首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mathematical models suggest that reproducing females may benefit by facultatively adjusting their relative investment into sons vs. daughters, in response to population‐wide shifts in operational sex ratio (OSR). Our field studies on viviparous alpine skinks (Niveoscincus microlepidotus) document such a case, whereby among‐ and within‐year shifts in OSR were followed by shifts in sex allocation. When adult males were relatively scarce, females produced male‐biased litters and larger sons than daughters. The reverse was true when adult males were relatively more common. That is, females that were courted and mated by few males produced mainly sons (and these were larger than daughters), whereas females that were courted and mated by many males produced mainly daughters (and these were larger than sons). Maternal body size and condition also covaried with sex allocation, and the shifting pattern of sexual size dimorphism at birth may reflect these correlated effects rather than a discrete component of an evolved sex‐allocation strategy.  相似文献   

2.
Adult sex ratios in wild bird populations   总被引:2,自引:1,他引:1  
PAUL F. DONALD 《Ibis》2007,149(4):671-692
Offspring sex ratios in wild bird populations, and the extent to which they vary from the equality expected by random genotypic sex determination, have received much recent attention. Adult sex ratios (ASRs) in wild birds, on the other hand, remain very poorly described, and many of the questions about them posed by Ernst Mayr in 1939 remain unanswered. This review assesses population-level sex ratio patterns in wild bird populations, with an emphasis on the ASR. A quantitative assessment of over 200 published estimates of ASR, covering species from a wide range of taxa, regions and habitats, supported Mayr's assertion that skewed ASRs are common in wild bird populations. On average, males outnumbered females by around 33%, and 65% of published estimates differed significantly from equality. In contrast, population-level estimates of offspring sex ratio in birds did not generally differ from equality, and mean ASR across a range of wild mammal species was strongly female-skewed. ASR distortion in birds was significantly more severe in populations of globally threatened species than in non-threatened species, a previously undescribed pattern that has profound implications for their monitoring and conservation. Higher female mortality, rather than skewed offspring sex ratio, is the main driver of male-skewed ASRs in birds, and the causes and implications of this are reviewed. While estimates of ASR in wild bird populations may be subject to a number of biases, which are discussed, there is currently no quantitative evidence that an ASR of one male to one female represents the norm in birds. A better understanding and reporting of ASRs in wild bird populations could contribute greatly to our understanding of population processes and could contribute much to theoretical and applied research and conservation.  相似文献   

3.
Sex ratio theory provides a powerful source of testable predictions about sex allocation strategies. Although studies of invertebrates generally support predictions derived from the sex ratio theory, evidence for adaptive sex ratio biasing in vertebrates remains contentious. This may be due to the fact that most studies of vertebrates have focused on facultative adjustment in relation to maternal condition, rather than processes that might produce uniform sex biases across individuals. Here, we examine the effects of local resource enhancement (LRE) and local resource competition (LRC) on birth sex ratios (BSRs). We also examine the effects of sex differences in the costs of rearing male and female offspring on BSRs. We present data from 102 primate species and show that BSRs are skewed in favour of the dispersing sex in species that do not breed cooperatively, as predicted by the LRC model. In accordance with the LRE model, BSRs are generally skewed in favour of the more beneficial sex in cooperatively breeding primate species. There is no evidence that BSRs reflect the extent of sexual size dimorphism, an indirect measure of the costs of rearing male and female offspring. These analyses suggest that adaptive processes may play an important role in the evolution of BSRs in vertebrates.  相似文献   

4.
Global warming poses a threat to organisms with temperature‐dependent sex determination because it can affect operational sex ratios. Using a multigenerational experiment with a marine fish, we provide the first evidence that parents developing from early life at elevated temperatures can adjust their offspring gender through nongenetic and nonbehavioural means. However, this adjustment was not possible when parents reproduced, but did not develop, at elevated temperatures. Complete restoration of the offspring sex ratio occurred when parents developed at 1.5 °C above the present‐day average temperature for one generation. However, only partial improvement in the sex ratio occurred at 3.0 °C above average conditions, even after two generations, suggesting a limitation to transgenerational plasticity when developmental temperature is substantially increased. This study highlights the potential for transgenerational plasticity to ameliorate some impacts of climate change and that development from early life may be essential for expression of transgenerational plasticity in some traits.  相似文献   

