首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aims: The stress‐gradient hypothesis (SGH) predicts how plant interactions change along environmental stress gradients. We tested the SGH in an aridity gradient, where support for the hypothesis and the specific shape of its response curve is controversial. Location: Almería, Cáceres and Coimbra, three sites in the Iberian Peninsula that encompass the most arid and wet habitats in the distribution range of a nurse shrub species –Retama sphaerocarpa L. (Boiss) – in Europe. Methods: We analysed the effect of Retama on its understorey plant community and measured the biomass and species richness beneath Retama and in gaps. We estimated the frequency (changes in species richness), importance and intensity of the Retama effects, and derived the severity–interaction relationship pattern, analysing how these interaction indices changed along this aridity gradient. Results and conclusions: The intensity and frequency of facilitation by Retama increased monotonically with increasing environmental severity, and the importance tended to have a similar pattern, overall supporting the SGH. Our data did not support predictions from recent revisions of the SGH, which may not apply to whole plant communities like those studied here or when interactions are highly asymmetrical. Facilitation by Retama influenced community composition and species richness to the point that a significant fraction of species found at the most arid end of the gradient were only able to survive beneath the nurse shrub, whereas some of these species were able to thrive in gaps at more mesic sites, highlighting the ecological relevance of facilitation by nurse species in mediterranean environments, especially in the driest sites.  相似文献   

2.
Reproductive patterns are analysed in annual legumes of west Asia, and their relationships to increasing aridity determined by multivariate analysis. Dormancy, seed size, dispersal and fecundity are shown to be partially substitutable in terms of their effect on survival and population growth.The range of patterns show greatest diversity under mesic conditions in coastal, mediterranean areas with high winter rainfall, low incidence of frost and long growing season. Increasing aridity leads to increasing reproductive homogeneity, in which a subset of patterns-those composed of high levels of seed dormancy, high seed to pod ratios, restricted dispersal capabilities and early flowering-become predominant. These findings corroborate earlier theoretical and empirical evidence concerning desert annuals.The majority of widespread species are shown to possess arid-type patterns. This exerts considerable influence on both the type and degree of ecotypic differentiation within species. The only feature that responds consistently to climatic change is flowering time, particularly among species characterized by high seed dormancy. In the few widespread species that do not display arid-type characteristics, ecotypic differentiation appears more frequently in a larger suite of traits.The unequal environmental demands made on species showing different levels of dormancy (e.g. variation in length of growing season from year to year and place to place) leads to strong asymmetries governing the relationships between reproduction and ecological amplitude. In this respect arid-type strategists with high seed dormancy appear to have greater chances of expansion than others. This has implications when choosing pasture legumes to improve mediterranean grasslands.  相似文献   

3.
由于年降雨量减少和变异性的增加,地中海东部地区的气候变化将对生态系统功能和植物群落动态产生重大影响。我们旨在了解种子库作为应对气候变化所导致的气候不确定性的潜在缓冲作用。我们研究了沿干旱梯度出现的18种常见物种的萌发策略。数据由干旱、 半干旱、地中海和中等地中海生态系统连续九年内萌发的土壤种子库获得。在半干旱和地中海地区,采用了模拟30%干旱和30%降雨增加的降雨处理方法。在连续三个萌发季的最佳灌溉条件下检测了萌发策略,以确定每种土壤样品的总体种子萌发能力。使用一种新颖的统计方法研究了萌发策略的变化,该方法考虑了可能影响种子发芽性的气候和生物因素。研究结果表明,优势种通过产生具有不同年度发芽率概率的种子来控制其发芽率。可产生种子的降雨量导致了关于可萌发性的两种主要种子类型:高萌发性(可形成短暂种子库的种子)和低萌发性(可形成持久种子库的种子)。我们得出的结论是,两种类型的干湿年之间种子产生的差异沿干旱梯度建立了一个稳定的平衡,使土壤种子库可以充当稳定机制,以防止降雨的不可预测性。此外,我们提出了地中海和干旱生态系统中占主导地位的一年生物种萌发策略的一般模型,该模型加强了土壤种子库可以作为应对该地区气候变化引起的气候不确定性的缓冲剂的概念。  相似文献   

