首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Expression of Tie-2 by human monocytes and their responses to angiopoietin-2   总被引:16,自引:0,他引:16  
Angiopoietins 1 and 2 bind to Tie-2 expressed on endothelial cells and regulate vessel stabilization and angiogenesis. Tie-2(+) monocytes have been shown to be recruited to experimental tumors where they promote tumor angiogenesis. In this study, we show that 20% of CD14(+) human blood monocytes express Tie-2, and that these cells coexpress CD16 (FcgammaRIII) and are predominantly CD34 negative. Ang-2 is up-regulated by endothelial cells in malignant tumors and inflamed tissues, so our finding that Ang-2 is a chemoattractant for human Tie-2(+) monocytes and macrophages, suggests that it may help to recruit and regulate their distribution in such tissues. Ang-2 was also found to markedly inhibit release of the important proinflammatory cytokine, TNF-alpha, by monocytes in vitro. Following extravasation of monocytes, and their differentiation into macrophages, many accumulate in the hypoxic areas of inflamed and malignant tissues. Ang-2 is known to be up-regulated by hypoxia and we show that monocytes and macrophages up-regulate Tie-2 when exposed to hypoxia. Furthermore, hypoxia augmented the inhibitory effect of Ang-2 on the release of the anti-angiogenic cytokine, IL-12 by monocytes. In sum, our data indicate that Ang-2 may recruit Tie-2(+) monocytes to tumors and sites of inflammation, modulate their release of important cytokines and stimulate them to express a proangiogenic phenotype.  相似文献   

3.
Endothelial cells play a critical role in monocyte differentiation. Platelets also affect terminal maturation of monocytes in vitro. P-selectin is an important adhesion molecule expressed on both endothelial cells and activated platelets. We investigated its effects on human peripheral blood monocyte differentiation under the influence of different cytokines. Generation of dendritic-like cells (DLCs) from peripheral blood monocytes was promoted by immobilized P-selectin in the presence of M-CSF and IL-4 as judged by dendritic cell (DC) morphology; increased expression of CD1a, a DC marker; low phagocytic activity; and high alloreactivity to naive T cells. In contrast to typical DCs, DLCs expressed CD14 and FcgammaRIII (CD16). These features link the possible identity of DLCs to that of an uncommon CD14(+)CD16(+)CD64(-) monocyte subset found to be expanded in a variety of pathological conditions. Functionally, DLCs generated by P-selectin in combination with M-CSF plus IL-4 primed naive allogeneic CD4(+) T cells to produce significantly less IFN-gamma than cells generated by BSA in the presence of M-CSF and IL-4. P-selectin effects on enhancing CD14(+)CD16(+) DLC generation were completely abrogated by pretreatment of cells with the protein kinase C delta inhibitor rottlerin, but not by classical protein kinase C inhibitor G?6976. Immobilized P-selectin also inhibited macrophage differentiation in response to M-CSF alone as demonstrated by morphology, phenotype, and phagocytosis analysis. The effects of P-selectin on macrophage differentiation were neutralized by pretreatment of monocytes with Ab against P-selectin glycoprotein ligand 1. These results suggest a novel role for P-selectin in regulating monocyte fate determination.  相似文献   

4.
The objective of this study was to determine whether cyclic strain could promote human umbilical vein endothelial cells (HUVECs) to express markers in common with the mature smooth muscle cell (SMC) phenotype, suggesting endothelial cell to SMC transdifferentiation. HUVECs were cultured on stretched membranes at 10% stretch and 60 cycles/min for 24-96 hr, and demonstrated elongation with enhanced and organized F-actin distribution. By using real-time polymerase chain reaction analysis, the mRNA levels of five specific SMC markers, SM22-alpha, alpha-smooth muscle actin (alpha-SMA), caldesmon-1, smooth muscle myosin heavy chain (SMMHC), and calponin-1 were significantly increased in cyclic strain-treated HUVECs as compared with those in static control cells. Protein levels of SM22-alpha and alpha-SMA were also substantially increased by Western blot and immunofluorescence staining. In addition, two specific endothelial markers, von Willebrand factor (vWF) and vascular endothelial growth factor receptor-2 (VEGFR-2), showed a reduction in mRNA expression. In addition, cyclic strain-induced increase of SM22-alpha and alpha-SMA expression were reversible when cells were cultured back to the static condition. These results demonstrate a possible endothelial cell to SMC transdifferentiation in response to cyclic strain. Hemodynamic forces in modulating endothelial phenotype may play an important role in the vascular system.  相似文献   