5.
Split sex ratios in the social Hymenoptera: a meta-analysis   总被引:1,自引:0,他引:1  
The study of sex allocation in social Hymenoptera (ants, bees,and wasps) provides an excellent opportunity for testing kin-selectiontheory and studying conflict resolution. A queen–workerconflict over sex allocation is expected because workers aremore related to sisters than to brothers, whereas queens areequally related to daughters and sons. If workers fully controlsex allocation, split sex ratio theory predicts that colonieswith relatively high or low relatedness asymmetry (the relatednessof workers to females divided by the relatedness of workersto males) should specialize in females or males, respectively.We performed a meta-analysis to assess the magnitude of adaptivesex allocation biasing by workers and degree of support forsplit sex ratio theory in the social Hymenoptera. Overall, variationin relatedness asymmetry (due to mate number or queen replacement)and variation in queen number (which also affects relatednessasymmetry in some conditions) explained 20.9% and 5% of thevariance in sex allocation among colonies, respectively. Theseresults show that workers often bias colony sex allocation intheir favor as predicted by split sex ratio theory, even iftheir control is incomplete and a large part of the variationamong colonies has other causes. The explanatory power of splitsex ratio theory was close to that of local mate competitionand local resource competition in the few species of socialHymenoptera where these factors apply. Hence, three of the mostsuccessful theories explaining quantitative variation in sexallocation are based on kin selection.  相似文献   

6.
We examined sex allocation patterns in island and mainland populationsof cooperatively breeding white-winged fairy-wrens. The markeddifferences in social structure between island and mainlandpopulations, in addition to dramatic plumage variation amongmales both within and between populations, provided a uniquesituation in which we could investigate different predictionsfrom sex allocation theory in a single species. First, we testthe repayment (local resource enhancement) hypothesis by askingwhether females biased offspring sex ratios in relation to theassistance they derived from helpers. Second, we test the malequality (attractiveness) hypothesis, which suggests that femalesmated to attractive high-quality males should bias offspringsex ratios in favor of males. Finally, we test the idea thatfemales in good condition should bias offspring sex ratios towardmales because they are able to allocate more resources to offspring,whereas females in poor condition should have increased benefitsfrom producing more female offspring (Trivers-Willard hypothesis).We used molecular sexing techniques to assess total offspringsex ratios of 86 breeding pairs over 2 years. Both offspringand first brood sex ratios were correlated with the pair-male'sbody condition such that females increased the proportion ofmales in their brood in relation to the body condition (masscorrected for body size) of their social partner. This relationwas both significant and remarkably similar in both years ofour study and in both island and mainland populations. Althoughconfidence of paternity can be low in this and other fairy-wrenspecies, we show how this finding might be consistent with themale quality (attractiveness) hypothesis with respect to malecondition. There was no support for the repayment hypothesis;the presence of helpers had no effect on offspring sex ratios.There was weak support for both the male quality (attractiveness)hypothesis with respect to plumage color and the maternal conditionhypothesis, but their influence on offspring sex ratios wasnegligible after controlling for the effects of pair-male condition.  相似文献   

7.
Split sex ratios, when some colonies produce only male and others only female reproductives, is a common feature of social insects, especially ants. The most widely accepted explanation for split sex ratios was proposed by Boomsma and Grafen, and is driven by conflicts of interest among colonies that vary in relatedness. The predictions of the Boomsma–Grafen model have been confirmed in many cases, but contradicted in several others. We adapt a model for the evolution of dioecy in plants to make predictions about the evolution of split sex ratios in social insects. Reproductive specialization results from the instability of the evolutionarily stable strategy (ESS) sex ratio, and is independent of variation in relatedness. We test predictions of the model with data from a long-term study of harvester ants, and show that it correctly predicts the intermediate sex ratios we observe in our study species. The dioecy model provides a comprehensive framework for sex allocation that is based on the pay-offs to the colony via production of males and females, and is independent of the genetic variation among colonies. However, in populations where the conditions for the Boomsma–Grafen model hold, kin selection will still lead to an association between sex ratio and relatedness.  相似文献   

8.
Vertebrate sex ratios are notorious for their lack of fit to theoretical models, both with respect to the direction and the magnitude of the sex ratio adjustment. The reasons for this are likely to be linked to simplifying assumptions regarding vertebrate life histories. More specifically, if the sex ratio adjustment itself influences offspring fitness, due to sex-specific interactions among offspring, this could affect optimal sex ratios. A review of the literature suggests that sex-specific sibling interactions in vertebrates result from three major causes: (i) sex asymmetries in competitive ability, for example due to sexual dimorphism, (ii) sex-specific cooperation or helping, and (iii) sex asymmetries in non-competitive interactions, for example steroid leakage between fetuses. Incorporating sex-specific sibling interactions into a sex ratio model shows that they will affect maternal sex ratio strategies and, under some conditions, can repress other selection pressures for sex ratio adjustment. Furthermore, sex-specific interactions could also explain patterns of within-brood sex ratio (e.g. in relation to laying order). Failure to take sex-specific sibling interactions into account could partly explain the lack of sex ratio adjustment in accordance with theoretical expectations in vertebrates, and differences among taxa in sex-specific sibling interactions generate predictions for comparative and experimental studies.  相似文献   

