首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In plants, nitrogen assimilation into amino acids relies on the availability of the reduced form of nitrogen, ammonium. The glutamine synthetase–glutamate synthase pathway, which requires carbon skeletons in the form of 2-oxoglutarate, achieves this. To date, the exact enzymatic origin of 2-oxoglutarate for plant ammonium assimilation is unknown. Isocitrate dehydrogenases synthesize 2-oxoglutarate. Recent efforts have concentrated on evaluating the involvement of different isocitrate dehydrogenases, distinguished by co-factor specificity and sub-cellular localization. Furthermore, several observations indicate that 2-oxoglutarate is likely to be a metabolic signal that regulates the coordination of carbon:nitrogen metabolism. This is discussed in the context of recent advances in bacterial signalling processes.  相似文献   

2.
The assimilation of ammonium into glutamate is mainly achieved by the GS/GOGAT pathway and requires carbon skeletons in the form of 2-oxoglutarate. To date, the exact enzymatic origin of this organic acid for plant ammonium assimilation is unknown. NADP+-dependent isocitrate dehydrogenases can carry out this function and the recent efforts concentrated on evaluating the involvement of different isoforms, distinguished by their subcellular localisation, are analysed. Furthermore, a possible role for these enzymes in the production of NADPH for redox-regulated cell metabolism, such as the recycling of glutathione required in response to oxidative stress will be discussed.  相似文献   

3.
The pathway of nitrogen assimilation in plants   总被引:5,自引:0,他引:5  
The major route of nitrogen assimilation has been considered for many years to occur via the reductive amination of α-oxoglutarate, catalysed by glutamate dehydrogenase. However, recent work has shown that in most bacteria an alternative route via glutamine synthetase and glutamine: 2-oxoglutarate aminotransferase (glutamate synthase) operates under conditions of ammonia limitation. Subsequently the presence of a ferredoxin-dependent glutamate synthase in green leaves and green and blue-green algae, and a NAD(P)H and ferredoxin-dependent enzyme in roots and other non-green plant tissues, has suggested that this route may also function in most members of the plant kingdom. The only exceptions are probably the majority of the fungi, where so far most organisms studied do not appear to contain glutamate synthase. Besides the presence of the necessary enzymes there is other evidence to support the contention that the assimilation of ammonia into amino acids occurs via glutamine synthetase and glutamate synthase, and that it is unlikely that glutamate dehydrogenase plays a major role in nitrogen assimilation in bacteria or higher plants except in circumstances of ammonia excess.  相似文献   

4.
Activities and properties of the ammonium assimilation enzymes NADP+-dependent glutamate dehydrogenase (GDH), glutamate synthase (GOGAT) and glutamine synthetase (GS) were determined in batch and continuous cultures of Candida albicans. NADP+-dependent GDH activity showed allosteric kinetics, with an S0.5 for 2-oxoglutarate of 7.5 mM and an apparent Km for ammonium of 5.0 mM. GOGAT activity was affected by the buffer used for extraction and assay, but in phosphate buffer, kinetics were hyperbolic, yielding Km values for glutamine of 750 microM and for 2-oxoglutarate of 65 microM. The enzymes GOGAT and NADP+-dependent GDH were also assayed in batch cultures of Saccharomyces cerevisiae and three other pathogenic Candida spp.: Candida tropicalis, Candida pseudotropicalis and Candida parapsilosis. Evidence is presented that GS/GOGAT is a major pathway for ammonium assimilation in Candida albicans and that this pathway is also significant in other Candida species.  相似文献   