4.
5.
Questions: We addressed two poorly understood aspects of plant response to climate change: the impact of extreme climatic events and the mediating role of biotic interactions, through a study of heatwave effects on tree seedling survival rates and ability of the tree canopy to alter seedling responses. Location: Mountain belt of the northern French Alps (Maurienne Valley). Methods: The survival rates of two seedling cohorts from four tree species (Abies alba, Acer pseudoplatanus, Fraxinus excelsior and Picea abies) were measured during both the 2003 European heatwave and an average summer (2004) in deciduous broadleaf mountain forests. Seedlings were transplanted into two soil moisture conditions, and in experimental gaps or under the tree canopy. Results: The heatwave strongly decreased tree seedling survival rates, while there was an important species‐specific mediating role of biotic interactions. In the wettest conditions, the tree canopy strongly increased survival of Abies, buffering the negative impact of the heatwave. In contrast, in the driest conditions, the tree canopy decreased survival of Picea and Acer, amplifying the negative impact of the heatwave. We found evidence of increasing soil water stress in the understorey of the driest community, but further studies including vapour pressure deficit measurements are needed to elucidate the driving mechanism of facilitation. Conclusions: The high species specificity of the mediating role of biotic interactions and its variation along stress gradients leads to questions on our ability to predict large‐scale responses of species to climate changes.  相似文献   

6.
7.
8.
Abstract. The Kalahari sand sheet occupies 2.5 million ha in southern Africa. It is an area with relatively similar deep aeolian soils, and a strong south to north gradient in rainfall, from 200 to 1000 mm mean annual precipitation (MAP) in the region studied. This provides an excellent basis for gradient studies at the subcontinental scale. This paper briefly reviews the literature on the vegetation of the Kalahari and describes the vegetation structure and composition at 11 new sites. There is a clear gradient in woody plant biomass (as indexed by basal area) from south to north. Above the minimum level of 200 mm MAP, the woody basal area increases at a rate of ca. 2.5 m2.ha‐1 per 100 mm MAP. Mean maximum tree height also increases along the gradient, reaching 20 m at ca. 800 mm MAP. The number of species to contribute > 95% of the woody basal area increases from one at 200 mm to 16 at 1000 mm MAP. Members of the Mimosaceae (mainly Acacia) dominate the tree layer up to 400 mm MAP. They are replaced by either the Combretaceae (Combretum or Terminalia) or Colophospermum mopane of the Caesalpinaceae between 400 and 600 mm MAP, and by other representatives of the Caesalpinaceae above 600 mm MAP. The vegetation is largely deciduous up to 1000 mm MAP, except for species that apparently have access to groundwater, which may be locally dominant above about 600 mm MAP.  相似文献   

9.
10.
11.
12.
13.
Question: As it has been found that stress promotes positive interactions mediated by physical amelioration of the environment, is it possible that interactions may turn positive with increasing chronic anthropogenic disturbance (CAD) intensity? Also, is it possible that species that do not tolerate disturbance may require environmental amelioration by their neighbours in disturbed areas, whereas tolerant species may not? Location: The semi‐arid grassland in Concepción Buenavista, Oaxaca, southern Mexico. Methods: We assessed interaction intensity and importance through a neighbour removal experiment along a CAD gradient for three species differing in disturbance tolerance. Water potential was monitored on vegetated and bare soil. Results: A shift from competitive effects in low CAD sites to positive interactions in degraded sites was found. The disturbance‐tolerant species did not respond to CAD, whereas the less tolerant species changed its interactions drastically in terms of growth and reproduction. The species with medium tolerance had an intermediate response. Neighbours promoted germination in all species. Vegetation removal reduced soil humidity. Conclusions: Positive interactions seemingly resulted from the amelioration of the abiotic stresses induced by vegetation removal. The dependence on neighbours to germinate, grow, or reproduce suggests that if CAD eliminates the plant cover, vegetation will hardly recover. Irreversible changes are known to occur in communities where positive interactions predominate, but CAD may set the conditions for irreversible shifts even in communities where interactions are normally competitive.  相似文献   

