首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inorganic nitrite (NO(2)(-)) is emerging as a regulator of physiological functions and tissue responses to ischemia, whereas the more stable nitrate anion (NO(3)(-)) is generally considered to be biologically inert. Bacteria express nitrate reductases that produce nitrite, but mammals lack these specific enzymes. Here we report on nitrate reductase activity in rodent and human tissues that results in formation of nitrite and nitric oxide (NO) and is attenuated by the xanthine oxidoreductase inhibitor allopurinol. Nitrate administration to normoxic rats resulted in elevated levels of circulating nitrite that were again attenuated by allopurinol. Similar effects of nitrate were seen in endothelial NO synthase-deficient and germ-free mice, thereby excluding vascular NO synthase activation and bacteria as the source of nitrite. Nitrate pretreatment attenuated the increase in systemic blood pressure caused by NO synthase inhibition and enhanced blood flow during post-ischemic reperfusion. Our findings suggest a role for mammalian nitrate reduction in regulation of nitrite and NO homeostasis.  相似文献   

2.
Nitrate or nitrite can be ingested or endogenously produced from nitric oxide. They can cause intoxication and are of general concern for health because they relate to various diseases. Our goal was to study ontogenetic and nutritional effects on the nitrate+nitrite (NOx-) status in cattle, particularly calves. NOx- concentration in blood plasma, cerebrospinal fluid, saliva, and urine was measured based on nitrate conversion by added nitrate reductase to nitrite, which was then determined by the Griess reaction. Concentrations of nitrate were the result of the difference between NOx- and nitrite values. Nitrate in blood plasma, saliva and urine was > or =97% and in cerebrospinal fluid of calves was approximately 35% of NOx-. Preprandial plasma NOx- in calves born after shortened or normal lengths of pregnancy (277 and 290 days) was 470 and 830 micromol/l, respectively, decreased within 4-7 days to 40-60 micromol/l, remained in this range up to 4 months, was < or =5 micromol/l in heifers and no longer measurable in 3-8-year-old cows. Cerebrospinal NOx- in 8-day-old calves was 14 micromol/l and approximately 11-fold lower than in blood plasma. Salivary NOx- decreased postnatally from 600 to 200 micromol/l at 2 days and to 25 micromol/l at 4 weeks. Urinary NOx- excretion decreased from 125 or 16 micromol/l per kg x 24 h in 5-day-old calves to 45 or 8 micromol/kg x 24 h between 10 and 115 days of life and was undetectable in urine of heifers and cows. Feeding neonatal calves no or variable amounts of colostrum, delaying colostrum intake by 24 h after birth or feeding at different feeding intensity had no effect on the NOx- status. In conclusion, the high plasma, salivary and urinary NOx- concentrations especially in newborn calves, ingesting but insignificant amounts of nitrite or nitrate, indicated marked endogenous formation of nitrate, which decreased with age. The high nitrate status may contribute to enhanced susceptibility of young calves to exogenous nitrite+nitrite ingestion.  相似文献   

3.
Recent studies surprisingly show that dietary inorganic nitrate, abundant in vegetables, can be metabolized in vivo to form nitrite and then bioactive nitric oxide. A reduction in blood pressure was recently noted in healthy volunteers after dietary supplementation with nitrate; an effect consistent with formation of vasodilatory nitric oxide. Oral bacteria have been suggested to play a role in bioactivation of nitrate by first reducing it to the more reactive anion nitrite. In a cross-over designed study in seven healthy volunteers we examined the effects of a commercially available chlorhexidine-containing antibacterial mouthwash on salivary and plasma levels of nitrite measured after an oral intake of sodium nitrate (10 mg/kg dissolved in water). In the control situation the salivary and plasma levels of nitrate and nitrite increased greatly after the nitrate load. Rinsing the mouth with the antibacterial mouthwash prior to the nitrate load had no effect on nitrate accumulation in saliva or plasma but abolished its conversion to nitrite in saliva and markedly attenuated the rise in plasma nitrite. We conclude that the acute increase in plasma nitrite seen after a nitrate load is critically dependent on nitrate reduction in the oral cavity by commensal bacteria. The removal of these bacteria with an antibacterial mouthwash will very likely attenuate the NO-dependent biological effects of dietary nitrate.  相似文献   

