首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D E Lorke  M Lauer 《Acta anatomica》1990,137(3):222-233
Trisomy 19 (ts19) of the mouse permits detailed studies on the influence of an extra autosome upon the postnatal development of the central nervous system. To examine gliogenesis and myelinogenesis, the optic nerves of 19 ts19 pugs aged 1-15 days have been examined by light and electron microscopy and compared to those of litter-mate controls. Differentiation of astrocytes and oligodendrocytes, myelinogenesis as well as the opening of the eyes are each delayed by about 2 days. Myelin sheaths are normally structured in ts19. There is a decrease in the percentage of myelinated fibres. The cross-sectional area of the ts19 optic nerve is reduced. The fibre density, which decreases with age both in ts19 and control mice, is higher in ts19 mice. Both with ts19 and control animals, the distribution of fibre diameters of myelinated axons overlaps with that of promyelinated and unmyelinated fibres, but myelinated axons cannot be observed below a diameter of 0.3 micron, and unmyelinated axons are always smaller than 1 micron. The mean diameter of promyelinated axons is identical in ts19 and control animals. Myelination is therefore not severely disturbed in the ts19 optic nerve. As retinal differentiation in ts19 is delayed by 2 days as well, reports on an asynchronous development of neurons and myelin sheaths cannot be confirmed for the visual system.  相似文献   

2.
To establish a standard for genotype/phenotype studies on the myelin of zebrafish (Danio rerio), an organism increasingly popular as a model system for vertebrates, we have initiated a detailed characterization of the structure and biochemical composition of its myelinated central and peripheral nervous system (CNS; PNS) tissues. Myelin periods, determined by X-ray diffraction from whole, unfixed optic and lateral line nerves, were approximately 153 and approximately 162 Angstrom, respectively. In contrast with the lability of PNS myelin in higher vertebrates, zebrafish lateral line nerve myelin exhibited structural stability when exposed to substantial changes in pH and ionic strength. Neither optic nor lateral line nerves showed swelling at the cytoplasmic apposition in CaCl(2)-containing Ringer's solution, in contrast with nerves from other teleost and elasmobranch fishes. Zebrafish optic nerve showed greater stability against changes in NaCl and CaCl(2) than lateral line nerve. The nerves from zebrafish having mutations in the gene for myelin basic protein (mbpAla2Thr and mbpAsp25Val) showed similar myelin periods as the wildtype (WT), but gave approximately 20% less compact myelin. Analysis of proteins by SDS-PAGE and Western blotting identified in both CNS and PNS of WT zebrafish two orthologues of myelin P0 glycoprotein that have been characterized extensively in trout--intermediate protein 1 (24 kDa) and intermediate protein 2 (28 kDa). Treatment with endoglycosidase-F demonstrated a carbohydrate moiety of approximately 7 kDa, which is nearly threefold larger than for higher vertebrates. Thin-layer chromatography for lipids revealed a similar composition as for other teleosts. Taken together, these data will serve as a baseline for detecting changes in the structure and/or amount of myelin resulting from mutations in myelin-related genes or from exogenous, potentially cytotoxic compounds that could affect myelin formation or stability.  相似文献   

3.
Summary The effect of AY-9944, an inhibitory cholesterol biosynthesis, on the myelination of the optic nerve of rats was studied. Suckling rats were injected intraperitoneally with the drug every other day from birth, and were sacrificed at 10, 20 and 30 days of age together with littermate controls. The analysis is based on counting, at the electron-microscope level, the number of unmyelinated axons and the number of myelin lamellae surrounding each myelinating axon. The results indicate that a decrease in endogenous cholesterol by AY 9944, induced an overall retardation of the myelination process in the optic nerve: a larger proportion of myelinated axons and smaller number of myelin lamellae around the myelinating axons, when compared with the littermate controls, was observed. Exogenous cholesterol from the maternal milk did not compensate for a lack in endogenous cholesterol.Degenerating myelin sheaths were frequently seen in the experimental optic nerves at 20 and 30 days of age. Numerous membranous, intracytoplasmic drug-induced inclusions were found at all ages studied. Acknowledgements. The author is particularly indebted to Dr. B. G. Uzman and Dr. G. M. Villegas for their valuable discussion and suggestions. He wishes also to thank Mr. F. Paredes, Mr. J. Aristimuño and Miss Marcia Escala for their technical assistance; Mr. J. Bigorra for the photographic aid, and Miss Sonia Rodríguez for her secretarial help.  相似文献   