14.
Low and highly variable precipitation pulses exert a strong selective pressure on plant traits and this might provide axes of ecological differentiation among plant species in arid ecosystems. We asked whether aridity contributes to maintain high diversity of species and morphotypes in shrub canopies. We selected eleven study sites evenly distributed across a 400-km transect in northern Patagonia, Argentina. Precipitation is low and highly variable within and between years but almost homogeneous across the transect (125–150 mm). Mean annual temperature varied, however, ranging from 8 °C (west) to 13.5 °C (east) creating a west–east gradient of aridity (aridity index from 3.7 to 7.3, respectively). Sheep grazing commenced in the early 1900s at a similar intensity across the transect. We recorded the richness and cover of shrubs by species and by morphotypes (drought deciduous tall shrubs, evergreen tall shrubs, medium shrubs, and dwarf shrubs), and further calculated the species and morphotype Shannon diversity index at each site. We assessed the presence of spiny leaves, leaf pubescence, thorny stems, and photosynthetic stems in shrub species of all morphotypes and collected green leaves of the dominant shrub species (more than 80% of the total shrub cover) to assess the leaf area, leaf mass per unit area, N-, lignin- and soluble phenolic-concentrations per species at each site. Richness and diversity of shrub species and morphotypes were positively associated with aridity. The richness and diversity of shrub species with pubescent leaves and thorny stems, and nitrogen concentration in green leaves of dominant shrubs increased with increasing aridity. We conclude that our findings on increased diversification in life history traits, species and morhotypes in shrub canopies with increasing aridity support the hypothesis that variability in aridity provides axes of ecological differentiation among shrub species facilitating their coexistence.  相似文献   

15.
Tielbörger  Katja  Kadmon  Ronen 《Plant Ecology》2000,150(1-2):53-63
An unresolved discussion in contemporary ecology deals with the relative importance of competition along environmental gradients. In deserts, local-scale differences in environmental productivity may be caused by the presence of shrubs, which represent a favorable habitat for annual populations within a nutrient-poor matrix. In this study, we attempted to test the hypothesis that facilitation of desert annuals by shrubs increase the intensity of competition among the annual plants. Such negative indirect effects have so far been ignored in studies about plant-plant interactions. We tested our hypothesis by measuring seedling survival and fecundity of four abundant annual plant species with and without neighbors in open areas and under shrub canopies in a sandy desert area. Our findings did not indicate indirect negative effects of shrubs on their understory annuals. Sensitivity to the presence of neighbors varied between species and surprisingly, the species with the smallest seeds was the only one which was not negatively affected by the presence of neighbors. In contrast to our hypothesis, there was no difference between the habitat types shrubs and openings in absolute and relative competition intensity. Our overall results suggest that negative indirect effects of shrubs are unimportant in determining demographic response of understory annual plants.  相似文献   

16.
Question: How does the interaction between two dominant shrub species in a coastal sand dune community change during their life history? Does this interaction influence their population dynamics? Location: A semiarid coastal sand dune system in southeast Spain. Methods: For 3 years we monitored physiological status, growth and reproductive effort of Juniperus phoenicea and Pistacia lentiscus, the dominant shrub species, growing either alone or in close spatial association. We also recorded adult mortality patterns and characterized seedling survival, soil properties and microclimate conditions beneath canopies and in bare ground. Results and conclusions: There was a strong bi‐directional interaction between the two studied species, with a net balance that changed in sign with increasing plant development. While mature individuals facilitated the establishment of seedlings of both species, adult mortality patterns suggested asymmetric competition at later life stages. The interaction with Pistacia negatively affected growth of juniper and contributed to its high mortality rates, while juniper had almost no effect on mature Pistacia individuals. Physiological data suggested that Pistacia had a competitive advantage over juniper, most likely because of differences in rooting patterns and tolerance to salinity, which may determine the source of water available for each species. Community dynamics are governed by facilitation at the seedling stage and shaped by differences in physiological traits in adult plants. Plant‐plant interactions, which are strongly affected by environmental gradients, are important drivers of community dynamics in this system.  相似文献   