9.
Sex-allocation theory suggests that selection may favour maternal skewing of offspring sex ratios if the fitness return from producing a son differs from that for producing a daughter. The operational sex ratio (OSR) may provide information about this potential fitness differential. Previous studies have reached conflicting conclusions about whether or not OSR influences sex allocation in viviparous lizards. Our experimental trials with oviparous lizards (Amphibolurus muricatus) showed that OSR influenced offspring sex ratios, but in a direction opposite to that predicted by theory: females kept in male-biased enclosures overproduced sons rather than daughters (i.e. overproduced the more abundant sex). This response may enhance fitness if local OSRs predict survival probabilities of offspring of each sex, rather than the intensity of sexual competition.  相似文献   

10.
Because pollen disperses and ovules do not, a basic difference in dispersal abilities of male and female gametes exists in plants. With an analytical model, we show that the combination of such sex-biased dispersal of gametes and variation of habitat quality results in two opposite selective forces acting on the evolution of sex allocation in plants: (i) a plant should overproduce pollen in good patches and overproduce ovules in poor patches in order to equilibrate secondary sex ratios of gametes after pollen dispersal; (ii) a plant should overproduce ovules in good patches and overproduce pollen in poor patches in order to increase the likelihood that its progeny establishes in good patches. Our theoretical results indicate that the evolution of habitat-dependent sex allocation should be favoured in plants, in a direction that depends on the relative dispersal ability of pollen and seeds. We also show that superficially similar predictions obtained for habitat-dependent evolutionarily stable sex allocation in animals actually result from a completely different balance between the two underlying evolutionary forces.  相似文献   

11.
Maternal sex ratio distorters (MSDs) are selfish elements that enhance their transmission by biasing their host's sex allocation in favor of females. While previous models have predicted that the female‐biased populations resulting from sex ratio distortion can benefit from enhanced productivity, these models neglect Fisherian selection for nuclear suppressors, an unrealistic assumption in most systems. We used individual‐based computer simulation modeling to explore the intragenomic conflict between sex ratio distorters and their suppressors and explored the impacts of these dynamics on population‐level competition between species characterized by MSDs and those lacking them. The conflict between distorters and suppressors was capable of producing large cyclical fluctuations in the population sex ratio and reproductive rate. Despite fitness costs associated with the distorters and suppressors, MSD populations often exhibited enhanced productivity and outcompeted non‐MSD populations in single and multiple‐population competition simulations. Notably, the conflict itself is beneficial to the success of populations, as sex ratio oscillations limit the competitive deficits associated with prolonged periods of male rarity. Although intragenomic conflict has been historically viewed as deleterious to populations, our results suggest that distorter–suppressor conflict can provide population‐level advantages, potentially helping to explain the persistence of sex ratio distorters in a range of taxa.  相似文献   

12.
Sex allocation theory predicts that mothers in good conditionshould bias their brood sex ratio in response to the differentialbenefits obtained from increased maternal expenditure in sonsand daughters. Although there is well-documented variationof offspring sex ratios in several bird species according tomaternal condition, the assumption that maternal condition has different fitness consequences for male and for female offspringremains unclear. The blue-footed booby (Sula nebouxii) is asexually size-dimorphic seabird, with females approximately31% heavier than males. It has been reported that the sex ratiois male biased in years with poor feeding conditions, whichsuggests that either females adjust their sex ratio in accordancewith their condition or that they suffer differential brood mortality before their sex can be determined. In this studyI tested whether the condition of mothers affected their daughters'fitness more than their sons' fitness. I manipulated maternalinvestment by trimming the flight feathers and thereby handicappingfemales during the chick-rearing period. Adult females in thehandicapped group had a poorer physical condition at end ofchick growth, as measured by mass and by the residuals of masson wing length compared to control birds. Female chicks wereaffected by the handicapping experiment, showing a lower massand shorter wing length (reduced approximately 8% in both measures)than controls. However, this effect was not found in male chicks.Hatching sex ratios were also related to female body conditionat hatching. The brood sex ratio of females in poor conditionwas male biased but was female biased for females in good condition.Overall, these results suggest that the variation in the sexratio in blue-footed boobies is an adaptive response to thedisadvantage daughters face from being reared under poor conditions.  相似文献   