4.
Ion fluxes in mammalian myelinated axons are restricted to the nodes of Ranvier, where, in particular, voltage-gated Na+ channels are clustered at a high density. The node of Ranvier is separated from the internode by two distinct domains of the axolemma, the paranode and the juxtaparanode. Each axonal domain is characterized by the presence of a specific protein complex. Although oligodendrocytes and/or myelin membranes are believed to play some instructive roles in the organization of axonal domains, the mechanisms leading to their localized distribution are not well understood. In this paper we focused on the involvement of myelin sheaths in this domain organization and examined the distribution of axonal components in the optic nerves of wild type, hypomyelinating jimpy mice and demyelinating PLP transgenic mice. The results showed that the clustering of Na+ channels does not require junction-like structures to be formed between the glial processes and axons, but requires mature oligodendrocytes to be present in close vicinity.  相似文献   

5.
We studied the myelination of the visual pathway during the ontogeny of the lizard Gallotia galloti using immunohistochemical methods to stain the myelin basic protein (MBP) and proteolipid protein (PLP/DM20), and electron microscopy. The staining pattern for the PLP/DM20 and MBP overlapped during the lizard ontogeny and was first observed at E39 in cell bodies and fibers located in the temporal optic nerve, optic chiasm, middle optic tract, and in the stratum album centrale of the optic tectum (OT). The expression of these proteins extended to the nerve fiber layer (NFL) of the temporal retina and to the outer strata of the OT at E40. From hatching onwards, the labeling became stronger and extended to the entire visual pathway. Our ultrastructural data in postnatal and adult animals revealed the presence of both myelinated and unmyelinated retinal ganglion cell axons in all visual areas, with a tendency for the larger axons to show the thicker myelin sheaths. Moreover, two kinds of oligodendrocytes were described: peculiar oligodendrocytes displaying loose myelin sheaths were only observed in the NFL, whereas typical medium electron-dense oligodendrocytes displaying compact myelin sheaths were observed in the rest of the visual areas. The weakest expression of the PLP/DM20 in the NFL of the retina appears to be linked to the loose appearance of its myelin sheaths. We conclude that typical and peculiar oligodendrocytes are involved in an uneven myelination process, which follows a temporo-nasal and rostro-caudal gradient in the retina and ON, and a ventro-dorsal gradient in the OT.  相似文献   

6.
In the optic nerve of Anurans numerous myelinated and unmyelinated axons appear under the electron microscope as compact bundles that are closely bounded by one or several glial cells. In these bundles the unmyelinated fibers (0.15 to 0.6 µ in diameter) are many times more numerous than the myelinated fibers, and are separated from each other, from the bounding glial cells, or from adjacent myelin sheaths, by an extracellular gap that is 90 to 250 A wide. This intercellular space is continuous with the extracellular space in the periphery of the nerve through the numerous mesaxons and cell boundaries which reach the surface. Numerous desmosomes reinforce the attachments of adjacent glial membranes. The myelinated axons do not follow any preferential course and, like the unmyelinated ones, have a sinuous path, continuously shifting their relative position and passing from one bundle to another. At the nodes of Ranvier they behave entirely like unmyelinated axons in their relations to the surrounding cells. At the internodes they lie between the unmyelinated axons without showing an obvious myelogenic connection with the surrounding glial cells. In the absence of connective tissue separating individual myelinated fibers and with each glial cell simultaneously related to many axons, this myelogenic connection is highly distorted by other passing fibers and is very difficult to demonstrate. However, the mode of ending of the myelin layers at the nodes of Ranvier and the spiral disposition of the myelin layers indicate that myelination of these fibers occurs by a process similar to that of peripheral nerves. There are no incisures of Schmidt-Lantermann in the optic myelinated fibers.  相似文献   

