首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A library of cloned Spiroplasma citri genomic sequences was constructed by incorporating HindIII digestion fragments into the plasmid vector pBR328. Immunological screening allowed the identification of a recombinant plasmid containing the gene for spiralin, the major membrane protein of S. citri. The spiralin produced by the Escherichia coli transformant was characterized by immunological detection with monoclonal antibody after Western blotting of two-dimensional (isoelectric focusing and sodium dodecyl sulfate-polyacrylamide) electrophoresis gels and by partial proteolytic mapping. The gene for spiralin occurred within a 6.5-kilobase-pair cloned DNA fragment. Spiralin in E. coli was produced regardless of the orientation of the insert within the pBR328 vector. A spiroplasmal DNA sequence which acted as a promoter in E. coli was cloned along with the structural spiralin gene which is expressed in E. coli from that sequence.  相似文献   

2.
Regulation of expression of a bacterial guaA gene inserted into colicin E1 DNA by an in vitro recombination was studied under various growth conditions. In Escherichia coli K-12 cells that carried this hybrid ColEl plasmid the level of guaA enzyme activity was not regulated by the concentration of guanine in the medium, but by the number of plasmid DNA copies. The optimal conditions for amplifying the guaA gene product by chloramphenicol treatment were determined. The level of guaA enzyme activity found under the optimal conditions was about 37 times that in extracts of wild-type E. coli cultured in guanine-free medium. The properties of the promoter for the guaA gene and applicability of this hybrid ColEl plasmid for amplification of various gene products were discussed.  相似文献   

3.
The uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 was cloned, and the effects of this inhibitor on Escherichia coli cells that contain uracil-DNA glycosylase activity were determined. A PBS2 genomic library was constructed by inserting EcoRI restriction fragments of PBS2 DNA into a plasmid pUC19 vector. The library was used to transform wild-type (ung+) E. coli, and the presence of the functional inhibitor gene was determined by screening for colonies that supported growth of M13mp19 phage containing uracil-DNA. A clone was identified that carried a 4.1-kilobase EcoRI DNA insert in the vector plasmid. Extracts of cells transformed with this recombinant plasmid lacked detectable uracil-DNA glycosylase activity and contained a protein that inhibited the activity of purified E. coli uracil-DNA glycosylase in vitro. The uracil-DNA glycosylase inhibitor expressed in these E. coli was partially purified and characterized as a heat-stable protein with a native molecular weight of about 18,000. Hence, we conclude that the PBS2 uracil-DNA glycosylase inhibitor gene was cloned and that the gene product has properties similar to those from PBS2-infected Bacillus subtilis cells. Inhibitor gene expression in E. coli resulted in (i) a weak mutator phenotype, (ii) a growth rate similar to that of E. coli containing pUC19 alone, (iii) a sensitivity to the antifolate drug aminopterin similar to that of cells lacking the inhibitor gene, and (iv) an increased resistance to the lethal effects of 5-fluoro-2'-deoxyuridine. These physiological properties are consistent with the phenotypes of other ung mutants.  相似文献   

4.
以基因组DNA为模板,利用PCR技术从弗氏柠檬酸细菌(Citrobacter freundii)中扩增得到含有酪氨酸酚解酶基因的DNA片段,定向连续到质粒pUC118上,得到重组质粒pTPL,将此重组质粒转化到受体菌E.colXL-1-Blue MRF′中,通过蓝白斑鉴定挑出阳性菌株。从此阳性菌株中提取质粒pTPL并将此质粒转入到E.coliJM109中,用E.coliJM109(pTPL)制备高活性的酪氨酸酚解酶。对质粒稳定性的研究表明,E.coliJM109(pTPL)在无选择压力下37℃连续培养50代以上,质粒丢失率仅有15%,说明质粒基本稳定。  相似文献   

5.
We wish to report the initial characterization of a recombinant clone containing the BamHI methylase gene. Genomic chromosomal DNA purified from Bacillus amyloliquefaciens was partially cleaved with HindIII, fractionated by size, and cloned into pSP64. Plasmid DNA from this library was challenged with BamHI endonuclease and transformed into Escherichia coli HB101. A recombinant plasmid pBamM6.5 and a subclone pBamM2.5 were shown to contain the BamHI methylase gene based on three independent observations. Both plasmids were found to be resistant to BamHI endonuclease cleavage, and chromosomal DNA isolated from E. coli HB101 cells harboring either of the plasmids pBamM6.5 or pBamM2.5 was resistant to cleavage by BamHI endonuclease. In addition, DNA isolated from lambda phage passaged through E. coli HB101 containing either plasmid was also resistant to BamHI cleavage. Expression of the BamHI methylase gene is dependent on orientation in pSP64. In these clones preliminary evidence indicates that methylase gene expression may be under the direction of the plasmid encoded LacZ promoter.  相似文献   

