首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of protein malnutrition on adipose tissue development were studied in weanling male Sprague-Dawley rats fed isocaloric diets ad libitum containing either 22% (controls) or 8% (protein-malnourished rats) casein, and in rats pair-fed to the protein-malnourished rats with the 22% casein diet. After 32 days on the diet, protein-malnourished rats were 37% and pair-fed 67% the weight of the controls, while torso length was 37% and 73% of controls, respectively. Food consumption relative to body weight was greatest in protein-malnourished rats. Compared to control rats, the distal epididymal adipocyte number in the protein-malnourished rats was decreased in proportion to the decrease in body size and was more closely related to the protein intake than to the total calories consumed. After 32 days on diet, mean adipocyte number per 2 distal pads was 11.7 x 10(6) in controls and 4.3 x 10(6) in protein-malnourished rats. In pair-fed rats, cell number lagged behind controls at 4 and 11 days, but was normal at 32 days (11.4 x 10(6) cells). The distal epididymal pad adipocyte size and percent lipid were similar in all groups during the first 25 days of dietary treatment. Adipocyte size was increased significantly in controls at day 32 compared to the other two groups. At each time studied through day 25 on diet, epididymal pad weight was related to the adipose cell number rather than the cell size. It is concluded that severe restriction of dietary protein during the postweaning period of growth in rats results in decreased epididymal adipocyte proliferation and/or differentiation concomitant with generalized growth retardation, whereas isocaloric feeding of a diet of normal protein content is associated with only a transient delay in adipose tissue development.  相似文献   

2.
The urinary excretion of total N-tau-methylhistidine by the growing rat was measured to evaluate the effects of dietary protein and energy restriction on muscle protein turnover in vivo. 2. Young male rats (about 100 g initial wt.) were fed on one of three diets. Group I (controls) received an adequate 18% lactalbumin diet for 28 days, on which they sustained maximum growth. Group II (protein-depleted) was fed for 14 days on 0.5 lactalbumin diet, which caused loss of weight; this was followed by repletion for 14 days with the control diet. Group III (protein-energy restricted) received a 1% lactalbumin diet at one-half the food intake of group II for 14 days, and this was also followed by 14 days of repletion with the control diet. 3. The controls showed a progressive rise in the daily urinary output of N-tau-methylhistidine, which was proportionally slightly less rapid than the body-weight increase. 4. The protein-depleted group II showed a marked and progressive decrease in N-tau-methylhistidine excretion, which was proportionally greater than the fall in body weight; during repletion, N-tau-methylhistidine output rose in parallel with body-weight increase, but it did not reach the value attained by the control group. 5. Group III, restricted in both dietary protein and energy, showed an initial small increase in daily N-tau-methylhistidine output, which contrasted with the sharp loss of body weight during this period. After 11 days on this restricted diet, group III then underwent a decrease in N-tau-methylhistidine output, which persisted into the first 4 days of the repletion period, after which output of the methylated amino acid became the same as for group II. 6. Creatinine output, used as an additional metabolic measure of muscle metabolism, showed a fairly constant relationship to body weight in groups I and II during depletion and repletion. However, rats with protein-energy deficiency (group III) underwent a marked increase in output of creatinine per unit of body weight, which also persisited into the repletion period before it fell to more normal values relative to body weight. 7. Analysis of the N-tau-methylhistidine content of actin isolated from a group of protein-depleted rats revealed a small (5%) but significance (P less than 0.02) decrease relative to well-nourished controls. 8. Hence, the rate of muscle protein degradation, as indicated by changes in urinary N-tau-methylhistidine output, appears to respond sensitively and in opposite directions to insufficiency of protein of energy in the diet.  相似文献   