7.
The aim of this study is to investigate a fine structure of the retino-optic nerve junction in the chicken. We especially focused on the myelin sheaths and astrocytes in the intraocular optic nerve (ION) and its adjoining parts. A part of the axons of retinal nerve fiber layer (NFL) were myelinated. Ganglion cell axons were ensheathed by loose myelin in the NFL and by a compact one in the ION and optic nerve (ON). Myelin structure changed from loose type to a compact one within the very narrow NFL-ION junction. Loose myelin forming cells are dark type of oligodendrocytes in the retina. From the most peripheral ON to the choroidal part of ION, astrocytes contained abundant microtubules. The optic nerve around the lamina cribrosa is exposed to mechanical force during eye movement. It is suggested that these microtubules may perform the cytoskeletal function. Astrocytes in the retinal part of ION had longer processes filled with abundant gliofilaments. They may provide the mechanical support for the ganglion cell axons, which are exposed directly to intraocular pressure. Although astrocytes in the retinal level of ION extended their processes into the retina, their soma was never found in the retina.  相似文献   

8.
Direct evidence has been presented to confirm the existence of a spiral in the myelin sheaths of the central nervous system. An account of some of the variations in structure of central myelin sheaths has been given and it has been shown that the radial component of myelin sheaths has the form of a series of rod-like thickenings of the intraperiod line. These thickenings extend along the intraperiod line in a direction parallel to the length of the axon. The relative position of the internal mesaxon and external tongue of cytoplasm has been determined in a number of transverse sections of sheaths from the optic nerves of adult mice, adult rats, and young rats. In about 75 per cent of the mature sheaths examined, these two structures were found within the same quadrant of the sheath, so that the cytoplasm of the external tongue process tends to lie directly outside that associated with the internal mesaxon. The frequency with which the internal mesaxon and external tongue lie within the same quadrant of the sheath increases both with the age of the animal and with the number of lamellae present within a sheath. The possible significance of these findings is discussed.  相似文献   

9.
Retinal ganglion cell axons and axonal electrical activity have been considered essential for migration, proliferation, and survival of oligodendrocyte lineage cells in the optic nerve. To define axonal requirements during oligodendrogenesis, the developmental appearance of oligodendrocyte progenitors and oligodendrocytes were compared between normal and transected optic nerves. In the absence of viable axons, oligodendrocyte precursors migrated along the length of the nerve and subsequently multiplied and differentiated into myelin basic protein-positive oligodendrocytes at similar densities and with similar temporal and spatial patterns as in control nerves. Since transected optic nerves failed to grow radially, the number of oligodendrocyte lineage cells was reduced compared with control nerves. However, the mitotic indices of progenitors and the percentage of oligodendrocytes undergoing programmed cell death were similar in control and transected optic nerves. Oligodendrocytes lacked their normal longitudinal orientation, developed fewer, shorter processes, and failed to form myelin in the transected nerves. These data indicate that normal densities of oligodendrocytes can develop in the absence of viable retinal ganglion axons, and support the possibility that axons assure their own myelination by regulating the number of myelin internodes formed by individual oligodendrocytes.  相似文献   

10.
Summary Adult albino rats were subjected to unilateral surgical removal of the eyeball. After survival times of 7–140 days, the numerical response of the neuroglial cells, and the progressive disintegration of the myelin sheaths in the optic nerves, were studied qualitatively and quantitatively in electron-microscopic montages. The distribution density of microglia and astroglia in degenerating optic nerve increased to peaks after 35 and 56 days respectively, whereas, the oligodendroglia gradually decreased. During the early stage of degeneration, microglial cells appeared and invaded the sheath at the intraperiod line, peeling off the outer lamellae, which were then engulfed by phagocytosis. Within the microglia, myelin sheath fragments were surrounded by a membrane curled to form a myelin ring. In the intermediate stage of degeneration, the paired electrondense lines of the ring, made up of myelin basic protein, decomposed and formed a homogenous or heterogenous osmiophilic layered structure, the myelin body, which, in the final stages, disintegrated and transformed into globoid lipid droplets and needle shaped cholesterol crystals.  相似文献   