6.
In vitro-packaged cosmid libraries of DNA from the bacterium Xanthomonas campestris pv. malvacearum were restricted 200- to 1,000-fold when introduced into Mcr+ strains of Escherichia coli compared with restriction in the Mcr- strain HB101. Restriction was predominantly associated with the mcrBC+ gene in E. coli. A plasmid (pUFR052) encoding the XmaI and XmaIII DNA methylases was isolated from an X. campestris pv. malvacearum library by a screening procedure utilizing Mcr+ and Mcr- E. coli strains. Transfer of plasmids from E. coli strains to X. campestris pv. malvacearum by conjugation was enhanced by up to five orders of magnitude when the donor cells contained pUFR052 as well as the plasmid to be transferred. Subcloning of pUFR052 revealed that at least two regions of the plasmid were required for full modification activity. Use of such modifier plasmids is a simple, novel method that may allow the efficient introduction of genes into any organism in which restriction systems provide a potent barrier to such gene transfer.  相似文献   

7.
We have screened strains of Agrobacterium tumefaciens for spontaneous mutants showing constitutive transfer of the nopaline Ti plasmid pTiC58 during conjugation. The Ti plasmid derivatives obtained could be transferred not only to A. tumefaciens but also to E. coli cells. The Ti plasmid cannot survive as a freely replicating plasmid in E. coli, but it can occasionally integrate into the E. coli chromosome. However, insertion in tandem of plasmids carrying fd replication origins (pfd plasmids) into the T-DNA provides an indicator for all transfer events into E. coli cells, providing fd gene 2 protein is present in these cells. This viral protein causes the excision of one copy of the pfd plasmid and allows its propagation in the host cell. By using this specially designed Ti plasmid, which was also made constitutive in transfer functions, we found plasmid exchange among A. tumefaciens strains and between A. tumefaciens and E. coli cells to be equally efficient. A Ti plasmid with repressed transfer functions was transferred to E. coli with a rate similar to the low frequency at which it was transferred to A. tumefaciens. The expression of transfer functions of plasmid RP4 either in A. tumefaciens or in E. coli did not increase the transfer of the Ti plasmid into E. coli cells, nor did the addition of acetosyringone, an inducer of T-DNA transfer to plant cells. The results show that A. tumefaciens can transfer the Ti plasmid to E. coli with the same efficiency as within its own species. Conjugational transmission of extrachromosomal DNA like the narrow-host-range Ti plasmid may often not only occur among partners allowing propagation of the plasmid, but also on a 'try-all' basis including hosts which do not replicate the transferred DNA.  相似文献   

8.
Lactose metabolism in Lactobacillus casei 64H is associated with the presence of plasmid pLZ64. This plasmid determines both phosphoenolpyruvate-dependent phosphotransferase uptake of lactose and beta-D-phosphogalactoside galactohydrolase. A shotgun clone bank of chimeric plasmids containing restriction enzyme digest fragments of pLZ64 DNA was constructed in Escherichia coli K-12. One clone contained the gene coding for beta-D-phosphogalactoside galactohydrolase on a 7.9-kilobase PstI fragment cloned into the vector pBR322 in E. coli strain chi 1849. The beta-D-phosphogalactoside galactohydrolase enzyme isolated from E. coli showed no difference from that isolated from L. casei, and specific activity of beta-D-phosphogalactoside galactohydrolase was stimulated 1.8-fold in E. coli by growth in media containing beta-galactosides. A restriction map of the recombinant plasmid was compiled, and with that information, a series of subclones was constructed. From an analysis of the proteins produced by minicells prepared from transformant E. coli cells containing each of the recombinant subclone plasmids, it was found that the gene for the 56-kilodalton beta-D-phosphogalactoside galactohydrolase was transcribed from an L. casei-derived promoter. The gene for a second protein product (43 kilodaltons) was transcribed in the opposite direction, presumably under the control of a promoter in pBR322. The relationship of this second product to the lactose metabolism genes of L. casei is at present unknown.  相似文献   

9.
Identifying and eliminating endogenous bacterial enzyme systems can significantly increase the efficiency of propagation of eukaryotic DNA in Escherichia coli. We have recently examined one such system which inhibits the propagation of lambda DNA rescued from transgenic mouse tissues. This rescue procedure utilizes lambda packaging extracts for excision of the lambda DNA from the transgenic mouse genome, as well as E. coli cells for subsequent infection and propagation. This assay, in combination with conjugal mating, P1 transduction, and gene cloning, was used to identify and characterize the E. coli locus responsible for this difference in efficiency. It was determined that the E. coli K-12 mcrB gene when expressed on a high-copy-number plasmid can cause a decrease in rescue efficiency despite the presence of the mcrB1 mutation, which inactivates the classic McrB restriction activity. (This mutation was verified by sequence analysis.) However, this McrB1 activity is not observed when the cloned mcrB1 gene is inserted into the E. coli genome at one copy per chromosome. A second locus was identified which causes a decrease in rescue efficiency both when expressed on a high-copy-number plasmid and when inserted into the genome. The data presented here suggest that this locus is mrr and that the mrr gene product can recognize and restrict cytosine-methylated sequences. Removal of this DNA region including the mrr gene from E. coli K-12 strains allows high rescue efficiencies equal to those of E. coli C strains. These modified E. coli K-12 plating strains and lambda packaging extract strains should also allow a significant improvement in the efficiency and representation of eukaryotic genomic and cDNA libraries.  相似文献   