13.
14.
We document a seasonal shift in the sex ratios of broods produced by resident southeastern American kestrels (Falco sparverius paulus) breeding in nest boxes in Florida. Early in the breeding season, most biased broods were biased towards males, whereas later in the season, most biased broods were biased towards females. Computer-simulated broods subjected to sex-biased egg and/or nestling mortality demonstrate that it is possible that differential mortality produced the pattern of bias that we observed. However, these simulations do not exclude the possibility that female kestrels were manipulating the primary sex ratio of the broods. We present evidence that this sex ratio shift is adaptive: for males we detected breeding as yearlings, all had fledged early the previous season. No such relationship between season and the probability of breeding as a yearling was found for females. We propose the Early Bird Hypothesis as the ecological basis for the advantage of fledg ing early in males. We hypothesize that pre-emptive competition among post-fledging, dispersing males for breeding sites confers an advantage to males fledged early in the season. This hypothesis may explain why a non-migratory population of the Eurasian kestrel (F. tinnunculus) and non-migratory American kestrels breeding in Florida (F. s. paulus) exhibit this seasonal shift in sex ratios, whereas migratory American kestrels (F. s. sparverius) breeding in Saskatchewan, Canada, do not. We discuss the relevance of the Early Bird Hypothesis for other animal species.  相似文献   

15.
Spatial structure has been shown to favor female‐biased sex allocation, but current theory fails to explain male biases seen in many taxa, particularly those with environmental sex determination (ESD). We present a theory and accompanying individual‐based simulation model that demonstrates how population structure leads to male‐biased population sex ratios under ESD. Our simulations agree with earlier work showing that the high productivity of female‐producing habitats creates a net influx of sex‐determining alleles into male‐producing habitats, causing larger sex ratio biases, and lower productivity in male‐producing environments (Harts et al. 2014). In contrast to previous findings, we show that male‐biasing habitats disproportionately impact the global sex ratio, resulting in stable male‐biased population sex ratios under ESD. The failure to detect a male bias in earlier work can be attributed to small subpopulation sizes leading to local mate competition, a condition unlikely to be met in most ESD systems. Simulations revealed that consistent male biases are expected over a wide range of population structures, environmental conditions, and genetic architectures of sex determination, with male excesses as large as 30 percent under some conditions. Given the ubiquity of genetic structure in natural populations, we predict that modest, enduring male biased allocation should be common in ESD species, a pattern consistent with reviews of ESD sex ratios.  相似文献   

16.
According to theory, in species in which male variance in reproductive success exceeds that of the females, sons are more costly to produce; females mated with high quality males or those in better condition should produce more sons. In monogamous species, however, the variance in the reproductive success of the two sexes is often similar and mate choice is often mutual, making predictions regarding sex allocation more difficult. In the rock sparrow Petronia petronia, both males and females have a sexually selected yellow patch on the breast, whose size correlates with individual body condition. We investigated whether the brood sex ratio co‐varies with the size of the yellow patch of the father and the mother in a sample of 173 broods (818 chicks) over 8 breeding seasons. While the size of the yellow patch of the mother and the father did not predict per se a deviation from the expected 1:1 sex ratio, brood sex ratios were predicted by the interaction of male and female yellow patch size. This result is surprising, as the ornament is sexually selected by both males and females as an indicator of quality in both sexes and should therefore be inherited by all offspring irrespective of their sex. It indirectly suggests that other sex‐specific traits associated with patch size (e.g. polygyny in males and fecundity in females) may explain the sex allocation bias observed in rock sparrows. Thus, female individual quality alone, as expressed through the size of the yellow patch, was not associated with the biases in sex ratios reported in this study. Our results rather suggest that sex allocation occurs in response to male attractiveness in interaction with female attractiveness. In other words, females tend to preferentially allocate towards the sex of the parent with more developed ornament within the pair.  相似文献   