11.
Rat sciatic nerve, spinal root, and cranial nerve were immunostained with an antibody against rat brain carbonic anhydrase II (ca), to determine the localization of ca in the rat peripheral nervous system (PNS). Similar methods were applied to mouse nerves to see if that antigen could be detected in the PNS of this species. In rat nerves, intense immunostaining was observed in the axoplasm of many of the myelinated fibers, whereas others were stained less intensely or were negative. A heterogeneous pattern of immunostaining was also found in neuronal perikarya within the ganglia, and in some regions of the ganglia ca immunostaining was found in putative satellite cells and their processes. Ca in rat PNS therefore appears to occur at both neuronal and glial sites, whereas it is exclusively glial in the CNS. In longitudinal sections of some fibers within rat nerves, ca immunostaining could be detected at the inner boundaries of the myelin sheaths. In mouse nerves, axoplasmic staining was observed but it was fainter than in rat nerves. Interspecies differences were most obvious in the dorsal columns of the spinal cord. In rat, intensely stained axons proceeded through the roots into the gracilis or cuneate and often into the gray matter. In mouse, there was much less immunostaining of axons but more intense ca immunostaining in CNS myelin than in the CNS myelin in the rat cord. The implications concerning putative functions of ca in the rodent nervous system are discussed.  相似文献   

12.
Abstract: Biochemical methods were used to study the time course of transport of choline phospholipids (labeled by the injection of [3H]choline into the ventral horn of the lumbar spinal cord) in rat sciatic nerve. Autoradiographic methods were used to localize the transported lipid within motor axons. Transported phospholipid, primarily phosphatidylcholine, present in the nerve at 6 h, continued to accumulate over the following 12 days. No discrete waves of transported lipid were observed (a small wave of radioactive phospholipid moving at the high rate would have been missed); the amounts of radioactive lipid increased uniformly along the entire sciatic nerve. In light-microscope autoradiographs, a class of large-caliber axons, presumably motor axons, retained the labeled lipid. Some lipid, even at 6 h, was seen within the myelin sheaths. Later, the labeling of the myelin relative to axon increased. The continued accumulation of choline phospholipids in the axons probably signifies their prolonged release from cell bodies and their retention in various axonal membranes, including the axolemma. The build-up of these phospholipids in myelin probably represents their transfer from the axons to the myelin sheaths surrounding them. When nerves are crushed and allowed to regenerate for 6 or 12 days, choline phospholipids transported during these times enter the regenerating nerve. In light and electron microscope autoradiographs, transported lipid was seen to be localized primarily in the regenerating axons. However, grains overlay the adjacent Schwann cell cytoplasm, indicating transported lipids were transferred from the regenerating axons to the associated Schwann cells. In addition, some cells not associated with growing axons were labeled, suggesting that phosphatidylcholine and possibly acetylcholine, carried to the regenerating axons by axonal transport, were actively metabolized in the terminal, with released choline label being used by other cells. These results demonstrate that axonal transport supplies mature and growing axons and their glial cells with choline phospholipids.  相似文献   

13.
In the present contribution the distributive pattern of phosphatases and non-specific esterase amongst the constituents of the leech eye has been revealed and the significance of the enzymatic locales in relation to the visual processes has been discussed. All the phosphatases studied demonstrate absence of the activity in the lens. Activity of the phosphatases, however, is restricted to the plasma membrane and associated cytoplasm to varying degrees. The significance of the phosphatases in the nerve impulses and transmission has been highlightened. The observation of considerable significance relates the demonstration of a high degree of non-specific esterase activity in the lens, which has defied all the phosphatases. Another observation relates to the positive activity of 5-nucleotidase in the group of axons constituting optic nerve. The significance of this observation has also been discussed.  相似文献   