5.
Hypoxia inducible factor-1 alpha (HIF-1 alpha) is a key determinant of oxygen-dependent gene regulation in angiogenesis. HIF-1 alpha overexpression may be beneficial in cell therapy of hypoxia-induced pathophysiological processes, such as ischemic heart disease. To address this issue, human peripheral blood mononuclear cells (PBMNCs) were induced to differentiate into endothelial progenitor cells (EPCs), and then were transfected with either an HIF-1 alpha-expressing or a control vector and cultured under normoxia or hypoxia. Hypoxia-induced HIF-1 alpha mRNA and protein expression was increased after HIF-1 alpha transfection. This was accompanied by VEGF mRNA induction and increased VEGF secretion. Hypoxia-stimulated VEGF mRNA induction was significantly abrogated by HIF-1 alpha-specific siRNA. Functional studies showed that HIF-1 alpha overexpression further promoted hypoxia-induced EPC differentiation, proliferation and migration. The expressions of endothelial cell markers CD31, VEGFR2 (Flk-1) and eNOS as well as VEGF and NO secretions were also increased. Furthermore, in an in vivo model of hindlimb ischemia, HIF-1 alpha-transfected EPCs homed to the site of ischemia. A higher revascularization potential was also demonstrated by increased capillary density at the injury site. Our results revealed that endothelial progenitor cells ex vivo modification by hypoxia inducible factor-1 alpha gene transfection is feasible and may offer significant advantages in terms of EPC expansion and treatment efficacy.  相似文献   

6.
猪外周血内皮祖细胞的分离培养和鉴定   总被引:1,自引:0,他引:1  
从猪外周血分离出单个核细胞,置于EGM-2培养基中培养,通过挑选细胞集落并对之进行免疫组织化学染色和荧光染色来鉴定内皮祖细胞。结果显示猪的内皮祖细胞为长梭形或纺锤形并呈集落生长,能够吞噬已酰化低密度脂蛋(ac-LDL)并结合凝结素BS-1,同时具有内皮细胞标志CD31、flk-1和von willebrand factor(vWF)。这些结果表明能够从猪的外周血中分离培养出内皮祖细胞,为自体内皮祖细胞移植促进猪慢性心肌缺血模型血管新生的研究打下了基础。  相似文献   

7.
Human peripheral CD14(+)monocytes have been known to differentiate into monocyte-derived macrophages (MDMs) or dendritic cells (MoDCs) upon suitable stimulation. However, the key intracellular molecule(s) associated with their differentiation towards specific cell types was(were) not fully understood. This study was designated to determine the association of PKC isoenzymes with the differentiation of CD14(+)monocytes into MDMs or MoDCs. Purified human peripheral CD14(+)monocytes were cultured with GM-CSF, or GM-CSF plus IL-4 for 7 days to induce cell differentiation. The phenotypic changes were analyzed by Flow-Cytometry using various specific antibodies to cell type-specific surface markers. The immunological functions of these differentiated cells were determined by measuring the amounts of TNF-alpha secretion for MDMs, and the capacities of antigen-capturing and bacterial phagocytosis for MoDCs. The translocations of PKC isoenzymes in these cells from cytosol to plasma membrane were examined by Western Blot analysis and Confocal Microscopic observation. The treatment of CD14(+)monocytes with either GM-CSF or PMA elicited PKCalpha translocation and consequently induced their differentiation into MDMs. The inclusion of PKCalpha/beta(I) specific inhibitor, Go6976, greatly inhibited the GM-CSF-induced PKCalpha translocation and dose-dependently reduced the GM-CSF- induced MDM differentiation. On the other hand, the simultaneous pretreatment of CD14(+)monocytes with Go6976 and PKCbeta-specific inhibitor predominantly suppressed the GM-CSF/IL-4-induced generation of MoDCs. Further study demonstrated that GM-CSF/IL-4 selectively induced the translocation of PKCbeta(I), not PKCalpha or PKCbeta(II), in CD14(+)monocytes. In conclusion, the cell fate commitment of CD14(+)monocytes towards MDMs or MoDCs appears to be steered by the selective activation of PKCalpha or PKCbeta(I), respectively.  相似文献   

8.