4.
Nitrate is generally considered an inert oxidative breakdown product of nitric oxide (NO). Whereas it has been shown that limited amounts of NO are produced during the photolysis of nitrate in aqueous solution, the photochemistry of nitrate in biological matrices such as plasma is unknown. We hypothesized that thiols, which are ubiquitously present in biological systems, may significantly enhance NO-quantum yields from nitrate photolysis. Exposure of fresh human plasma to high-intensity UV-light resulted in NO-formation (19 +/- 3 nmol/l/min) as measured by gas phase chemiluminescence, and this signal was almost completely abolished by the removal of plasma N-oxides (2 +/- 1 nmol/l/min). Reconstitution of NOx-depleted plasma samples with a physiological concentration of nitrate, but not nitrite, restored photolytic NO-generation to values comparable to na?ve plasma. Addition of the thiol-reducing agent, dithiothreitol or the sulfhydryl-bearing amino acid, L-cysteine increased NO-formation above control levels. Thiol-blockade by either N-ethylmaleimide (NEM) or mercuric chloride (HgCl2) reduced basal NO formation from 19 +/- 3 to 7 +/- 2 and 4 +/- 1 nmol/l/min, respectively. Exposure of plasma to UV-light increased NO-adduct concentrations from 18 +/- 5 to 1662 +/- 658 nmol/l. Collectively, our results show that thiols facilitate photolytic conversion of nitrate to NO and NO-adducts such as S-nitrosothiols. This may lead to substantial overestimation of the latter when photolysis-based methodologies are used for their determination. Whether this novel reaction channel also has in vivo relevance remains to be investigated.  相似文献   

5.
The new pathway nitrate-nitrite-nitric oxide (NO) has emerged as a physiological alternative to the classical enzymatic pathway for NO formation from l-arginine. Nitrate is converted to nitrite by commensal bacteria in the oral cavity and the nitrite formed is then swallowed and reduced to NO under the acidic conditions of the stomach. In this study, we tested the hypothesis that increases in gastric pH caused by omeprazole could decrease the hypotensive effect of oral sodium nitrite. We assessed the effects of omeprazole treatment on the acute hypotensive effects produced by sodium nitrite in normotensive and L-NAME-hypertensive free-moving rats. In addition, we assessed the changes in gastric pH and plasma levels of nitrite, NO(x) (nitrate+nitrite), and S-nitrosothiols caused by treatments. We found that the increases in gastric pH induced by omeprazole significantly reduced the hypotensive effects of sodium nitrite in both normotensive and L-NAME-hypertensive rats. This effect of omeprazole was associated with no significant differences in plasma nitrite, NO(x), or S-nitrosothiol levels. Our results suggest that part of the hypotensive effects of oral sodium nitrite may be due to its conversion to NO in the acidified environment of the stomach. The increase in gastric pH induced by treatment with omeprazole blunts part of the beneficial cardiovascular effects of dietary nitrate and nitrite.  相似文献   

6.
In human organism, the gaseous radical molecule nitric oxide (NO) is produced in various cells from L-arginine by the catalytic action of NO synthases (NOS). The metabolic fate of NO includes oxidation to nitrate by oxyhaemoglobin in red blood cells and autoxidation in haemoglobin-free media to nitrite. Nitrate and nitrite circulate in blood and are excreted in urine. The concentration of these NO metabolites in the circulation and in the urine can be used to measure NO synthesis in vivo under standardized low-nitrate diet. Circulating nitrite reflects constitutive endothelial NOS activity, whereas excretory nitrate indicates systemic NO production. Today, nitrite and nitrate can be measured in plasma, serum and urine of humans by various analytical methods based on different analytical principles, such as colorimetry, spectrophotometry, fluorescence, chemiluminescence, gas and liquid chromatography, electrophoresis and mass spectrometry. The aim of the present article is to give an overview of the most significant currently used quantitative methods of analysis of nitrite and nitrate in human biological fluids, namely plasma and urine. With minor exception, measurement of nitrite and nitrate by these methods requires method-dependent chemical conversion of these anions. Therefore, the underlying mechanisms and principles of these methods are also discussed. Despite the chemical simplicity of nitrite and nitrate, accurate and interference-free quantification of nitrite and nitrate in biological fluids as indicators of NO synthesis may be difficult. Thus, problems associated with dietary and laboratory ubiquity of these anions and other preanalytical and analytical factors are addressed. Eventually, the important issue of quality control, the use of commercially available assay kits, and the value of the mass spectrometry methodology in this area are outlined.  相似文献   