17.
Conventional sex roles imply caring females and competitive males. The evolution of sex role divergence is widely attributed to anisogamy initiating a self‐reinforcing process. The initial asymmetry in pre‐mating parental investment (eggs vs. sperm) is assumed to promote even greater divergence in post‐mating parental investment (parental care). But do we really understand the process? Trivers [Sexual Selection and the Descent of Man 1871–1971 (1972), Aldine Press, Chicago] introduced two arguments with a female and male perspective on whether to care for offspring that try to link pre‐mating and post‐mating investment. Here we review their merits and subsequent theoretical developments. The first argument is that females are more committed than males to providing care because they stand to lose a greater initial investment. This, however, commits the ‘Concorde Fallacy’ as optimal decisions should depend on future pay‐offs not past costs. Although the argument can be rephrased in terms of residual reproductive value when past investment affects future pay‐offs, it remains weak. The factors likely to change future pay‐offs seem to work against females providing more care than males. The second argument takes the reasonable premise that anisogamy produces a male‐biased operational sex ratio (OSR) leading to males competing for mates. Male care is then predicted to be less likely to evolve as it consumes resources that could otherwise be used to increase competitiveness. However, given each offspring has precisely two genetic parents (the Fisher condition), a biased OSR generates frequency‐dependent selection, analogous to Fisherian sex ratio selection, that favours increased parental investment by whichever sex faces more intense competition. Sex role divergence is therefore still an evolutionary conundrum. Here we review some possible solutions. Factors that promote conventional sex roles are sexual selection on males (but non‐random variance in male mating success must be high to override the Fisher condition), loss of paternity because of female multiple mating or group spawning and patterns of mortality that generate female‐biased adult sex ratios (ASR). We present an integrative model that shows how these factors interact to generate sex roles. We emphasize the need to distinguish between the ASR and the operational sex ratio (OSR). If mortality is higher when caring than competing this diminishes the likelihood of sex role divergence because this strongly limits the mating success of the earlier deserting sex. We illustrate this in a model where a change in relative mortality rates while caring and competing generates a shift from a mammalian type breeding system (female‐only care, male‐biased OSR and female‐biased ASR) to an avian type system (biparental care and a male‐biased OSR and ASR).  相似文献   

18.
Experimental alteration of litter sex ratios in a mammal   总被引:1,自引:0,他引:1  
Adaptive theory predicts that mothers would be advantaged by adjusting the sex ratio of their offspring in relation to their offspring's future reproductive success. Studies investigating sex ratio variation in mammals, including humans, have obtained notoriously inconsistent results, except when maternal condition is measured around conception. Several mechanisms for sex ratio adjustment have been proposed. Here, we test the hypothesis that glucose concentrations around conception influence sex ratios. The change in glucose levels resulted in a change in sex ratios, with more daughters being born to females with experimentally lowered glucose, and with the change in glucose levels being more predictive than the glucose levels per se. We provide evidence for a mechanism, which, in tandem with other mechanisms, could explain observed sex ratio variation in mammals.  相似文献   

19.
Survival, growth and sex ratios of gynogenetic diploid honmoroko   总被引:1,自引:0,他引:1  
Survival, growth and sex ratios of gynogenetic diploid honmoroko Gnathopogon caerulescens induced by blocking the release of the second polar body were examined. Mean survival of gynogenetic juveniles at 130 days after hatching was about 33% lower than that of the controls. No significant difference was seen in early growth between control and gynogenetic diploids. Standard length and body weight in six groups of gynogenetic progeny were significantly greater but in two groups were significantly smaller than in the controls. Although 69% of gynogenetic diploids had well-developed gonads, the remaining 30% had undeveloped gonads (small in size or thread-like), and those gonads were divided into four types. The mean proportion of females in the 10 gynogenetic groups was 87·2% which was significantly ( P <0·01) higher than in the controls (44·7%). Gynogenetic diploids included 3·0–35·3% males. Most of those males produced a high proportion of female progeny, but the proportion of male offspring varied widely. From these results, the sex determining mechanism in honmoroko was presumed to be female homogamety, but other factors resulted in the production of males.  相似文献   

20.
While most ladybird species are believed to show a conventional 1:1 sex ratio, population samples from five different species of ladybird have been found to show significant excesses of females. The species involved are Anatis ocellata, Exochomus quadripustulatus, Chilocorus renipustulatus, C. bipustulatus and C. nigritus. All possess neo-XY sex chromosome systems. It is possible that the excesses of females reflect the recombination of segments present at the ends of the neo-XY sex bivalent. If the products of recombination are more lethal in males than females, differences in sex ratio will result. An alternative hypothesis involves an interaction between Y-linked factors and maternally inherited factors, possibly of a transposable element type. The maintenance of such excesses of females in several species, in different taxonomic groups within the Coccinellidae, and the presence of differences in different populations of one of the species, must reflect a selective advantage for these excesses in natural populations of these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号