3.
A low-protein diet supplemented with ketoacids maintains nutritional status in patients with diabetic nephropathy. The activation of autophagy has been shown in the skeletal muscle of diabetic and uremic rats. This study aimed to determine whether a low-protein diet supplemented with ketoacids improves muscle atrophy and decreases the increased autophagy observed in rats with type 2 diabetic nephropathy. In this study, 24-week-old Goto-Kakizaki male rats were randomly divided into groups that received either a normal protein diet (NPD group), a low-protein diet (LPD group) or a low-protein diet supplemented with ketoacids (LPD+KA group) for 24 weeks. Age- and weight-matched Wistar rats served as control animals and received a normal protein diet (control group). We found that protein restriction attenuated proteinuria and decreased blood urea nitrogen and serum creatinine levels. Compared with the NPD and LPD groups, the LPD+KA group showed a delay in body weight loss, an attenuation in soleus muscle mass loss and a decrease of the mean cross-sectional area of soleus muscle fibers. The mRNA and protein expression of autophagy-related genes, such as Beclin-1, LC3B, Bnip3, p62 and Cathepsin L, were increased in the soleus muscle of GK rats fed with NPD compared to Wistar rats. Importantly, LPD resulted in a slight reduction in the expression of autophagy-related genes; however, these differences were not statistically significant. In addition, LPD+KA abolished the upregulation of autophagy-related gene expression. Furthermore, the activation of autophagy in the NPD and LPD groups was confirmed by the appearance of autophagosomes or autolysosomes using electron microscopy, when compared with the Control and LPD+KA groups. Our results showed that LPD+KA abolished the activation of autophagy in skeletal muscle and decreased muscle loss in rats with type 2 diabetic nephropathy.  相似文献   

4.
In this study we have shown that the skeletal muscle fibres from adult (older than 26 weeks) mdx mice have gross structural deformities. We have characterized the onset and age dependence of this feature in mdx mice. The three dimensional structure of these deformities has been visualized in isolated fibres and the orientation of these deformities was determined within the muscle by confocal laser scanning microscopy. We have also shown that the occurrence of morphologically abnormal fibres is greater in muscles with longer fibres (extensor digitorum longus (EDL) and soleus, 6-7.3 mm long), than in muscles with shorter fibres (flexor digitorum brevis (FDB), 0.3-0.4 mm long). A population of post-degenerative fibres, with both central and peripheral nuclei coexistent along the length of the fibre, has also been identified in the muscles studied. We showed that a mild protocol of lengthening (eccentric) contractions (the muscle was stretched by 12% during a tetanic contraction) caused a major reduction in the maximal tetanic force subsequently produced by mdx EDL muscle. In contrast, maximal tetanic force production in normal soleus, normal EDL and mdx soleus muscles was not altered by this protocol. We suggest that the deformed fast glycolytic fibres which are found in adult mdx EDL but not in adult mdx soleus muscles are the population of fibres damaged by the lengthening protocol.  相似文献   

5.
Metabolic programming by dietary chemicals consumed in early life stages is receiving increasing attention. We here studied long-term effects of mild resveratrol (RSV) supplementation during lactation on muscular and hepatic lipid metabolism in adulthood. Newborn male mice received RSV or vehicle from day 2–20 of age, were weaned onto a chow diet on day 21, and were assigned to either a high-fat diet (HFD) or a normal-fat diet on day 90 of age for 10 weeks. RSV-treated mice showed in adulthood protection against HFD-induced triacylglycerol accumulation in skeletal muscle, enhanced muscular capacities for fat oxidation and mitochondria activity, signs of enhanced sirtuin 1 and AMP-dependent protein kinase signaling in muscle, and increased fat oxidation capacities and a decreased capacity for lipogenesis in liver compared with controls. Thus, RSV supplementation in early postnatal life may help preventing later diet-related disorders linked to ectopic lipid accumulation in muscle and liver tissues.  相似文献   

6.
—Male rats of the Sprague-Dawley strain (80–250 g body wt) were fed either an adequate protein diet (18% lactalbumin) or a protein-deficient diet (0.5% lactalbumin). After 5–8 weeks of receiving the low protein diet, some of the malnourished rats were rehabilitated with an adequate protein diet. The malnourished rats exhibited significant elevations in brain levels of histidine (+415%) and homocarnosine (+100%) in comparison to findings in the control animals of similar age. Associated with the elevated brain levels of histidine in malnutrition was a prominent increase in brain content of histamine (+ 150-+ 238%). The mean brain histamine levels (ng/g) in the control rats varied from 45.96 to 56.15 in several experiments. In the protein-deficient rats, values ranged from 115 to 190. Refeeding the malnourished rats with adequate protein diet elicited reversal of histidine and histamine levels to near normal values within 1 week. The increased brain content of histamine in malnutrition was attributed to enhanced rate of production resulting from increased availability of the precursor amino acid, a conclusion consistent with elevation also of the brain content of homocarnosine (γ-aminobutyryl-l -histidine) which is another major route of disposal of histidine in the brain. The relevance of these neurochemical alterations to the behavioural changes often associated with protein malnutrition, deserves some intensive examination.  相似文献   

