FFA). Especially the unique-structured omega-acylceramide CER[EOS] is regarded to be essential for skin barrier properties by inducing the formation of a long-periodicity phase of 130 angstroms (LPP). In the present study, the arrangement of CER[EOS], either mixed with CER[AP] and CHOL or with CER[AP], CHOL and palmitic acid (PA), inside a SC lipid model membrane has been studied for the first time by neutron diffraction. For a mixed CER[EOS]/CER[AP]/CHOL membrane in a partly dehydrated state, the internal membrane nanostructure, i.e. the neutron scattering length density profile in the direction normal to the surface, was obtained by Fourier synthesis from the experimental diffraction patterns. The membrane repeat distance is equal to that of the formerly used SC lipid model system composed of CER[AP]/CHOL/PA/ChS. By comparing both the neutron scattering length density profiles, a possible arrangement of synthetic long-chain CER[EOS] molecules inside a SC lipid model matrix is suggested. The analysis of the internal membrane nanostructure implies that one CER[EOS] molecule penetrates from one membrane layer into an adjacent layer. A 130 angstroms periodicity phase could not be observed under experimental conditions, either in CER/CHOL mixtures or in CER/CHOL/FFA mixture. CER[EOS] can be arranged inside a phase with a repeat unit of 45.2 angstroms which is predominately formed by short-chain CER[AP] with distinct polarity.  相似文献   

12.
The stratum corneum (SC) plays a fundamental role in the barrier function of the skin. The SC consists of corneocytes embedded in a lipid matrix. The main lipid classes in the lipid matrix are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). The aim of this study was to examine the effect of the chain length of FFAs on the thermotropic phase behavior and mixing properties of SC lipids. Fourier transform infrared spectroscopy and Raman imaging spectroscopy were used to study the mixing properties using either protonated or deuterated FFAs. We selected SC model lipid mixtures containing only a single CER, CHOL and either a single FFA or a mixture of FFAs mimicking the FFA SC composition. The single CER consists of a sphingoid base with 18 carbon atoms and an acyl chain with a chain length of 24 carbon atoms. When using lignoceric acid (24 carbon atoms) or a mixture of FFAs, the CER and FFAs participated in mixed crystals, but hydration of the mixtures induced a slight phase separation between CER and FFA. The mixed crystalline structures did not phase separate during storage even up to a time period of 3 months. When using palmitic acid (16 carbon atoms), a slight phase separation was observed between FFA and CER. This phase separation was clearly enhanced during hydration and storage. In conclusion, the thermotropic phase behavior and the mixing properties of the SC lipid mixtures were shown to strongly depend on the chain length and chain length distribution of FFAs, while hydration enhanced the phase separation.  相似文献   

13.
Understanding the lipid arrangement within the skin’s outermost layer, the stratum corneum (SC), is important for advancing knowledge on the skin barrier function. The SC lipid matrix consists of ceramides (CERs), cholesterol, and free fatty acids, which form unique crystalline lamellar phases, referred to as the long periodicity phase (LPP) and short periodicity phases. As the SC lipid composition is complex, lipid model systems that mimic the properties of native SC are used to study the SC lipid organization and molecular arrangement. In previous studies, such lipid models were used to determine the molecular organization in the trilayer structure of the LPP unit cell. The aim of this study was to examine the location of CER N-(tetracosanoyl)-phytosphingosine (CER NP) in the unit cell of this lamellar phase and compare its position with CER N-(tetracosanoyl)-sphingosine (CER NS). We selected CER NP as it is the most prevalent CER subclass in the human SC, and its location in the LPP is not known. Our neutron diffraction results demonstrate that the acyl chain of CER NP was positioned in the central part of the trilayer structure, with a fraction also present in the outer layers, the same location as determined for the acyl chain of CER NS. In addition, our Fourier transformed infrared spectroscopy results are in agreement with this molecular arrangement, suggesting a linear arrangement for the CER NS and CER NP. These findings provide more detailed insight into the lipid organization in the SC lipid matrix.  相似文献   