5.
Molecular and enzymatic analysis of ammonium assimilation in woody plants   总被引:16,自引:0,他引:16  
Ammonium is assimilated into amino acids through the sequential action of glutamine synthetase (GS) and glutamate synthase (GOGAT) enzymes. This metabolic pathway is driven by energy, reducing power and requires the net supply of 2-oxoglutarate that can be provided by the reaction catalysed by isocitrate dehydrogenase (IDH). Most studies on the biochemistry and molecular biology of N-assimilating enzymes have been carried out on annual plant species and the available information on woody models is far more limited. This is in spite of their economic and ecological importance and the fact that nitrogen is a common limiting factor for tree growth. GS, GOGAT and IDH enzymes have been purified from several woody species and their kinetic and molecular properties determined. A number of cDNA clones have also been isolated and characterized. Although the enzymes are remarkably well conserved along the evolutionary scale, major differences have been found in their compartmentation within the cell between angiosperms and conifers, suggesting possible adaptations to specific functional roles. The analysis of the gene expression patterns in a variety of biological situations such as changes in N nutrition, development, biotic or abiotic stresses and senescence, suggest that cytosolic GS plays a central and pivotal role in ammonium assimilation and metabolism in woody plants. The modification of N assimilation efficiency has been recently approached in trees by overexpression of a cytosolic pine GS in poplar. The results obtained, suggest that an increase in cytosolic GS might lead to a global effect on the synthesis of nitrogenous compounds in the leaves, with enhanced vegetative growth of transgenic trees. All these data suggest that manipulation of cytosolic GS may have consequences for plant growth and biomass production.  相似文献   

6.

Background  

There are three isoforms of glutamate dehydrogenase. The isoform EC 1.4.1.4 (GDH4) catalyses glutamate synthesis from 2-oxoglutarate and ammonium, using NAD(P)H. Ammonium assimilation is critical for plant growth. Although GDH4 from animals and prokaryotes are well characterized, there are few data concerning plant GDH4, even from those whose genomes are well annotated.  相似文献   

7.
Glutamate (Glu) dehydrogenase (GDH) catalyses the reversible amination of 2-oxoglutarate for the synthesis of Glu using ammonium as a substrate. This enzyme preferentially occurs in the mitochondria of companion cells of a number of plant species grown on nitrate as the sole nitrogen source. For a better understanding of the controversial role of GDH either in ammonium assimilation or in the supply of 2-oxoglutarate (F. Dubois, T. Terce-Laforgue, M.B. Gonzalez-Moro, M.B. Estavillo, R. Sangwan, A. Gallais, B. Hirel [2003] Plant Physiol Biochem 41: 565-576), we studied the localization of GDH in untransformed tobacco (Nicotiana tabacum) plants grown either on low nitrate or on ammonium and in ferredoxin-dependent Glu synthase antisense plants. Production of GDH and its activity were strongly induced when plants were grown on ammonium as the sole nitrogen source. The induction mainly occurred in highly vascularized organs such as stems and midribs and was likely to be due to accumulation of phloem-translocated ammonium in the sap. GDH induction occurred when ammonia was applied externally to untransformed control plants or resulted from photorespiratory activity in transgenic plants down-regulated for ferredoxin-dependent Glu synthase. GDH was increased in the mitochondria and appeared in the cytosol of companion cells. Taken together, our results suggest that the enzyme plays a dual role in companion cells, either in the mitochondria when mineral nitrogen availability is low or in the cytosol when ammonium concentration increases above a certain threshold.  相似文献   

8.
Ammonium assimilation in plants occurs via the glutamine synthetase (GS, EC 6.3.1.2)/glutamine 2-oxoglutarate aminotransferase (GOGAT, EC 1.4.1.13 + 1.4.1.14 + 1.4.7.1) pathway. Rates of in vivo ammonium assimilation were measured in the marine diatom Phaeodactylum tricornutum by a recently developed technique that uses the protonophore carbonyl cyanide m -chlorophenylhydrazone to release unassimilated ammonium from the cells. In nitrogen-replete cells of P. tricornutum , there was a poor relationship between uptake and in vivo assimilation of ammonium, with the rate of uptake decreasing and the rate of assimilation increasing with time in the presence of ammonium. Ammonium uptake and assimilation were markedly light dependent, with assimilation inhibited by 77% in darkness. Oligomycin (5 µg ml−1), an inhibitor of the mitochondrial ATPase, had no effect on the rate of photosynthesis, the maximum endogenous ammonium pool or GS activity in Phaeodactylum , but inhibited respiration by 24–27%. In the light, oligomycin inhibited ammonium assimilation by 55–70% and growth rate by 52%. One possible explanation for these results, namely that mitochondrial ATP is required to sustain activity of the cytosolic isoform of GS, is discussed.  相似文献   