7.
Pregnant rats, Wistar strain, were treated from day 11 of gestation with synthetic diets containing different amounts of protein. The Group of rats fed a severely deficient protein diet (4% of casein, 2% of lactalbumin) showed reduced hematocrit, hemoglobin, total protein and an expressive increase of gamma globulins compared with rats treated with normal or elevated protein levels. Weight gain during pregnancy was higher for rats which received a larger amount of protein; on the contrary those that were subjected to malnutrition had no weight gain and bore prematurely with high percent of foetal mortality.  相似文献   

8.
Dietary protein intake is important for skeletal muscle protein synthesis. In this study, we investigated the differential effect of protein sources on hypertrophy of plantaris muscle induced by surgical ablation of gastrocnemius and soleus muscles. Six-week old mice were fed diets containing caseinate, whey, or soy as protein sources for 2 weeks. Plantaris muscle hypertrophy was induced by a unilateral ablation of synergistic muscles after a week. Food intake of soy protein-fed mice was higher than that of caseinate and whey-fed mice, resulting in higher body and fat weights. Plantaris muscle weight in sham-operated mice was not different across the groups. Overload-operated plantaris muscle weight and increased ratio of overloaded muscle to sham-operated muscle weights were higher in caseinate-fed mice than in whey- and soy protein-fed mice, suggesting caseinate as a promising protein source for muscle hypertrophy.  相似文献   

9.
Mutations in the skeletal muscle α-actin gene (ACTA1) cause congenital myopathies including nemaline myopathy, actin aggregate myopathy and rod-core disease. The majority of patients with ACTA1 mutations have severe hypotonia and do not survive beyond the age of one. A transgenic mouse model was generated expressing an autosomal dominant mutant (D286G) of ACTA1 (identified in a severe nemaline myopathy patient) fused with EGFP. Nemaline bodies were observed in multiple skeletal muscles, with serial sections showing these correlated to aggregates of the mutant skeletal muscle α-actin-EGFP. Isolated extensor digitorum longus and soleus muscles were significantly weaker than wild-type (WT) muscle at 4 weeks of age, coinciding with the peak in structural lesions. These 4 week-old mice were ~30% less active on voluntary running wheels than WT mice. The α-actin-EGFP protein clearly demonstrated that the transgene was expressed equally in all myosin heavy chain (MHC) fibre types during the early postnatal period, but subsequently became largely confined to MHCIIB fibres. Ringbinden fibres, internal nuclei and myofibrillar myopathy pathologies, not typical features in nemaline myopathy or patients with ACTA1 mutations, were frequently observed. Ringbinden were found in fast fibre predominant muscles of adult mice and were exclusively MHCIIB-positive fibres. Thus, this mouse model presents a reliable model for the investigation of the pathobiology of nemaline body formation and muscle weakness and for evaluation of potential therapeutic interventions. The occurrence of core-like regions, internal nuclei and ringbinden will allow analysis of the mechanisms underlying these lesions. The occurrence of ringbinden and features of myofibrillar myopathy in this mouse model of ACTA1 disease suggests that patients with these pathologies and no genetic explanation should be screened for ACTA1 mutations.  相似文献   

10.
The aim of this study was to evaluate the effect of lead and excess zinc on the adaptation of mitochondria from skeletal muscles to physical effort. Rats were intoxicated once a week for 12 weeks by subcutaneous injection of the solution containing 2 mg Zn+2 and/or 3 mg Pb2+ per kg of body weight. During the last 6 weeks, 6 times weekly, rats performed endurance training which involved swimming 15 minutes daily with additional load of 5% of the body weight. The activities of isocitrate (ICD), malate (SDH), succinate (MDH) dehydrogenases, cytochrome oxidase (COX) and protein content (PM) were determined in the mitochondrial fractions obtained from the soleus muscle (ST fibres), and from the superficial (FTb fibres) and deep (FTa fibres) parts of the gastrocnemius muscle. In the control group (C), which was injected with saline, higher activities of ICD and MDH were obtained in FTa and FTb fibres than in the ST fibres. SDH and COX had higher activities in FTa and ST compared to FTb fibres. Zinc treatment (Zn) caused diminution of ICD, SDH and COX activities in ST fibres. Lead intoxication (Pb) resulted in a decrease of MDH activity in all fibre types, and in a decrease of SDH activity in ST fibres. Simultaneous action of zinc and lead produced an increase in ICD activity and diminution of COX activity in FTb fibres. It also resulted in an increase of SDH and decrease of COX activity in ST fibres. These results suggest that the ST fibres are more susceptible to disturbances of adaptation to physical exercise caused by zinc and lead. There are no signs of uniform antagonism between zinc and lead action in the processes under investigation.  相似文献   