14.
The influence of cholesterol sulfate (CS) and calcium on the phase behavior of lipid mixtures mimicking the stratum corneum (SC) lipids was examined using vibrational spectroscopy. Raman microspectrocopy showed that equimolar mixtures of ceramide, palmitic acid, and cholesterol underwent a phase transition in which, at low temperatures, lipids formed mainly a mosaic of microcrystalline phase-separated domains, and above 45 degrees C, a more fluid and disordered phase in which the three lipid species were more miscible. In the presence of Ca(2+), there was the formation of fatty acid-Ca(2+) complexes that led to domains stable on heating. Consequently, these lipid mixtures remained heterogeneous, and the fatty acid molecules were not extensively involved in the formation of the fluid lipid phase, which included mainly ceramide and cholesterol. However, the presence of CS displaced the association site of Ca(2+) ions and inhibited the formation of domains formed by the fatty acid molecules complexed with Ca(2+) ions. This work reveals that CS and Ca(2+) modulate the lipid mixing properties and the lipid order in SC lipid models. The balance in the equilibria involving Ca(2+), CS, and fatty acids is proposed to have an impact on the organization and the function of the epidermis.  相似文献   

15.
To elucidate the interaction among the molecules which constitute intercellular lipids of stratum corneum, the phase diagrams in the binary mixtures of N-octadecanoyl-phytosphingosine (CER)/stearic acid (SA) and CER/cholesterol (CHOL) were studied by differential scanning calorimetry and by small- and wide-angle X-ray diffraction. These phase diagrams are mostly expressed by a eutectic type one. However, from their detailed analyses, it was revealed that in the phase diagram of CER/SA a new solid structure is formed just above the eutectic temperature. The lamellar spacing of the new structure is nearly equal to the length given by the sum of the two molecules of CER and/or SA, that is, in the lipid bilayer the hydrocarbon chains of CER and SA lie almost perpendicular to the lipid bilayer surface and the two kinds of molecules distribute homogeneously. On the other hand, in the binary mixture of CER/CHOL, CHOL molecules are apt to be isolated from the mixture. In a ternary mixture composed of equimolar lipids of CER, CHOL and SA, it was found that a pseudo-hexagonal structure takes place even in the solid state. This fact indicates that the three components are miscible and the hydrocarbon chains lie perpendicular to the lipid bilayer surface. We can draw the conclusion that the multi-component mixtures containing ceramide are apt to form the lamellar structure where even in the solid state the hydrocarbon chains lie perpendicular to the lipid bilayer surface and the components with hydrocarbon chains distribute homogeneously.  相似文献   

16.
This letter presents our first results in using the benefit of selective deuteration in neutron diffraction studies on stratum corneum (SC) lipid model systems. The SC represents the outermost layer of the mammalian skin and exhibits the main skin barrier. It is essential for studying drug penetration through the SC to know the internal structure and hydration behaviour on the molecular level. The SC intercellular matrix is mainly formed by ceramides (CER), cholesterol (CHOL) and long- chain free fatty acids (FFA). Among them, CHOL is the most abundant individual lipid, but a detailed knowledge about its localisation in the SC lipid matrix is still lacking. The structure of the quaternary SC lipid model membranes composed of either CER[AP]/CHOL-D6/palmitic acid (PA)/cholesterol sulphate (ChS) or CER[AP]/CHOL-D7/PA/ChS is characterized by neutron diffraction. Neutron diffraction patterns from the oriented samples are collected at the V1 diffractometer of the Hahn-Meitner-Institute, Berlin, measured at 32°C, 60% humidity and at different D2O contents. The neutron scattering length density profile in the direction normal to the surface is restored by Fourier synthesis from the experimental diffraction patterns. The analysis of scattering length density profile is a suitable tool for investigating the internal structure of the SC lipid model membranes. The major finding is the experimental proof of the CHOL localisation in SC model membrane by deuterium labelling at prominent positions in the CHOL molecules.  相似文献   

17.
The lipid organization in the outermost layer of the skin, the stratum corneum, is important for the skin barrier function. The stratum corneum lipids are composed of ceramides (CER), free fatty acids (FFA) and cholesterol (CHOL). In the present study Fourier transform infrared (FTIR) and small-angle X-ray scattering (SAXS) techniques were utilized to evaluate the effect of three C18 fatty acid esterified ω-acylceramides (CER EOS) on the lipid organization of stratum corneum model membranes. FTIR spectra (scissoring and rocking bands) showed as a function of temperature significant line-shape changes for both components assigned to the orthorhombic phase. Second-derivative analyzes revealed a significant decrease in the interchain coupling strength (Δν values) for the samples formed by CER EOS with the linoleate (CER EOS-L) and oleate (CER EOS-O) moiety around 28.5 °C. However, only a gradual decrease in the Δν values was noticed for the mixture formed with CER EOS with the stearate moiety (CER EOS-S) over the whole temperature range. In the absence of CER EOS the decrease started already at 25.5 °C, demonstrating that CER EOS stabilized the orthorhombic lattice. This stabilization was most pronounced for the CER EOS-S. Spectral fittings allowed to evaluate the orientation changes of the skeletal plane within the orthorhombic unit cell (θ values) for a given temperature range. From the best-fit parameters (peak area values), a decrease in the orthorhombic phase contribution to the scissoring band was also monitored as a function of the temperature. SAXS studies showed the coexistence of two lamellar phases with a periodicity of ∼5.5 nm (short periodicity phase, SPP) and ∼12 nm (LPP) in the presence of the CER EOS-L and CER EOS-O. However, no diffraction peaks associated to the LPP were detected for CER EOS-S. While CER EOS-S most efficiently stabilized the orthorhombic phase, CER EOS-L and CER EOS-O promoted the presence of the LPP. Therefore, the presence of all three CER EOS as observed in human stratum corneum may contribute to a proper skin barrier function.  相似文献   