10.
We have constructed a plasmid on which the E. coli O6-methylguanine-DNA methyltransferase (MT) gene (ada gene) was linked with an SV40 promoter sequence and a poly(A) site. After transferring this plasmid into Mer- HeLa MR cells by DNA transfection, effective expression of E. coli MT was observed. Isolated stable transformant clones showed higher resistance to N-methyl-N'-nitro-N-nitrosoguanidine in colony formation and sister-chromatid exchange induction than HeLa MR cells.  相似文献   

11.
The gene responsible for the malolactic fermentation of wine was cloned from the bacterium Lactobacillus delbrueckii into Escherichia coli and the yeast Saccharomyces cerevisiae. This gene codes for the malolactic enzyme which catalyzes the conversion of l-malate to l-lactate. A genetically engineered yeast strain with this enzymatic capability would be of considerable value to winemakers. L. delbrueckii DNA was cloned in E. coli on the plasmid pBR322, and two E. coll clones able to convert l-malate to l-lactate were selected. Both clones contained the same 5-kilobase segment of L. delbrueckii DNA. The DNA segment was transferred to E. coli-yeast shuttle vectors, and gene expression was analyzed in both hosts by using enzymatic assays for l-lactate and l-malate. When grown nonaerobically for 5 days, E. coli cells harboring the malolactic gene converted about 10% of the l-malate in the medium to l-lactate. The best expression in S. cerevisiae was attained by transfer of the gene to a shuttle vector containing both a yeast 2-mum plasmid and yeast chromosomal origin of DNA replication. When yeast cells harboring this plasmid were grown nonaerobically for 5 days, ca. 1.0% of the l-malate present in the medium was converted to l-lactate. The L. delbrueckii controls grown under these same conditions converted about 25%. A laboratory yeast strain containing the cloned malolactic gene was used to make wine in a trial fermentation, and about 1.5% of the l-malate in the grape must was converted to l-lactate. Increased expression of the malolactic gene in wine yeast will be required for its use in winemaking. This will require an increased understanding of the factors governing the expression of this gene in yeasts.  相似文献   

12.
Escherichia coli DNA was digested with restriction endonuclease PstI and ligated into the PstI site of plasmid pBR322. Recombinant plasmids that were constructed in this manner were used to transform E. coli H61, a mutant with a decreased level of hydrogenase activity. Complementation of this hydrogenase mutation identified a bacterial clone carrying the gene for the membrane-associated E. coli hydrogenase in plasmid pBL101. In E. coli minicells, the pBL101 DNA directed the synthesis of a protein of a size corresponding to that of the precursor of the E. coli membrane-associated hydrogenase, which appears to contain an uncleaved leader peptide. A restriction map of the cloned DNA was determined for 14 endonucleases.  相似文献   

13.
A plasmid carrying a 2.4-kilobase-pair fragment of DNA from Pseudomonas sp. strain PG2982 has been isolated which was able to increase the glyphosate resistance of Escherichia coli cells. The increase in resistance was dependent on the presence of a plasmid-encoded protein with a molecular weight of approximately 33,000, the product of a translational fusion between a gene on the vector, pACYC184, and the insert DNA. An overlapping region of the PG2982 chromosome carrying the entire gene (designated igrA) was cloned, and a plasmid (pPG18) carrying the gene was also able to increase glyphosate resistance in E. coli. A protein with a molecular weight of approximately 40,000 was encoded by the PG2982 DNA contained in pPG18. This plasmid was not able to complement a mutation in the gene for 5-enolpyruvylshikimate-3-phosphate synthase (aroA) in E. coli, and modification of glyphosate by E. coli cells containing the plasmid could not be demonstrated. The nucleotide sequence of the PG2982 DNA contained an open reading frame able to encode a protein with a calculated molecular weight of 39,396.  相似文献   