7.
In human organism, the gaseous radical molecule nitric oxide (NO) is produced in various cells from l-arginine by the catalytic action of NO synthases (NOS). The metabolic fate of NO includes oxidation to nitrate by oxyhaemoglobin in red blood cells and autoxidation in haemoglobin-free media to nitrite. Nitrate and nitrite circulate in blood and are excreted in urine. The concentration of these NO metabolites in the circulation and in the urine can be used to measure NO synthesis in vivo under standardized low-nitrate diet. Circulating nitrite reflects consitutive endothelial NOS activity, whereas excretory nitrate indicates systemic NO production. Today, nitrite and nitrate can be measured in plasma, serum and urine of humans by various analytical methods based on different analytical principles, such as colorimetry, spectrophotometry, fluorescence, chemiluminescence, gas and liquid chromatography, electrophoresis and mass spectrometry. The aim of the present article is to give an overview of the most significant currently used quantitative methods of analysis of nitrite and nitrate in human biological fluids, namely plasma and urine. With minor exception, measurement of nitrite and nitrate by these methods requires method-dependent chemical conversion of these anions. Therefore, the underlying mechanisms and principles of these methods are also discussed. Despite the chemical simplicity of nitrite and nitrate, accurate and interference-free quantification of nitrite and nitrate in biological fluids as indicators of NO synthesis may be difficult. Thus, problems associated with dietary and laboratory ubiquity of these anions and other preanalytical and analytical factors are addressed. Eventually, the important issue of quality control, the use of commercially available assay kits, and the value of the mass spectrometry methodology in this area are outlined.  相似文献   

8.
Nitric oxide (NO) was implicated in the regulation of mobilization and function of circulating angiogenic cells (CACs). The supposedly inert anion nitrate, abundant in vegetables, can be stepwise reduced in vivo to form nitrite, and consecutively NO, representing an alternative to endogenous NO formation by NO synthases. This study investigated whether inorganic dietary nitrate influences mobilization of CACs. In a randomized double-blind fashion, healthy volunteers ingested 150 ml water with 0.15 mmol/kg (12.7 mg/kg) of sodium nitrate, an amount corresponding to 100-300 g of a nitrate-rich vegetable, or water alone as control. Mobilization of CACs was determined by the number of CD34(+)/KDR(+) and CD133(+)/KDR(+) cells using flow cytometry and the mobilization markers stem cell factor (SCF) and stromal cell-derived factor-1a (SDF-1α) were determined in plasma via ELISA. Nitrite and nitrate were measured using high-performance liquid chromatography and reductive gas-phase chemiluminescence, respectively. NOS-dependent vasodilation was measured as flow-mediated vasodilation. Further mechanistic studies were performed in mice after intravenous application of nitrite together with an NO scavenger to identify the role of nitrite and NO in CAC mobilization. Nitrate ingestion led to a rise in plasma nitrite together with an acute increase in CD34(+)/KDR(+) and CD133(+)/KDR(+)-CACs along with increased NOS-dependent vasodilation. This was paralleled by an increase in SCF and SDF-1α and the maximal increase in plasma nitrite correlated with CD133(+)/KDR(+)-CACs (r=0.73, P=0.016). In mice, nitrate given per gavage and direct intravenous injection of nitrite led to CAC mobilization, which was abolished by the NO scavenger cPTIO, suggesting that nitrite mediated its effect via formation of NO. Dietary inorganic nitrate acutely mobilizes CACs via serial reduction to nitrite and NO. The nitrate-nitrite-NO pathway could offer a novel nutritional approach for regulation of vascular regenerative processes.  相似文献   