17.
Abstract. Competition and facilitation may occur simultaneously in plant communities, and the prevalence of either process depends on abiotic conditions. Here we attempt a community‐wide approach in the analysis of plant interactions, exploring whether in a semi‐arid environment positive or negative interactions predominate and whether there are differences among co‐occurring shrub species. Most shrubs in our plot exerted significant effects on their understorey communities, ranging from negative to positive. We found a clear case of interference and another case where the effect was neutral, but facilitation predominated and the biomass of annuals under most shrubs in our community was larger than in gaps. Effects on soil water and fertility were revealed as the primary source of facilitation; the build‐up of soil organic matter changed soil physical properties and improved soil water relations. Facilitation by shrubs involved decoupling of soil temperature and moisture. Sheltering from direct radiation had an effect on productivity, but significant differences in understorey biomass did not parallel understorey light environment. A positive balance of the interaction among plants, essentially mediated by changes in soil properties, is the predominant outcome of plant interactions in this semi‐arid community.  相似文献   

18.
 Stem xylem features in two evergreen Quercus species (Q. coccifera and Q. ilex) and a deciduous one (Q. faginea) were analysed along an Atlantic-Mediterranean climatic gradient in which rainfall and winter cold experience strong variation. Mean maximum vessel diameter, vessel density, vessel element length, xylem transverse sectional area, Huber value (xylem transverse sectional area per leaf area unit), theoretical leaf specific conductivity (estimated hydraulic conductance per leaf area unit) and total leaf area were determined in 3-year-old branches. Q. faginea presented the widest vessels and the highest theoretical leaf specific conductivity while Q. coccifera showed the lowest total leaf area and the highest Huber value. Studied features did not exhibit significant correlations with mean minimum January temperature in any species but did show significant relationships with rainfall. In Q. coccifera, mean maximum vessel diameter, vessel element length and theoretical leaf specific conductivity increased with higher rainfall while vessel density decreased. Mean maximum vessel diameter and total leaf area in Q. ilex increased with precipitation whereas variables of Q. faginea did not show any significant trend. Results suggest that aridity, rather than minimum winter temperature, controls stem xylem responses in the studied evergreen species. Q. faginea traits did not show any response to precipitation, probably because this species develops deep roots, which in turn makes edaphic and topographic factors more important in the control of soil water availability. In response to aridity Q. coccifera only exhibits adjustment at a xylem level by reducing its water transport capacity through a reduction of vessel diameter without changing the amount of xylem tissue or foliage, whereas Q. ilex adjusts its water transport capacity in parallel to the foliage area. Received: 13 January 1997 / Accepted: 8 April 1997  相似文献   

19.
  • Intraspecific variations in pollen morphological traits are poorly studied. Interspecific variations are often associated with pollination systems and pollinator types. Altitudinal environmental changes, which can influence local pollinator assemblages, provide opportunities to explore differentiation in pollen traits of a single species over short distances. The aim of this study is to examine intraspecific variations in pollen traits of an insect-pollinated shrub, Weigela hortensis (Caprifoliaceae), along an altitudinal gradient.
  • Pollen spine phenotypes (length, number and density), pollen diameter, lipid mass (pollenkitt) around pollen grains, pollen production per flower and pollinator assemblages were compared at four sites at different altitudes.
  • Spine length and the spine length/diameter ratio of pollen grains were greater at higher altitudes but not correlated with flower or plant size. Spine number and density increased as flower size increased, and pollen lipid mass decreased as plant size increased. Bees were the predominant pollinators at low-altitude sites whereas flies, specifically Oligoneura spp. (Acroceridae), increased in relative abundance with increasing altitude.
  • The results of this study suggest that the increase in spine length with altitude was the result of selection favouring longer spines at higher-altitude sites and/or shorter spines at lower-altitude sites. The altitudinal variation in selection pressure on spine length could reflect changes in local pollinator assemblages with altitude.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号