首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene encoding the 5S rRNA for Leptospira interrogans serovar canicola strain Moulton was isolated and sequenced. The 5S rRNA gene occurs as a single copy within the genome and encodes a 117-nucleotide-long RNA molecule. The 5S rRNA gene is flanked at both the 5' and 3' ends by regions of A + T-rich sequences, and the 5'-flanking region contains a promoter sequence. L. interrogans has a unique and remarkable organization of the 5S rRNA gene. The 5S rRNA molecule exhibits a strong similarity to typical eubacterial 5S rRNA in terms of overall secondary structure, while the primary sequence is conserved to a lesser degree. Restriction analysis of the 5S rRNA gene indicated that the DNA sequence including the 5S rRNA gene is highly conserved in the genomes of parasitic leptospires.  相似文献   

2.
Eukaryotic 5S rRNA hybridizes specifically with 18S rRNA in vitro to form a stable intermolecular RNA:RNA hybrid. We have used 5S rRNA/18S rRNA fragment hybridization studies coupled with ribonuclease digestion and primer extension/chain termination analysis of 5S rRNA:18S rRNA hybrids to more completely map those mouse 5S rRNA and 18S rRNA sequences responsible for duplex formation. Fragment hybridization analysis has defined a 5'-terminal region of 5S rRNA (nucleotides 6-27) which base-pairs with two independent sequences in 18S rRNA designated Regions 1 (nucleotides 1157-1180) and 2 (nucleotides 1324-1339). Ribonuclease digestion of isolated 5S rRNA:18S rRNA hybrids with both single-strand- and double-strand-specific nucleases supports the involvement of this 5'-terminal 5S rRNA sequence in 18S rRNA hybridization. Primer extension/chain termination analysis of isolated 5S rRNA:18S rRNA hybrids confirms the base-pairing of 5S rRNA to the designated Regions 1 and 2 of 18S rRNA. Using these results, 5S rRNA:18S rRNA intermolecular hybrid structures are proposed. Comparative sequence analysis revealed the conservation of these hybrid structures in higher eukaryotes and the same but smaller core hybrid structures in lower eukaryotes and prokaryotes. This suggests that the 5S rRNA:16S/18S rRNA hybrids have been conserved in evolution for ribosome function.  相似文献   

3.
In Saccharomyces cerevisiae the majority of the genes for 5S rRNA lie within a 9kb rDNA sequence that is present as 100-200 tandemly-repeated copies on Chromosome XII. Following our observations that about 10% of yeast 5S rRNA exists as minor variant sequences, we screened a collection of yeast DNA fragments cloned in lambda gt for 5S rRNA genes whose flanking sequences differed from those adjacent to 5S rRNA genes of the rDNA repeat. Three variant 5S rRNA genes were isolated on the basis of such dissimilarity to rDNA repeat sequences. They display a remarkable conservation of their DNA in the vicinity of the 5S coding region, and are examples of a minor form of 5S rRNA coding sequence present in a small number of copies in the yeast genome. These variant sequences appear to be transcribed as efficiently as 5S rRNA genes of the rDNA repeat. In one of our isolates of the variant sequence a Ty transposable element is inserted 145bp upstream of the initiation point for 5S rRNA synthesis.  相似文献   

4.
5.
J Ko  Y Lee  I Park  B Cho 《FEBS letters》2001,508(3):300-304
To identify RNA motifs interacting with 5S rRNA, a systematic evolution of ligands by exponential enrichment experiment was applied. Some of the resulting RNA aptamers contained a consensus sequence similar to the sequence in the loop region of helix 89 of 23S rRNA. We show that the synthetic helix 89 RNA motif indeed interacted with 5S rRNA and that the region around loop B of 5S rRNA was involved in this interaction. These results suggest the presence of a novel RNA-RNA interaction between 23S rRNA and 5S rRNA which may play an important role in the ribosome function.  相似文献   

6.
M Jarsch  A B?ck 《Nucleic acids research》1983,11(21):7537-7544
The DNA sequence of the spacer (plus flanking) regions separating the 16S rRNA and 23S rRNA genes of two presumptive rDNA operons of the archaebacterium Methanococcus vannielii was determined. The spacers are 156 and 242 base pairs in size and they share a sequence homology of 49 base pairs following the 3' terminus of the 16S rRNA gene and of about 60 base pairs preceding the 5' end of the 23S rRNA gene. The 242 base pair spacer, in addition contains a sequence which can be transcribed into tRNAAla, whereas no tRNA-like secondary structure can be delineated from the 156 base pair spacer region. Almost complete sequence homology was detected between the end of the 16S rRNA gene and the 3' termini of either Escherichia coli or Halobacterium halobium 16S rRNA, whereas the putative 5' terminal 23S rRNA sequence shared partial homology with E. coli 23S rRNA and eukaryotic 5.8S rRNA.  相似文献   

7.
Evidence for the sequence of duckweed (Lemna minor) chloroplast 5S rRNA was derived from the analysis of partial and complete enzymic digests of the 32P-labelled molecule. The possible sequence of the chloroplast 5S rRNA from three other flowering plants was deduced by complete digestion with T1 ribonuclease and comparison of the sequences of the oligonucleotide products with homologous sequences in the duckweed 5S rRNA. This analysis indicates that the chloroplast 5S rNA species differ appreciably from their cytosol counterparts but bear a strong resemblance to one another and to the 5S rRNA species of prokaryotes. Structural features apparently common to all 5S rRNA molecules are also discussed.  相似文献   