9.
Nitrate is abundant in our diet with particularly high levels in many vegetables. Ingested nitrate is concentrated in saliva and reduced to nitrite by bacteria in the oral cavity. We recently reported that application of nitrite-containing saliva to the gastric mucosa increases superficial blood flow and mucus generation via acid-catalyzed formation of bioactive nitrogen oxides including nitric oxide. Here we studied if dietary supplementation with nitrate would protect against gastric damage caused by a nonsteroidal anti-inflammatory drug. Rats received sodium nitrate in the drinking water for 1 week in daily doses of 0.1 or 1 mmol kg(-1). Control rats received 1 mmol kg(-1) sodium chloride. Diclofenac (30 mg kg(-1)) was then given orally and the animals were examined 4 h later. In separate experiments we studied the effects of dietary nitrate on intragastric NO levels and mucus formation. Luminal levels of NO gas were greatly increased in nitrate-fed animals. The thickness of the mucus layer increased after nitrate supplementation and gene expression of MUC6 was upregulated in the gastric mucosa. Nitrate pretreatment dose dependently and potently reduced diclofenac-induced gastric lesions. Inflammatory activity was reduced in the rats receiving nitrate as indicated by lower mucosal myeloperoxidase activity and expression of inducible NO synthase. We conclude that dietary nitrate protects against diclofenac-induced gastric ulcers likely via enhanced nitrite-dependent intragastric NO formation and concomitant stimulation of mucus formation. Future studies will reveal if a diet rich in nitrate can offer an additional nutritional approach to preventing and treating peptic ulcer disease.  相似文献   

10.
Up to 25% of the circulating nitrate in blood is actively taken up, concentrated, and secreted into saliva by the salivary glands. Salivary nitrate can be reduced to nitrite by the commensal bacteria in the oral cavity or stomach and then further converted to nitric oxide (NO) in vivo, which may play a role in gastric protection. However, whether salivary nitrate is actively secreted in human beings has not yet been determined. This study was designed to determine whether salivary nitrate is actively secreted in human beings as an acute stress response and what role salivary nitrate plays in stress-induced gastric injury. To observe salivary nitrate function under stress conditions, alteration of salivary nitrate and nitrite was analyzed among 22 healthy volunteers before and after a strong stress activity, jumping down from a platform at the height of 68 m. A series of stress indexes was analyzed to monitor the stress situation. We found that both the concentration and the total amount of nitrate in mixed saliva were significantly increased in the human volunteers immediately after the jump, with an additional increase 1 h later (p<0.01). Saliva nitrite reached a maximum immediately after the jump and was maintained 1 h later. To study the biological functions of salivary nitrate and nitrite in stress protection, we further carried out a water-immersion-restraint stress (WIRS) assay in male adult rats with bilateral parotid and submandibular duct ligature (BPSDL). Intragastric nitrate, nitrite, and NO; gastric mucosal blood flow; and gastric ulcer index (UI) were monitored and nitrate was administrated in drinking water to compensate for nitrate secretion in BPSDL animals. Significantly decreased levels of intragastric nitrate, nitrite, and NO and gastric mucosal blood flow were measured in BPSDL rats during the WIRS assay compared to sham control rats (p<0.05). Recovery was observed in the BPSDL rats upon nitrate administration. The WIRS-induced UI was significantly higher in the BPSDL animals compared to controls, and nitrate administration rescued the WIRS-induced gastric injury in BPSDL rats. In conclusion, this study suggests that stress promotes salivary nitrate secretion and nitrite formation, which may play important roles in gastric protection against stress-induced injury via the nitrate-dependent NO pathway.  相似文献   

11.
BackgroundInorganic nitrate from exogenous and endogenous sources is accumulated in saliva, reduced to nitrite by oral bacteria and further converted to nitric oxide (NO) and other bioactive nitrogen oxides in the acidic gastric lumen. To further explore the role of oral microbiota in this process we examined the gastric mucus layer in germ free (GF) and conventional mice given different doses of nitrate and nitrite.MethodsMice were given either nitrate (100 mg/kg/d) or nitrite (0.55–11 mg/kg/d) in the drinking water for 7 days, with the lowest nitrite dose resembling the levels provided by swallowing of fasting saliva. The gastric mucus layer was measured in vivo.ResultsGF animals were almost devoid of the firmly adherent mucus layer compared to conventional mice. Dietary nitrate increased the mucus thickness in conventional animals but had no effect in GF mice. In contrast, nitrite at all doses, restored the mucus thickness in GF mice to the same levels as in conventional animals. The nitrite-mediated increase in gastric mucus thickness was not inhibited by the soluble guanylyl cyclase inhibitor ODQ. Mice treated with antibiotics had significantly thinner mucus than controls. Additional studies on mucin gene expression demonstrated down regulation of Muc5ac and Muc6 in germ free mice after nitrite treatment.ConclusionOral bacteria remotely modulate gastric mucus generation via bioactivation of salivary nitrate. In the absence of a dietary nitrate intake, salivary nitrate originates mainly from NO synthase. Thus, oxidized NO from the endothelium and elsewhere is recycled to regulate gastric mucus homeostasis.  相似文献   