11.
Nutrient malnutrition, during the early stages of development, may facilitate the onset of metabolic diseases later in life. However, the consequences of nutritional insults, such as a high-fat diet (HFD) after protein restriction, are still controversial. We assessed overall glucose homeostasis and molecular markers of mitochondrial function in the gastrocnemius muscle of protein-restricted mice fed an HFD until early adulthood. Male C57BL/6 mice were fed a control (14% protein-control diet) or a protein-restricted (6% protein-restricted diet) diet for 6 weeks. Afterward, mice received an HFD or not for 8 weeks (mice fed a control diet and HFD [CH] and mice fed a protein-restricted diet and HFD [RH]). RH mice showed lower weight gain and fat accumulation and did not show an increase in fasting plasma glucose and insulin levels compared with CH mice. RH mice showed higher energy expenditure, increased citrate synthase, peroxisome-proliferator-activated receptor gamma coactivator 1-alpha protein content, and higher levels of malate and α-ketoglutarate compared with CH mice. Moreover, RH mice showed increased AMPc-dependent kinase and acetyl coenzyme-A (CoA) carboxylase phosphorylation, lower intramuscular triacylglycerol content, and similar malonyl-CoA levels. In conclusion, protein undernourishment after weaning does not potentiate fat accumulation and insulin resistance in adult young mice fed an HFD. This outcome seems to be associated with increased skeletal muscle mitochondrial oxidative capacity and reduced lipids accumulation.  相似文献   

12.
The postnatal development of extrafusal fibers in the slow-twitch soleus muscle of genetically dystrophic C57BL/6J dy2J/dy2J mice and their normal age-matched controls was investigated by histochemical and quantitative methods at selected ages of 4, 8, 12, and 32 weeks. The majority of fibers in the soleus consisted of two kinds, fast-twitch oxidative-glycolytic (FOG) and slow-twitch oxidative (SO), according to reactions for alkaline-stable and acid-stable myosin ATPase and the oxidative enzyme, NADH-tetrazolium reductase. A minor population of fibers, stable for both alkaline- and acid-preincubated ATPase, but variable in staining intensity for NADH-TR, were designated "atypical" fibers. With age, the normal soleus exhibited a gradual increase in the number and proportion of SO fibers and a reciprocal, steady decline in the percentage of FOG fibers. Atypical fibers were numerous at 4 weeks, but were substantially diminished at later ages. Since total extrafusal fiber number remained relatively constant between the periods examined, this change in relative proportions reflects an adaptive transformation of fiber types characteristic of normal postnatal growth. A striking alteration in the number and distribution of fiber types was associated with the dystrophic soleus. At 4 weeks an 18% reduction in total fiber number was already noted. Subsequently, by 32 weeks a further 22% diminution in overall fiber number had occurred. With age, the absolute number and proportion of dystrophic SO fibers were drastically reduced. In contrast, the percentage of dystrophic FOG fibers increased significantly while their absolute numbers between 4 and 32 weeks remained relatively constant. Atypical fibers in the dystrophic solei were found in elevated numbers at all age groups, particularly at 12 weeks. They may, in part, represent attempts at regeneration or an intermediate stage in fiber-type transformation. Microscopically, both of the major fiber types appeared affected, albeit differently, by the dystrophic process. We suggest that a failure or retardation in the normal postnatal conversion of fiber types within the soleus muscle occurs in this murine model for muscular dystrophy.  相似文献   

13.
Maternal malnutrition during the lactation period in early development may have long-term programming effects on adult offspring. We evaluated the combined effects of parasitological behaviour and histopathological features and malnutrition during lactation. Lactating mice and their pups were divided into a control group (fed a normal diet of 23% protein), a protein-restricted group (PR) (fed a diet containing 8% protein) and a caloric-restricted group (CR) (fed according to the PR group intake). At the age of 60 days, the offspring were infected with Schistosoma mansoni cercariae and killed at nine weeks post-infection. Food intake, body and liver masses, leptinaemia, corticosteronaemia, collagen morphometry and neogenesis and the cellular composition of liver granulomas were studied. PR offspring showed reduced weight gain and hypophagia, whereas CR offspring became overweight and developed hyperphagia. The pre-patent period was longer (45 days) in both programmed offspring as compared to controls (40 days). The PR-infected group had higher faecal and intestinal egg output and increased liver damage. The CR-infected group showed a lower number of liver granulomas, increased collagen neogenesis and a higher frequency of binucleate hepatocytes, suggesting a better modulation of the inflammatory response and increased liver regeneration. Taken together, our findings suggest that neonatal malnutrition of offspring during lactation affects the outcome of schistosomiasis in mice.  相似文献   