8.
W H Yap  Y Wang 《Gene》1999,232(1):77-85
The genome of Streptomyces nodosus contains six ribosomal RNA (rRNA) operons. Four of the rRNA operons; rrnB, rrnD, rrnE and rrnF were cloned. We have completely sequenced all four operons, including a region 750 base pairs (bp) upstream of the 16S rRNA gene. The three rRNA genes present in each operon were closely linked in the order 16S-23S-5S. A sequence comparison of the four operons showed more than 99% sequence similarity between the corresponding 16S and 23S rRNA genes, and more than 97% similarity between 5S rRNA genes. The sequence differences observed between 23S rRNA genes appeared to be localized in two specific regions. Substantial sequence differences were found in the region upstream of the 16S rRNA gene as well as in the internal transcribed spacers. No tRNA gene was found in the 16S-23S spacer regions.  相似文献   

9.
10.
11.
Sequences of 5S and 5.8S rRNAs of the amoeboid protist Acanthamoeba castellanii have been determined by gel sequencing of terminally-labeled RNAs which were partially degraded with chemical reagents or ribonucleases. The sequence of the 5S rRNA is (formula, see text). This sequence is compared to eukaryotic 5S rRNA sequences previously published and fitted to a secondary structure model which incorporates features of several previously proposed models. All reported eukaryotic 5S rRNAs fit this model. The sequence of the 5.8S rRNA is (formula, see text). This sequence does not fit parts of existing secondary structure models for 5.8S rRNA, and we question the significance of such models.  相似文献   

12.
13.
The eukaryotic ribosomal 5S RNA–protein complex (5S rRNP) is formed by a co-translational event that requires 5S rRNA binding to the nascent peptide chain of eukaryotic ribosomal protein L5. Binding between 5S rRNA and the nascent chain is specific: neither the 5S rRNA nor the nascent chain of L5 protein can be substituted by other RNAs or other ribosomal proteins. The region responsible for binding 5S rRNA is located at positions 35–50 with amino acid sequence RLVIQDIKNKYNTPKYRM. Eukaryotic 5S rRNA binds a nascent chain having this sequence, but such binding is not substantive enough to form a 5S-associated RNP complex, suggesting that 5S rRNA binding to the nascent chain is amino acid sequence dependent and that formation of the 5S rRNP complex is L5 protein specific. Microinjection of 5S rRNP complex into the cytoplasm of Xenopus oocytes results in both an increase in the initial rate and also in the extent of net nuclear import of L5. This suggests that the 5S rRNP complex enhances nuclear transport of L5. We propose that 5S rRNA plays a chaperone-like role in folding of the nascent chain of L5 and directs L5 into a 5S rRNP complex for nuclear entry.  相似文献   

14.
15.
Nucleotide sequences of two 5S rRNA genes located in repeated 327 bp long units were determined in diploid wheat Triticum monococcum. They were compared with sequences of 5S rRNA genes of Tr. monococcum and Tr. aestivum which were earlier determined. The differences were revealed in two localizations of the nucleotide sequence in 5S DNA coding regions of Tr. monococcum and - in nine localizations in nontranscribed spacer. It was established that the nucleotide sequence of 5S rRNA gene cloned in pTm5S9 plasmid and 5S DNA coding region in Tr. aestivum have significant homology. Diploid wheat Tr. monococcum was supposed to have 5S rRNA genes with different functional activity within one multigene family.  相似文献   

16.
We present the sequence of the 5' terminal 585 nucleotides of mouse 28S rRNA as inferred from the DNA sequence of a cloned gene fragment. The comparison of mouse 28S rRNA sequence with its yeast homolog, the only known complete sequence of eukaryotic nucleus-encoded large rRNA (see ref. 1, 2) reveals the strong conservation of two large stretches which are interspersed with completely divergent sequences. These two blocks of homology span the two segments which have been recently proposed to participate directly in the 5.8S-large rRNA complex in yeast (see ref. 1) through base-pairing with both termini of 5.8S rRNA. The validity of the proposed structural model for 5.8S-28S rRNA complex in eukaryotes is strongly supported by comparative analysis of mouse and yeast sequences: despite a number of mutations in 28S and 5.8S rRNA sequences in interacting regions, the secondary structure that can be proposed for mouse complex is perfectly identical with yeast's, with all the 41 base-pairings between the two molecules maintained through 11 pairs of compensatory base changes. The other regions of the mouse 28S rRNA 5'terminal domain, which have extensively diverged in primary sequence, can nevertheless be folded in a secondary structure pattern highly reminiscent of their yeast' homolog. A minor revision is proposed for mouse 5.8S rRNA sequence.  相似文献   

17.
The three tandemly repeated ribosomal RNA operons from the chloroplast genome of Euglena gracilis Klebs, Pringsheim Strain Z each contain a 5 S rRNA gene distal to the 23 S rRNA gene (Gray, P.W., and Hallick, R.B. (1979) Biochemistry 18, 1820-1825). We have cloned two distinct 5 S rRNA genes, and determined the DNA sequence of the genes, their 5'- and 3'-flanking sequences, and the 3'-end of the adjacent 23 S rRNA genes. The two genes exhibit sequence polymorphism at five bases within the "procaryotic loop" coding region, as well as internal restriction endonuclease site heterogeneity. These restriction endonuclease site polymorphisms are evident in chloroplast DNA, and not just the cloned examples of 5 S genes. Chloroplast 5 S rRNA was isolated, end labeled, and sequenced by partial enzymatic degradation. The same polymorphisms found in 5 S rDNA are present in 5 S rRNA. Therefore, both types of 5 S rRNA genes are transcribed and are present in chloroplast ribosomes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号