14.
The ultrastructure of the trunk lateral line nerve of larval and adult lampreys was studied with transmission electron microscopy. We confirmed that lampreys' lateral line nerve lacks myelin. Nevertheless, all axons were wrapped by Schwann cell processes. In the larval nerve, gaps between Schwann cells were observed, where the axolemma was covered only by a basal lamina, indicating an earlier developmental stage. In the adult nerve, glial (Schwann cell) ensheathment was mostly complete. Additionally, we observed variable ratios of axons to Schwann cells in larval and adult preparations. In the larval nerve, smaller axons were wrapped by one Schwann cell. Occasionally, a single Schwann cell surrounded two axons. Larger axons were associated with two to five Schwann cells. In the adult nerve, smaller axons were surrounded by one, but larger axons by three to eight Schwann cells. The larval epineurium contained large adipose cells, separated from each other by single fibroblast processes. This layer of adipose tissue was reduced in adult preparation. The larval perineurium was thin, and the fibroblasts, containing large amounts of glycogen granules, were arranged loosely. The adult perineurium was thicker, consisting of at least three layers of fibroblasts separated by collagen fibrils. The larval and adult endoneurium contained collagen fibrils oriented orthogonally to each other. Both larval and adult lateral line nerves possessed a number of putative fascicles weakly defined by a thin layer of perineurial fibroblasts. These results indicate that after a prolonged larval stage, the lamprey lateral line nerve is subjected to additional maturation processes during metamorphosis. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The existence of a mechanism by which the ester- and ether-linked aliphatic chains of the major phospholipids are retailored during their axonal transport and sorted to specific membrane systems along the optic nerve and tract was investigated. A mixture of [1-14C]hexadecanol and [3H]arachidonic acid was injected into the vitreous body of albino rabbits. At 24 h and 8 days later, the distribution (as measured by the 3H/14C ratio) and the positioning (as monitored by hydrolytic procedures) of radioactivity in the various phospholipid classes of retina, purified axons, and myelin of the optic nerve and tract were determined. At the two intervals after labeling, the 3H/14C ratios of each diradyl type of phosphatidylethanolamine and phosphatidylcholine were (a) substantially unchanged all along the axons within the optic nerve and tract and (b) markedly modified in comparison with those found in the retina and axons for molecular species selectively restricted to myelin sheath. Evidence is thus available that intraxonally moving ethanolamine and choline glycerophospholipids, among others, are added to axonal membranes most likely without extensive modifications. In contrast, they are transferred into myelin after retailoring. Through these two processes, the sorting and targeting of newly synthesized phospholipids to their correct membrane domains, such as axoplasmic organelles, axolemma, or periaxonal myelin, could be controlled.  相似文献   

16.
P0 protein, the dominant protein in peripheral nervous system myelin, was studied immunocytochemically in both developing and mature Schwann cells. Trigeminal and sciatic nerves from newborn, 7-d, and adult rats were processed for transmission electron microscopy. Alternating 1- micrometer-thick Epon sections were stained with paraphenylenediamine (PD) or with P0 antiserum according to the peroxidase-antiperoxidase method. To localize P0 in Schwann cell cytoplasm and myelin membranes, the distribution of immunostaining observed in 1-micrometer sections was mapped on electron micrographs of identical areas found in adjacent thin sections. The first P0 staining was observed around axons and/or in cytoplasm of Schwann cells that had established a 1:1 relationship with axons. In newborn nerves, staining of newly formed myelin sheaths was detected more readily with P0 antiserum than with PD. Myelin sheaths with as few as three lamellae could be identified with the light microscope. Very thin sheaths often stained less intensely and part of their circumference frequently was unstained. Schmidt-Lanterman clefts found in more mature sheaths also were unstained. As myelination progressed, intensely stained myelin rings became much more numerous and, in adult nerves, all sheaths were intensely and uniformly stained. Particulate P0 staining also was observed in juxtanuclear areas of Schwann cell cytoplasm. It was most prominent during development, then decreased, but still was detected in adult nerves. The cytoplasmic areas stained by P0 antiserum were rich in Golgi complex membranes.  相似文献   

17.
The turnover of phospholipids was compared in peripheral nerves of Trembler dysmelinating mutant and control mice, after intraperitoneal and local injection of labeled ethanolamine. In the mutant sciatic nerve, neurochemical analysis showed that [14C]ethanolamine is incorporated into EGP (ethanolamine glycerophospholipids) of the sciatic nerve at a much higher rate in Trembler mutant than in control mice. Furthermore the decay rate of 14C-labeled EGP is faster in Trembler than in normal animals. The accelerated turnover of EGP in Trembler sciatic nerve affects the diacyl-EGP while the renewal of the alkenylacyl-EGP (plasmalogens) is slower than in controls. Quantitative radioautographic study at the ultrastructural level corroborate that the initial increase of the label in Trembler nerve fibers was different in axons, Schwann cells and myelin sheaths. EM radioautographs reveal indeed that the high label content observed in Trembler axons takes place preferentially in the myelinated portions of axons and drops within 1 week. In both myelinated and unmyelinated segments of the axons, the majority of the radioactivity was contained in axolemma and smooth axoplasmic reticulum. The 10-fold increase of label found in the myelin sheath of Trembler nerve fibers at 1 day raises the question of the origin of the labeled EGP, either by a stimulated synthesis in Schwann cells or by transfer from axonally transported phospholipids. In contrast, the label of axons, Schwann cells and myelin sheaths of control nerve remains stable during the same period.  相似文献   