14.
Objective: The suckling period is one potentially “critical” period during which nutritional intake may permanently “program” metabolism to promote increased adult body weight and insulin resistance in later life. This study determined whether fructose introduced during the suckling period altered body weight and induced changes in fatty acid transport leading to insulin resistance in adulthood in rats. Methods and Procedures: Pups were randomly assigned to one of four diets: suckle controls (SCs), rat milk substitute formula (Rat Milk Substitute), fructose‐containing formula (Fructose), or galactose‐containing formula (Galactose). Starting at weaning, all pups received the same diet; at 8 weeks of age, half of the SC rats began ingesting a diet containing 65% kcal fructose (SC‐Fructose). This continued until animals were 12 weeks old and the study ended. Results: At weeks 8, 10, and 11, the Fructose group weighed more than SC and SC‐Fructose groups (P < 0.05). At weeks 8 and 10 of age, the Fructose group had significantly higher insulin concentrations vs. rats in the SC‐Fructose group. 3H‐Palmitate transport into vesicles from hind limb skeletal muscle was higher in Fructose vs. SC rats (P < 0.05). CD36 expression was increased in the sarcolemma but not in whole tissue homogenates from skeletal muscle from Fructose rats (P < 0.05) suggesting a redistribution of this protein associated with fatty acid uptake across the plasma membrane. This change in subcellular localization of CD36 is associated with insulin resistance in muscle. Discussion: Consuming fructose during suckling may result in lifelong changes in body weight, insulin secretion, and fatty acid transport involving CD36 in muscle and ultimately promote insulin resistance.  相似文献   

15.
The effects of a protein-restricted diet (8% protein, 81% carbohydrate and 11% lipids) on Schistosoma mansoni infectivity, fecal egg excretion and intestinal egg distribution in Swiss (SW) mice were studied. Pregnant mice received a deficient diet from the middle of gestation until delivery. Seven-days-old mice were exposed to 50 cercariae (BH strain, Brazil). Offspring mice had a free access to the deficient diet since lactation until adulthood. The controls were fed with a commercial mice diet. A parasitological examination was performed between six and eight weeks post-infection while both groups were necropsied one week later. Mice on the experimental diet showed a significant loss in body weight. There was no significant difference (p > 0.05) in pre-patent period, kinetics of egg excretion and worm recovery from mice on either diet. Significant differences (p < 0.05) were found concerning to the percentage of deposited eggs in the distal segment of the small intestine from hosts on the experimental diet. Our data suggest that experimental malnutrition induced for a long term has no detrimental effect on the acute schistosomiais infection in SW mice.  相似文献   

16.
The nucleolar changes in the dorsal root ganglion cells of the squirrel monkey, Saimiri sciureus, have been investigated by the use of histological and histochemical methods in the healthy neonates (born to mothers maintained on 25% protein diet during gestation) and young adults, and compared with those observed in the protein-malnourished neonates (born to mothers maintained on a 8% protein diet during gestation). Also studied were young adults maintained on a high protein diet (25% protein) as well as on a low protein diet (2% protein content) for a period of 15 weeks. Whereas in the healthy animals (neonates and young adults) only a few cells show nucleolar budding and finally their extrusion into the cytoplasm, the protein-malnourished animals show a significantly enhanced nucleolar activity in the form of increased size (3-4 times the original) and active budding either from one focal point or at several places on the body of the nucleolus. In the neurons which show chromatolytic changes, these extrusions migrate to the nuclear membrane, wherefrom they pass on to the cytoplasm through an evagination of the nuclear envelope. Such a migration appears to occur by a focal dissolution of the nuclear membrane. It appears that, under conditions of severe malnutrition and advanced chromatolytic changes in the neuronal cytoplasm, the nucleolar material provides a compensatory mechanism for the increased cytoplasmic catabolism and loss of ribonucleoprotein material in order to facilitate additional protein synthesis for cell survival.  相似文献   