9.
Evidence from in vitro and in vivo studies showed that in Rhizobium phaseoli ammonium is assimilated by the glutamine synthetase (GS)-glutamate synthase NADPH pathway. No glutamate dehydrogenase activity was detected. R. phaseoli has two GS enzymes, as do other rhizobia. The two GS activities are regulated on the basis of the requirement for low (GSI) or high (GSII) ammonium assimilation. When the 2-oxoglutarate/glutamine ratio decreases, GSI is adenylylated. When GSI is inactivated, GSII is induced. However, induction of GSII activity varied depending on the rate of change of this ratio. GSII was inactivated after the addition of high ammonium concentrations, when the 2-oxoglutarate/glutamine ratio decreased rapidly. Ammonium inactivation resulted in alteration of the catalytic and physical properties of GSII. GSII inactivation was not relieved by shifting of the cultures to glutamate. After GSII inactivation, ammonium was excreted into the medium. Glutamate synthase activity was inhibited by some organic acids and repressed when cells were grown with glutamate as the nitrogen source.  相似文献   

10.
In unicellular algae, ammonium can be assimilated into glutamate through the action of glutamate dehydrogenase (GDH) or into glutamine through the sequential activities of glutamine synthetase and glutamate 2-oxoglutarate amidotransferase (GS-GOGAT pathway). We have shown that the first radio-labeled product of assimilation of 13NH4+ (t1/2= 10 min) was glutamine in the marine diatom Thalassiosira pseudonana (Hustedt). When GS-GOGAT was inhibited with methionine sulfoximine, the incorporation of radioactivity into both glutamine and glutamate was blocked, implying that the radio-labeled glutamate is formed from glutamine. Glutamine was also the first labeled product when the intracellular concentration of ammonium was elevated by preincubation with unlabeled ammonium. The results indicate that the GS-GOGAT pathway is the primary pathway for the assimilation of nitrogen in T. pseudonana.  相似文献   

11.
12.
13.
The enzymes of the assimilation pathways in cultures of S. hygroscopicus grown in the presence of various nitrogen sources were investigated. No assimilation activity of glutamate dehydrogenase (GDH) was observed. Activities of alanine dehydrogenase (ADH), GDH, glutamine: 2-oxoglutarate aminotransferase (GOGAT) and glutamate synthetase (GS) were studied. High concentrations of ammonium and alanine induced ADH formation. The levels of GS remained low in media with NH4Cl. Various nitrogen sources had no impact on the activity of GOGAT which suggested the involvement of constitutive synthesis. ADH was likely to play an alternative role. Determination of the quantitative and qualitative composition of the free amino acids confirmed the involvement of the GS-GOGAT pathway in nitrogen assimilation. The concentration of ammonium ions in the media with one amino acid or in the presence of several amino acids lowered the antibiotic activity while in the media with alanine and the other nitrogen compounds it increased the antibiotic activity.  相似文献   

14.
15.
16.
When incubated at pH 4–5, Chlorella freshly isolated from symbiosis with Hydra viridissima PALLAS 1766 (green hydra) release large amounts of photosynthetically fixed carbon in the form of maltose, and assimilation of inorganic N is inhibited. Physiological responses to N starvation of the cultured 3N813A strain of maltose-releasing Chlorella differed from those caused by 48 h of maltose release induced by low pH. N starvation increased rates of ammonium assimilation at pH 7.0 in light or darkness, and ammonium assimilation in darkness stimulated cell respiration. In contrast, cells pretreated at pH 5.0 to induce maltose release were unable to take up ammonium at pH 7.0 unless supplied with an external carbon source such as bicarbonate, acetate, or succinate, and rates of uptake were similar to control cells. Freshly isolated symbionts displayed a similar dependency. Rates of ammonium uptake by cells pretreated at pH 5.0 were reduced in darkness and did not stimulate cell respiration. N-starved cells supplied with ammonium also showed a large short-term increase in glutamine pools at the expense of glutamate, as might be expected if large amounts of ammonium were rapidly assimilated via glutamine synthetase/glutamate synthase, whereas after long-term maltose release cells showed only a small increase in glutamine when supplied with ammonium. Furthermore, maltose release caused a fall in pool sizes of a number of amino acids, including glutamine and glutamate, and also caused a decrease in pool sizes of 2-oxoglutarate and phospho-enol-pyruvate, which are required for ammonium assimilation into amino acids. Cells stimulated to synthesize and release maltose may be unable to assimilate ammonium and synthesize amino acids because of diversion of fixed carbon from N metabolism. We estimate that 40–50% affixed C is required for maximal maltose synthesis, whereas up to 30% fixed C is required for ammonium assimilation. These results are discussed in the context of host regulation of symbiotic algal growth.  相似文献   