Background

Adipose tissue provides a readily available source of autologous stem cells. Adipose-derived stem cells (ASCs) have been proposed as a source for endothelial cell substitutes for lining the luminal surface of tissue engineered bypass grafts. Endothelial nitric oxide synthase (eNOS) is a key protein in endothelial cell function. Currently, endothelial differentiation from ASCs is limited by poor eNOS expression. The goal of this study was to investigate the role of three molecules, sphingosine-1-phosphate (S1P), bradykinin, and prostaglandin-E1 (PGE1) in ASC endothelial differentiation. Endothelial differentiation markers (CD31, vWF and eNOS) were used to evaluate the level of ASCs differentiation capability.

Results

ASCs demonstrated differentiation capability toward to adipose, osteocyte and endothelial like cell phenotypes. Bradykinin, S1P and PGE were used to promote differentiation of ASCs to an endothelial phenotype. Real-time PCR showed that all three molecules induced significantly greater expression of endothelial differentiation markers CD31, vWF and eNOS than untreated cells. Among the three molecules, S1P showed the highest up-regulation on endothelial differentiation markers. Immunostaining confirmed presence of more eNOS in cells treated with S1P than the other groups. Cell growth measurements by MTT assay, cell counting and EdU DNA incorporation suggest that S1P promotes cell growth during ASCs endothelial differentiation. The S1P1 receptor was expressed in ASC-differentiated endothelial cells and S1P induced up-regulation of PI3K.

Conclusions

S1P up-regulates endothelial cell markers including eNOS in ASCs differentiated to endothelial like cells. This up-regulation appears to be mediated by the up-regulation of PI3K via S1P1 receptor. ASCs treated with S1P offer promising use as endothelial cell substitutes for tissue engineered vascular grafts and vascular networks.  相似文献   

9.
Blood vessels are composed of endothelial cells (EC) and mural cells, and the interaction between EC and mural cells is essential for the development and maintenance of the vasculature. EC differentiate from bone marrow-derived endothelial progenitor cells (EPC). Recently, we established a conditionally immortalized bone marrow EPC-derived cell line, TR-BME2, and a brain capillary EC (BCEC) line, TR-BBB, from temperature-sensitive-SV40 T-antigen gene transgenic rats. To understand the function of EPC, it is important to analyze the difference between EPC and mature EC such as BCEC. In this study, we identified EPC-specific genes by means of subtractive hybridization between TR-BME2 and TR-BBB. There was no significant difference between TR-BME2 and TR-BBB in the mRNA level of annexin II, which is expressed in EC. In contrast, the mRNA level of smooth muscle cell (SMC) markers such as smooth muscle protein 22 (SM22), calvasculin, and platelet-derived growth factor (PDGF) receptor-beta, was higher in TR-BME2 than in TR-BBB. Moreover, the mRNA level of contractile SMC markers, such as smooth muscle alpha-actin and SM22, was increased in the absence of EC growth factors, such as vascular endothelial growth factor. The mRNA level of synthetic SMC markers, such as matrix Gla protein, was increased by the addition of PDGF-BB. The SMC derived from TR-BME2 showed an altered phenotype, from contractile-type to synthetic-type, when they were cultured in the absence of PDGF-BB. These results show that TR-BME2 cells have higher levels of SMC markers compared with mature EC, and can differentiate into contractile- or synthetic-type SMC.  相似文献   