17.
The impact of chronic excessive energy intake on protein metabolism is still controversial. Male Wistar rats were fed ad libitum during 5 weeks with either a high‐fat high‐sucrose diet (HF: n = 9) containing 45% of total energy as lipids (protein 14%; carbohydrate 40% with 83.5% sucrose) or a standard diet (controls: n = 10). Energy intake and body weight were recorded. At the end of the experiment, we measured body composition, metabolic parameters (plasma amino acid, lipid, insulin, and glucose levels), inflammatory parameter (plasma α2‐macroglobulin), oxidative stress parameters (antioxidant enzyme activities, lipoperoxidation (LPO), protein carbonyl content in liver and muscle), and in vivo fed–state fractional protein synthesis rates (FSRs) in muscle and liver. Energy intake was significantly higher in HF compared with control rats (+28%). There were significant increases in body weight (+8%), body fat (+21%), renal (+41%), and epidydimal (+28%) fat pads in HF compared with control rats. No effect was observed in other tissue weights (liver, muscle, spleen, kidneys, intestine). Liver and muscle FSRs, plasma levels of lipids, glucose, insulin and α2‐macroglobulin, soleus and liver glutathione reductase and peroxidase acitivities, MnSOD activity, LPO, and protein carbonyl content were not altered by the HF diet. Only soleus muscle and liver Cu/ZnSOD activity and soleus muscle catalase activities were reduced in HF rats compared with control rats. Thus, chronic excessive energy intake and increased adiposity, in the absence of other metabolic alterations, do not stimulate fed‐state tissue protein synthesis rates.  相似文献   

18.
19.
We conducted a study to evaluate the effects of genotype (Muscovy, Pekin and their crossbred, hinny and mule) and overfeeding (14 days from 12 weeks of age) on lipid deposition in myofibres and intramuscular adipocytes of breast and thigh muscles of ducks. Birds of the four genotypes were also reared contemporaneously with a growing diet distributed ad libitum. Muscle samples (Pectoralis major and Sartorius) were collected at 14 weeks of age on 8 ducks per treatment. The muscle fibre typing, the total lipid and triglyceride contents in myofibres and the relative surface occupied by adipocytes on the cross-sectional area of the muscles were determined by histological and image analysis. Overfeeding induced a marked increase of body weight but had no significant effect on the muscle weight, the cross-sectional area (CSA) of myofibres and the muscle typology. In muscles, overfeeding induced a large accumulation of lipids, mainly in adipocytes whose relative surface increased 1.5 fold in P. major and 2.1 fold in Sartorius and an increase in triglyceride content of fast twitch oxydo-glycolytic and glycolytic fibres in P. major only (+ 37 and + 16% respectively). Genotype had no significant effect on the muscle typology. By comparison with the other genotypes, Muscovy ducks exhibited the highest body weight, the highest muscle weight which could partly be explained by the highest fibre CSA and the lowest intramuscular fat content in adipocytes and myofibres (only fast twitch oxydo-glycolytic fibres in P. major). We observed the reverse situation for the Pekin ducks. The crossbred ducks always presented intermediate values except for body weight.  相似文献   

20.
An experimental model which resembles human drug addiction was developed to study the effect of chronic drug (cocaine or morphine) administration on the immune system. As malnutrition has been associated with drug use, a low protein diet has been evaluated for its contribution to the impairment of the immune system during cocaine/morphine addiction. Female C57BL/6 mice that received a 20% or 4% casein diet were studied. Both drugs were administered intraperitoneally daily for 11 weeks and drugs were administered in increasing daily doses, beginning after 3 weeks of diet consumption. Doses of cocaine began with 5 mg/kg body weight and reached the maximum dose of 40 mg/kg/day at the fourth week. Doses of morphine gradually increased from 10 mg/kg to 75 mg/kg body weight with the maximum dose reached after 5 weeks of treatment. Cocaine administration reduced body weight, particularly in the low protein diet group, and spleen weight in protein malnourished mice. Cocaine as well as saline injected mice showed a decrease in the percentage of CD4+ CD8+ and Mac-1+ cells and an increase in B cells in the spleens of well nourished mice. Morphine-treated mice showed similar results to those observed in cocaine or saline treated mice. These results suggest that cocaine, morphine or saline injection can alter the percentage of cells that express a defined phenotype independently of the nutritional status of the subject. Moreover, the effect appears dependent on a stress mediated process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号