12.
Salivary nitrite is suggested to enhance the antimicrobial properties of gastric juice by conversion to nitric oxide (NO) and other reactive nitrogen intermediates in the stomach. Intubated patients exhibit extremely low gastric levels of NO, because they do not swallow their saliva. The present investigation was designed to examine the antibacterial effects of human saliva and gastric juice. Furthermore, we studied a new mode of NO delivery, involving formation from acidified nitrite, which could prevent bacterial growth in the gastric juice of intubated patients in intensive care units. The growth of Escherichia coli ATCC 25922 and the formation of NO and nitroso/nitrosyl species were determined after incubation of gastric juice with saliva from healthy volunteers that was rich (nitrate ingestion) or poor (overnight fasting) in nitrite. In a stomach model containing gastric juice from intubated patients, we inserted a catheter with a silicone retention cuff filled with ascorbic acid and nitrite and determined the resulting antibacterial effects on E. coli and Candida albicans. Saliva enhanced the bactericidal effect of gastric juice, especially saliva rich in nitrite. Formation of NO and nitroso/nitrosyl species by nitrite-rich saliva was 10-fold greater than that by saliva poor in nitrite. In our stomach model, E. coli and C. albicans were killed after exposure to ascorbic acid and nitrite. In conclusion, saliva rich in nitrite enhances the bactericidal effects of gastric juice, possibly through the generation of reactive nitrogen intermediates, including NO. Acidified nitrite inside a gas-permeable retention cuff may be useful for restoring gastric NO levels and host defense in critically ill patients.  相似文献   

13.
真菌异化硝酸盐还原机理的研究进展   总被引:1,自引:0,他引:1  
真菌异化硝酸盐还原途径的发现打破了反硝化仅存在于原核细胞这一传统观念。真菌异化硝酸盐还原途径是在环境中氧供给受限的情况下发生的, 包括反硝化和氨的发酵。硝酸盐能诱导产生反硝化作用的酶, 其中, 硝酸盐还原酶与亚硝酸还原酶位于线粒体中, 它们所催化的酶促反应能偶联呼吸链ATP合成酶合成ATP, 同时产生NO。与参与反硝化作用前两个酶不同, 真菌NO还原酶能以NADH为直接电子供体将NO还原为N2O, 在NAD+的再生和自由基NO的脱毒中起着重要作用。氨发酵则将硝酸盐还原成NH4+, 同时偶联乙酸的生成和底物水平磷酸化。此文从参与该过程的关键酶、关键酶的表达调节、真菌与细菌异化硝酸盐还原的比较等角度综述了真菌异化硝酸盐还原的最新研究进展。  相似文献   

14.
The salivary glands of adults concentrate nitrate from plasma into saliva where it is converted to nitrite by bacterial nitrate reductases. Nitrite can play a beneficial role in adult gastrointestinal and cardiovascular physiology. When nitrite is swallowed, some of it is converted to nitric oxide (NO) in the stomach and may then exert protective effects in the gastrointestinal tract and throughout the body. It has yet to be determined either when newborn infants acquire oral nitrate reducing bacteria or what the effects of antimicrobial therapy or premature birth may be on the bacterial processing of nitrate to nitrite. We measured nitrate and nitrite levels in the saliva of adults and both preterm and term human infants in the early weeks of life. We also measured oral bacterial reductase activity in the saliva of both infants and adults, and characterized the species of nitrate reducing bacteria present. Oral bacterial conversion of nitrate to nitrite in infants was either undetectable or markedly lower than the conversion rates of adults. No measurable reductase activity was found in infants within the first two weeks of life, despite the presence of oral nitrate reducing bacteria such as Actinomyces odontolyticus, Veillonella atypica, and Rothia mucilaginosa. We conclude that relatively little nitrite reaches the infant gastrointestinal tract due to the lack of oral bacterial nitrate reductase activity. Given the importance of the nitrate-nitrite-NO axis in adults, the lack of oral nitrate-reducing bacteria in infants may be relevant to the vulnerability of newborns to hypoxic stress and gastrointestinal tract pathologies.  相似文献   