17.
Abstract Among the glutamate-requiring strains of Schizosaccharomyces pombe previously described [1], glu2 and glu3 strains were both shown to lack NAD-specific isocitrate dehydrogenase. glu4 strains were shown to lack glutamine:2-oxoglutarate aminotransferase (GOGAT), and to be defective in ammonia assimilation. The regulation of GOGAT activity in wild-type cells was investigated and was consistent with GOGAT and glutamine synthetase being involved in ammonium assimilation, particularly under conditions of nitrogen limitation.  相似文献   

18.
Enterobacterial mutants defective in the nitrogen control regulatory system (Ntr) generally display a pleiotropic phenotype with regard to expression and regulation of several enzymes and transport systems involved in the assimilation of N sources. This report describes the isolation and characterization of similar pleiotropic mutants ofKlebsiella pneumoniae that cannot be complemented byntr genes. The strains excreted ammonia, were unable to grow on a number of N sources, and contained low glutamine:2-oxoglutarate amino transferase and normal, but unmodifiable glutamine synthetase activities and a nitrogenase level largely unaffected by ammonium, but still repressible by an amino acid mixture. Genetic studies suggested that this phenotype is due to overexpression of an unknown regulatory protein.Abbreviations GS Glutamine synthetase - GOGAT Glutamate synthase - ATase Adenylyl transferase - Ntr Nitrogen regulatory system  相似文献   

19.
高等植物NADP^+-依赖型异柠檬酸脱氢酶(ICDHs)定位于细胞质、线粒体、叶绿体和过氧化物酶体等植物细胞的不同部位,由不同的基因编码,属于一个高度保守的多同工酶蛋白家族。对近年来关于植物NADP^+-依赖型异柠檬酸脱氢酶的分子进化及功能研究进行综述,同时提出了未来植物ICDHs的研究重点和方向。最新的分子系统学分析显示,植物中不同细胞定位的ICDH同工酶聚在各自相应的进化枝上,动物或植物中不同细胞器的ICDH同工酶均来源于各自祖先ICDH基因的独立倍增。最新的功能研究表明,ICDHs催化合成的α-酮戊二酸可为植物细胞对氨的吸收同化提供碳骨架,而NADPH可以维系细胞内的氧化还原平衡,帮助植物抵御氧化胁迫。  相似文献   

20.
PII-like proteins, such as GlnK, found in a wide variety of organisms from prokaryotes to plants constitute a family of cytoplasmic signaling proteins that play a central regulatory role in the assimilation of nitrogen for biosyntheses. They specifically bind and are modulated by effector molecules such as adenosine triphosphate, adenosine diphosphate and 2-oxoglutarate. Their highly conserved, trimeric structure suggests that cooperativity in effector binding might be the basis for the ability to integrate and respond to a wide range of concentrations, but to date no direct quantification of this cooperative behavior has been presented. The hyperthermophilic archaeon Archaeoglobus fulgidus contains three GlnK proteins, functionally associated with ammonium transport proteins (Amt). We have characterized GlnK2 and its interaction with effectors by high-resolution X-ray crystallography and isothermal titration calorimetry. Binding of adenosine nucleotides resulted in distinct, cooperative behavior for ATP and ADP. While 2-oxoglutarate has been shown to interact with other GlnK proteins, GlnK2 was completely insensitive to this key indicator of a low level of intracellular nitrogen. These findings point to different regulation and modulation patterns and add to our understanding of the flexibility and versatility of the GlnK family of signaling proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号