14.
A plasmid carrying a 2.4-kilobase-pair fragment of DNA from Pseudomonas sp. strain PG2982 has been isolated which was able to increase the glyphosate resistance of Escherichia coli cells. The increase in resistance was dependent on the presence of a plasmid-encoded protein with a molecular weight of approximately 33,000, the product of a translational fusion between a gene on the vector, pACYC184, and the insert DNA. An overlapping region of the PG2982 chromosome carrying the entire gene (designated igrA) was cloned, and a plasmid (pPG18) carrying the gene was also able to increase glyphosate resistance in E. coli. A protein with a molecular weight of approximately 40,000 was encoded by the PG2982 DNA contained in pPG18. This plasmid was not able to complement a mutation in the gene for 5-enolpyruvylshikimate-3-phosphate synthase (aroA) in E. coli, and modification of glyphosate by E. coli cells containing the plasmid could not be demonstrated. The nucleotide sequence of the PG2982 DNA contained an open reading frame able to encode a protein with a calculated molecular weight of 39,396.  相似文献   

15.
The glyoxalase I gene of Pseudomonas putida was cloned onto a vector plasmid pBR 322 as a 7.5 kilobase Sau 3AI fragment of chromosomal DNA and the hybrid plasmid was designated pGI 318. The gene responsible for the glyoxalase I activity in pGI 318 was recloned in pBR 322 as a 2.2 kilobase Hin dIII fragment and was designated pGI 423. The P. putida glyoxalase I gene on pGI 318 and pGI 423 was highly expressed in E. coli cells and the glyoxalase I activity level was increased more than 150 fold in the pGI 423 bearing strain compared with that of E. coli cells without pGI 423. The E. coli transformants harboring pGI 318 or pGI 423 could grow normally in the presence of methylglyoxal, although the E. coli cells without plasmid were inhibited to grow and showed the extremely elongated cell shape.  相似文献   

16.
Using gene replacement and transposon Tn5 mutagenesis, an Escherichia coli ilvC panE double mutant completely lacking ketopantoate reductase activity was isolated. This E. coli double mutant was employed to isolate the E. coli panE gene by genetic complementation. The E. coli panE gene is characterized by a 912 bp coding region, which specifies a protein of 303 amino acids with a deduced molecular mass of 33.8 kD. A panE expression plasmid carrying the panE gene under the control of the tac promotor was constructed. Introduction of the panE expression plasmid into E. coli resulted in a threefold increase in ketopantoate reductase activity. It was also shown that the enhanced panE expression in E. coli K12 led to 3.5-fold increase in pantothenate excretion. Pantothenate excretion could even be more enhanced when the growth medium was supplemented with ketopantoate.  相似文献   

17.
将大肠杆菌HB101嗜碱转化子中质粒pGCA所携带的嗜碱基因亚克隆至双元载体pBI121质粒中,构建了植物表达载体pLGC重组质粒。用其转化大肠杆菌HB101获得了能在碱性和卡那霉素抗性平板上生长的转化子,再通过三亲交配法将亚克隆质粒pLGC转化进农杆菌LBA4404,又获得能在碱性平板和卡那霉素及利福平双抗平板上生长的转化子,Southern杂交结果表明HB101转化子亚克隆质粒pLGC是由来自于嗜碱芽孢杆菌NTT36染色体DNA和双元载体pBI121组成,且农杆菌LBA4404转化子含有来自大肠杆菌亚克隆转化子的pLGC质粒。  相似文献   

18.
19.
M C Chang  C C Chang    J C Chang 《Applied microbiology》1992,58(10):3437-3440
A genomic library of Pseudomonas putida DNA was constructed by using plasmid pBR322. Transformants of Escherichia coli in combination with Proteus mirabilis cells grown on creatinase test plates were screened for creatinase activity; transformants were considered positive for creatinase activity if a red-pink zone appeared around the colonies. One creatinase-positive clone was further analyzed, and the gene was reduced to a 2.7-kb DNA fragment. A unique protein band (with a molecular weight of approximately 50,000) was observed in recombinant E. coli by minicell analysis.  相似文献   

20.
为了提高目的蛋白磷脂酰丝氨酸合成酶(PSS)的表达,使用rTaq酶从E coli K12总DNA中PCR扩增获得磷脂酰丝氨酸合成酶基因片段,将其重组于高效表达载体pET28b质粒,转入相应表达菌株进行表达,收集菌体超声破碎获得含PSS的粗酶液,使用两相反应体系进行生物转化,HPLC-ELSD手段进行酶活检测。结果显示,重组菌株中PSS的酶活力比对照有所提高,同时获得酶活力提高的突变基因pssE210G。将突变基因重组于更高效的表达载体pBAD-MCS,转入相应宿主菌株表达。结果显示E.coli TOP10(pBAD-MCS-pss)表达的酶活性明显优于E.coli BL21(pET28b-pss)中表达的酶活性。以上实验结果表明,将目的基因重组于高效表达质粒有助于提高酶活力;组合到不同的表达质粒,酶活提高程度不同;磷脂酰丝氨酸合成酶基因第73位氨基酸发生突变,对其酶结构和酶活力有直接的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号