15.
Ingestion of inorganic nitrate elevates blood and tissue levels of nitrite via bioconversion in the entero-salivary circulation. Nitrite is converted to NO in the circulation, and it is this phenomenon that is thought to underlie the beneficial effects of inorganic nitrate in humans. Our previous studies have demonstrated that oral ingestion of inorganic nitrate decreases blood pressure and inhibits the transient endothelial dysfunction caused by ischaemia-reperfusion injury in healthy volunteers. However, whether inorganic nitrate might improve endothelial function per se in the absence of a pathogenic stimulus and whether this might contribute to the blood pressure lowering effects is yet unknown. We conducted a randomised, double-blind, crossover study in 14 healthy volunteers to determine the effects of oral inorganic nitrate (8 mmol KNO(3)) vs. placebo (8 mmol KCl) on endothelial function, measured by flow-mediated dilatation (FMD) of the brachial artery, prior to and 3h following capsule ingestion. In addition, blood pressure (BP) was measured and aortic pulse wave velocity (aPWV) determined. Finally, blood, saliva and urine samples were collected for chemiluminescence analysis of [nitrite] and [nitrate] prior to and 3h following interventions. Inorganic nitrate supplementation had no effect on endothelial function in healthy volunteers (6.9±1.1% pre- to 7.1±1.1% post-KNO(3)). Despite this, there was a significant elevation of plasma [nitrite] (0.4±0.1 μM pre- to 0.7±0.2 μM post-KNO(3), p<0.001). In addition these changes in [nitrite] were associated with a decrease in systolic BP (116.9±3.8mm Hg pre- vs. 112.1±3.4 mm Hg post-KNO(3), p<0.05) and aPWV (6.5±0.1 m/s pre- to 6.2±0.1 post-KNO(3), p<0.01). In contrast KCl capsules had no effect on any of the parameters measured. These findings demonstrate that although inorganic nitrate ingestion does not alter endothelial function per se, it does appear to improve blood flow, in combination with a reduction in blood pressure. It is likely that these changes are due to the intra-vascular production of NO.  相似文献   

16.
Dietary nitrate is metabolized to nitrite by bacterial flora on the posterior surface of the tongue leading to increased salivary nitrite concentrations. In the acidic environment of the stomach, nitrite forms nitrous acid, a potent nitrating/nitrosating agent. The aim of this study was to examine the pharmacokinetics of dietary nitrate in relation to the formation of salivary, plasma, and urinary nitrite and nitrate in healthy subjects. A secondary aim was to determine whether dietary nitrate increases the formation of protein-bound 3-nitrotyrosine in plasma, and if dietary nitrate improves platelet function. The pharmacokinetic profile of urinary nitrate excretion indicates total clearance of consumed nitrate in a 24 h period. While urinary, salivary, and plasma nitrate concentrations increased between 4- and 7-fold, a significant increase in nitrite was only detected in saliva (7-fold). High dietary nitrate consumption does not cause a significant acute change in plasma concentrations of 3-nitrotyrosine or in platelet function.  相似文献   

17.
Recently, it has been suggested that the supposedly inert nitrite anion is reduced in vivo to form bioactive nitric oxide with physiological and therapeutic implications in the gastrointestinal and cardiovascular systems. Intake of nitrate-rich food such as vegetables results in increased levels of circulating nitrite in a process suggested to involve nitrate-reducing bacteria in the oral cavity. Here we investigated the importance of the oral microflora and dietary nitrate in regulation of gastric mucosal defense and blood pressure. Rats were treated twice daily with a commercial antiseptic mouthwash while they were given nitrate-supplemented drinking water. The mouthwash greatly reduced the number of nitrate-reducing oral bacteria and as a consequence, nitrate-induced increases in gastric NO and circulating nitrite levels were markedly reduced. With the mouthwash the observed nitrate-induced increase in gastric mucus thickness was attenuated and the gastroprotective effect against an ulcerogenic compound was lost. Furthermore, the decrease in systemic blood pressure seen during nitrate supplementation was now absent. These results suggest that oral symbiotic bacteria modulate gastrointestinal and cardiovascular function via bioactivation of salivary nitrate. Excessive use of antiseptic mouthwashes may attenuate the bioactivity of dietary nitrate.  相似文献   

