首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
3.
4.
5.
6.
7.
Parasite-derived mucin-like molecules might be involved in parasite attachment to and invasion of host cells. In addition, parasites might secrete mucin-degrading enzymes, enabling the penetration of protective mucus gels that overlie the mucosal surfaces of their potential hosts. Furthermore, they might generate binding ligands on the membrane-bound mucins of host cells by using specific glycosidases. It is possible that host mucins and mucin-like molecules prevent the establishment of parasites or facilitate parasite expulsion. They might also serve as a source of metabolic energy and adhesion ligands for those parasites adapted to exploit them. Sally Hicks and colleagues here review the biochemical properties of mucins and mucin-like molecules in relation to interactions (established and putative) between protozoan parasites and their hosts.  相似文献   

8.
9.
Cytochemical methods involving metal chelation of the formazan of an N-thiazol-2-yl tetrazolium salt are described for the localization of diphosphopyridine nucleotide diaphorase (DPND) and triphosphopyridine nucleotide diaphorase (TPND) in mitochondria. These methods utilize the reduced coenzymes DPNH or TPNH as substrate. The reaction involves a direct transfer of electrons from reduced coenzyme to the respective diaphorase which in turn transfers the electrons to tetrazolium salt, reducing it to the insoluble formazan. Competition for electrons by preferential acceptors in the respiratory chain was prevented by various inhibitors. In the presence of respiratory inhibitors the rate of tetrazolium reduction was markedly increased. The greatest reduction was observed when amytal was used. Sites of diaphorase activity appeared as deposits of blue-black metal formazan chelate measuring 0.2 to 0.3 micro in diameter. Small mitochondria contained 2 deposits, while larger ones contained up to 6. Considerable differences were observed in the rate of tetrazolium reduction and cellular localization of diaphorase activity when DPNH was used as substrate as compared to TPNH. In each instance DPNH was oxidized more rapidly by tissues than TPNH. These findings support the concept that the oxidation of coenzymes I and II is mediated through separate diaphorases.  相似文献   

10.
M F Carlier  D Pantaloni 《Biochemistry》1976,15(21):4703-4712
The binding of reduced nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide phosphate (NADP) dependent isocitrate dehydrogenase from beef liver cytoplasm was studied by several equilibrium techniques (ultracentrifugation, molecular sieving, ultrafiltration, fluorescence). Two binding sites (per dimeric enzyme molecule) were found with slightly different dissociation constants (0.5 and 0.12 muM) and fluorescence yields (7.7 and 6.3). A ternary complex was formed between enzyme, isocitrate, and NADPH, in which NADPH dissociation constant was 5 muM. On the contrary, no binding of NADPH to the enzyme took place in the presence of magnesium isocitrate. Dialysis experiments showed the existence of 1 NADP binding site/dimer, with a dissociation constant of 26 muM. When NADPH was present with the enzyme in the proportion of 1 molecule/dimer, the dissociation constant of NADP was decreased fourfold, reaching a value quantitatively comparable to the Michaelis constant. The kinetics of coenzyme binding was followed using the stopped-flow technique with fluorescence detection. NADPH binding to the enzyme occurred through one fast reaction (k1 = 20 muM-1 s-1). Dissociation of NADPH took place upon NADP binding; however, equilibrium as well as kinetic data were incompatible with a simple competition scheme. Dissociation of NADPH from the enzyme upon magnesium isocitrate binding was preceded by the formation of a transitory ternary complex in which the fluorescence of NADPH was only about 30% of that in the enzyme-NADPH complex. Then interaction between the conenzymes and the involvement of ternary complexes in the catalytic mechanism are discussed in relation with what is known about the regulatory role of the coenzyme (Carlier, M. F., and Pantaloni, D. (1976), Biochemistry, 15, 1761-1766).  相似文献   

11.
12.
13.
Techniques for determining the long-term dynamics of host-parasite systems are well established for mixed populations. The field of spatial modelling in ecology is more recent but a number of key advances have been made. In this paper, we use state-of-the-art approximation techniques, supported by simulations, in order to investigate the role of recovery and immunity in spatially structured populations. Our approach is to use correlation models, namely pair-wise models, to capture the spatial relationships of contacts and interactions between individuals. We use the pair-wise framework to address a number of key ecological questions; including, the persistence of endemic limit cycles and regions of parasite-driven extinction--features which differentiate spatial from non-spatial models--and the effects on invasion fitness. We demonstrate a loss of limit cycle behaviour, in addition to an increase in the critical transmissibility and extinction thresholds, when recovery is included. This approach allows for a better analytical understanding of the dynamics of host-parasite interactions and demonstrates the importance of recovery and immunity in local interactions.  相似文献   

14.
15.
16.
17.
18.
Some parasites express mucin-like molecules. These have possible roles in attachment and invasion of host cells and in the avoidance of host immune processes. Enzymes of parasite origin might also facilitate infection, either by degrading host mucus barriers or by generating binding sites on host cells. Host mucins have roles in preventing parasite establishment or in parasite expulsion. They, in turn, might be exploited by parasites, either as sources of fuel or binding sites, or as host-finding targets. Here, we describe the biochemical properties of mucins and mucin-like molecules in relation to interactions (established and putative) between helminth parasites and their hosts.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号