18.
The neurological reactions in Wallerian degeneration have been studied by electron microscopy in the optic nerve of adult albino rats from 7 to 120 days after unilateral enucleation. Reactive astrocytes contained abundant dense bodies, numerous microtubules and hyperplastic glial filaments. These astrocytes also assisted phagocytosis of degenerated myelin sheaths and in glial scar formation. Oligodendrocytes disconnected their cytoplasmic extensions, which were phagocytosed by microglial cells and astrocytes, by increased production of lysosomes. Microglial cells consisted of crinkled, long, rough endoplasmic reticula, several highly-active Golgi complexes, laminar inclusions and globoid lipid droplets. Microglia engulfed and lysed the disintegrated axons and myelin sheaths.  相似文献   

19.
Transgenic mice expressing mutant (P301L) tau develop paresis, neurofibrillary tangles and neuronal loss in spinal motor neurons beginning at 4 to 6 months of age. Astrocytes and oligodendrocytes acquire filamentous tau inclusions at later ages. Here we report pathology in the spinal white matter of these animals. Progressive white matter pathology, detected as early as 2 months of age, was most marked in lateral and anterior columns, with sparing of posterior columns until late in the disease. Early changes in Luxol fast blue/periodic acid Schiff (LFB/PAS) and toluidine blue stained sections were vacuolation of myelin followed by accumulation of myelin figures within previous axonal tubes and finally influx of PAS-positive macrophages. Myelin debris and vacuoles were found in macrophages. At the ultrastructural level, myelinated axons showed extensive vacuolation of myelin sheaths formed by splitting of myelin lamellae at the intra-period line, while axons were atrophic and contained densely packed neurofilaments. Other axons were lost completely, resulting in collapse and phagocytosis of myelin sheaths. Also present were spheroids derived from swollen axons with thin myelin sheaths containing neurofilaments, tau filaments and degenerating organelles. Many oligodendrocytes had membrane-bound cytoplasmic bodies composed of tightly stacked lamellae capped by dense material. The vacuolar myelopathy in this model to some extent resembles that reported in acquired immune deficiency syndrome and vitamin B12 deficiency. The progressive axonal pathology is most consistent with a dying-back process caused by abnormal accumulation of tau in upstream neurons, while vacuolar myelinopathy may be a secondary manifestation of neuroinflammation.  相似文献   

20.
Biochemical studies of myelin in Wallerian degeneration of rat optic nerve   总被引:3,自引:1,他引:2  
Abstract— Wallerian degeneration of the optic nerves of the rat was induced by removal of the eyes. After 54, 66, 76 or 90 days of degeneration a myelin fraction of the nerves was obtained by the procedure of Laatsch et al. (1962). The yield of myelin from the degenerated nerves was decreased, but the isolated myelin appeared to be morphologically normal. The proportion of cholesterol in the myelin lipids was slightly increased, whereas that of the ethanolamineglycerophosphatides was decreased and galactolipids were normal. After one‘cycle’of myelin purification, the high-molecular-weight fraction formed a much greater percentage of the total protein in myelin isolated from degenerated optic nerves. After 2–3‘cycles’of purification, the distribution of protein in myelin isolated from degenerated and normal optic nerves was similar, an observation suggesting that the high-molecular-weight fraction in‘1-cycle myelin’from degenerated optic nerves may have been partly attributable to contamination. With the possible exception of ethanolamineglycerophosphatides, our data suggest that there was no preferential breakdown of myelin lipid constituents nor of protein constituents during Wallerian degeneration of rat optic nerve. As assessed by SDS-gel electrophoresis of the water-insoluble particulate fraction, the percentage of myelin protein was markedly decreased after 76 days of degeneration. However, the major myelin protein constituents in this fraction (the two basic proteins and proteolipid protein) appeared to decrease in the same relative proportions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号