18.
Concentration of salivary nitrate is approximately 10-fold to that of serum. Many circumstances such as acute stress could promote salivary nitrate secretion and nitrite formation. However, whether other conditions can also be used as regulators of salivary nitrate/nitrite has not yet been explored. The present study was designed to determine the influence of exposure to different music on the salivary flow rate and nitrate secretion and nitrite formation. Twenty-four undergraduate students(12 females and 12 males) were exposed to silence, rock music, classical music or white noise respectively on four consecutive mornings. The unstimulated salivary flow rate and stimulated salivary flow rate were measured. Salivary ionic(Na+, Ca2+Cl-,and PO3-4) content and nitrate/nitrite levels were detected. The unstimulated salivary flow rate was significantly increased after classical music exposure compared to that after silence. Salivary nitrite levels were significantly higher upon classical music and white noise stimulation than those under silence in females. However, males were more sensitive only to white noise with regard to the nitrite increase. In conclusion, this study demonstrated that classical music stimulation promotes salivary nitrite formation and an increase in saliva volume was observed. These observations may play an important role in regulating oral function.  相似文献   

19.
Hemoglobin (Hb) potently inactivates the nitric oxide (NO) radical via a dioxygenation reaction forming nitrate (NO(3)(-)). This inactivation produces endothelial dysfunction during hemolytic conditions and may contribute to the vascular complications of Hb-based blood substitutes. Hb also functions as a nitrite (NO(2)(-)) reductase, converting nitrite into NO as it deoxygenates. We hypothesized that during intravascular hemolysis, nitrite infusions would limit the vasoconstrictive properties of plasma Hb. In a canine model of low- and high-intensity hypotonic intravascular hemolysis, we characterized hemodynamic responses to nitrite infusions. Hemolysis increased systemic and pulmonary arterial pressures and systemic vascular resistance. Hemolysis also inhibited NO-dependent pulmonary and systemic vasodilation by the NO donor sodium nitroprusside. Compared with nitroprusside, nitrite demonstrated unique effects by not only inhibiting hemolysis-associated vasoconstriction but also by potentiating vasodilation at plasma Hb concentrations of <25 muM. We also observed an interaction between plasma Hb levels and nitrite to augment nitroprusside-induced vasodilation of the pulmonary and systemic circulation. This nitrite reductase activity of Hb in vivo was recapitulated in vitro using a mitochondrial NO sensor system. Nitrite infusions may promote NO generation from Hb while maintaining oxygen delivery; this effect could be harnessed to treat hemolytic conditions and to detoxify Hb-based blood substitutes.  相似文献   

20.
There is marked endogenous production of nitrate in young calves. Here we have studied the contribution of exogenous nitrate and nitrite to plasma concentrations and urinary excretion of nitrite and nitrate in milk-fed calves. In experiment 1, calves were fed 0 or 200 &mgr;mol nitrate or nitrite/kg(0.75) or 100 &mgr;mol nitrite plus 100 &mgr;mol nitrate/kg(0.75) with milk for 3 d. In experiment 2, calves were fed 400 &mgr;mol nitrate or nitrite/kg(0.75) with milk for 1 d. Plasma nitrate rapidly and comparably increased after feeding nitrite, nitrate or nitrite plus nitrate. The rise of plasma nitrate was greater if 400 than 200 &mgr;mol nitrate or nitrite/kg(0.75) were fed. Plasma nitrate decreased slowly after the 3-d administration of 200 &mgr;mol nitrate or nitrite/kg(0.75) and reached pre-experimental concentrations 4 d later. Urinary nitrate excretions nearly identically increased if nitrate, nitrite or nitrite plus nitrate were administered and excreted amounts were greater if 400 than 200 &mgr;mol nitrate or nitrite/kg(0.75) were fed. After nitrite ingestion plasma nitrite only transiently increased after 2 and 4 h and urinary excretion rates remained unchanged. Plasma nitrate concentration remained unchanged if milk was not supplemented with nitrite or nitrate. Nitrate concentrations were stable for 24 h after addition of nitrite to full blood in vitro, whereas nitrite concentrations decreased within 2 h. In conclusion, plasma nitrate concentrations and urinary nitrate excretions are enhanced dose-dependently by feeding low amounts of nitrate and nitrite, whereas after ingested nitrite only a transient and small rise of plasma nitrite is observed because of rapid conversion to nitrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号