18.
Lipid lamellae present in the outermost layer of the skin protect the body from uncontrolled water loss. In human stratum corneum (SC), two crystalline lamellar phases are present, which contain mostly cholesterol, free fatty acids, and nine types of free ceramides. Previous studies have demonstrated that the SC lipid organization can be mimicked with model mixtures based on isolated SC lipids. However, those studies are hampered by low availability and high interindividual variability of the native tissue. To elucidate the role of each lipid class in the formation of a competent skin barrier, the use of synthetic lipids would offer an alternative. The small- and wide-angle X-ray diffraction results of the present study show for the first time that synthetic lipid mixtures, containing only three synthetic ceramides, reflect to a high extent the SC lipid organization. Both an appropriately chosen preparation method and lipid composition promote the formation of two characteristic lamellar phases with repeat distances similar to those found in native SC. From all synthetic lipid mixtures examined, equimolar mixtures of cholesterol, ceramides, and free fatty acids equilibrated at 80 degrees C resemble to the highest extent the lamellar and lateral SC lipid organization, both at room and increased temperatures.  相似文献   

19.
Intercellular lipids in the stratum corneum (SC), such as ceramide (CER), free fatty acid (FFA), and cholesterol (CHOL), contribute to the formation of stable lamellar structures in the SC, making them important for skin barrier function. β-Galactosylceramide (GalCer) is a glycosphingolipid that is used in some cosmetics and quasi-drugs in anticipation of a moisturizing effect. GalCer promotes keratinocyte differentiation and increases CER production by increasing β-glucocerebrosidase (β-GCase) activity. However, few reports have described the mechanism of these effects, and detailed studies on the role of GalCer in intercellular lipid production in the SC have not been conducted. This study investigated the effect of GalCer on the metabolism and production of intercellular lipids in the SC in a three-dimensional cultured epidermis model. After reacting GalCer with a homogenate solution of three-dimensional cultured epidermis, GalCer was hardly metabolized. Treatment of the three-dimensional cultured epidermis with GalCer increased the expression of genes involved in the β-GCase metabolic pathway and promoted CER production. In addition, GalCer treatment reduced the expression of FFA metabolism-related genes as well as palmitic acid levels. In addition, transepidermal water loss, which is a barrier index, was reduced by GalCer treatment. These findings suggested that GalCer, which is hardly metabolized, affects the production of intercellular lipids in the SC and improves skin barrier function.  相似文献   

20.
The skin barrier function is provided by the stratum corneum (SC). The lipids in the SC are composed of three lipid classes: ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs) which form two crystalline lamellar structures. In the present study, we investigate the effect of CER chain length distribution on the barrier properties of model lipid membranes mimicking the lipid composition and organization of SC. The membranes were prepared with either isolated pig CERs (PCERs) or synthetic CERs. While PCERs have a wide chain length distribution, the synthetic CERs are quite uniform in chain length. The barrier properties were examined by means of permeation studies using hydrocortisone as a model drug. Our studies revealed a reduced barrier in lipid membranes prepared with PCERs compared to synthetic CERs. Additional studies revealed that a wider chain length distribution of PCERs results in an enhanced hexagonal packing and increased conformational disordering of the lipid tails compared to synthetic CERs, while the lamellar phases did not change. This demonstrates that the chain length distribution affects the lipid barrier by reducing the lipid ordering and density within the lipid lamellae. In subsequent studies, the effect of increased levels of FFAs or CERs with a long acyl chain in the PCERs membranes was also studied. These changes in lipid composition enhanced the level of orthorhombic packing, reduced the conformational disordering and increased the barrier of the lipid membranes. In conclusion, the CER chain length distribution is an important key factor for maintaining a proper barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号