10.
Paracrine interactions between endothelial cells (EC) and mural cells act as critical regulators of vessel wall assembly, vessel maturation and define a plasticity window for vascular remodeling. The present study was aimed at studying blood vessel maturation processes in a novel 3-dimensional spheroidal coculture system of EC and smooth muscle cells (SMC). Coculture spheroids differentiate spontaneously in a calcium-dependent manner to organize into a core of SMC and a surface layer of EC, thus mimicking the physiological assembly of blood vessels with surface lining EC and underlying mural cells. Coculture of EC with SMC induces a mature, quiescent EC phenotype as evidenced by 1) a significant increase in the number of junctional complexes of the EC surface layer, 2) a down-regulation of PDGF-B expression by cocultured EC, and 3) an increased resistance of EC to undergo apoptosis. Furthermore, EC cocultured with SMC become refractory to stimulation with VEGF (lack of CD34 expression on VEGF stimulation; inability to form capillary-like sprouts in a VEGF-dependent manner in a 3-dimensional in gel angiogenesis assay). In contrast, costimulation with VEGF and Ang-2 induced sprouting angiogenesis originating from coculture spheroids consistent with a model of Ang-2-mediated vessel destabilization resulting in VEGF responsiveness. Ang-2 on its own was able to stimulate endothelial cells in the absence of Ang-1 producing SMC, inducing lateral sheet migration as well as in gel sprouting angiogenesis. Taken together, the data establish the spheroidal EC/SMC system as a powerful cell culture model to study paracrine interactions in the vessel wall and provide functional evidence for smooth muscle cell-mediated quiescence effects on endothelial cells.  相似文献   

11.
In elderly subjects and in patients with chronic inflammatory diseases, there is an increased subset of monocytes with a CD14(+)CD16(+) phenotype, whose origin and functional relevance has not been well characterized. In this study, we determined whether prolonged survival of human CD14(++)CD16(-) monocytes promotes the emergence of senescent cells, and we analyzed their molecular phenotypic and functional characteristics. We used an in vitro model to prolong the life span of healthy monocytes. We determined cell senescence, intracellular cytokine expression, ability to interact with endothelial cells, and APC activity. CD14(+)CD16(+) monocytes were senescent cells with shortened telomeres (215 ± 37 relative telomere length) versus CD14(++)CD16(-) cells (339 ± 44 relative telomere length; p < 0.05) and increased expression of β-galactosidase (86.4 ± 16.4% versus 10.3 ± 7.5%, respectively; p = 0.002). CD14(+)CD16(+) monocytes exhibited features of activated cells that included expression of CD209, release of cytokines in response to low-intensity stimulus, and increased capacity to sustain lymphocyte proliferation. Finally, compared with CD14(++)CD16(-) cells, CD14(+)CD16(+) monocytes showed elevated expression of chemokine receptors and increased adhesion to endothelial cells (19.6 ± 8.1% versus 5.3 ± 4.1%; p = 0.033). In summary, our data indicated that the senescent CD14(+)CD16(+) monocytes are activated cells, with increased inflammatory activity and ability to interact with endothelial cells. Therefore, accumulation of senescent monocytes may explain, in part, the development of chronic inflammation and atherosclerosis in elderly subjects and in patients with chronic inflammatory diseases.  相似文献   

12.
13.
To clarify the process of endothelial differentiation, we isolated AC133(+) cells and induced the in vitro differentiation of these cells into endothelial cells. AC133(+) cells efficiently differentiated into endothelial cells when the cells were cultured on fibronectin-coated dishes in the presence of vascular endothelial growth factor. Time-course analysis of the alteration of endothelial markers on cultured AC133(+) cells revealed that the expression of CD31 (PECAM-1) on AC133(+) cells was the earliest marker among all of the tested markers. Based on the hypothesis that CD31 is an early indicator during the endothelial differentiation, we examined the relationship between CD31 expression and the ability to differentiate into endothelial cells in cells derived from AC133(+) cells. CD31-bright cells, which were sorted from cultured AC133(+) cells, differentiated more efficiently into endothelial cells than had CD31-positive or CD31-negative cells, suggesting that CD31-bright cells may be precursor cells for endothelial cells. In the present study, we identified CD31(+) cells derived from cultured AC133(+) cells that are able to differentiate to endothelial cells as precursor cells.  相似文献   

14.
Propionibacterium acnes is a major etiological factor of acne, triggering an inflammatory response in part through the activation of TLR2. In this study, we demonstrate that activation of peripheral blood monocytes with P. acnes in vitro induced their differentiation into two distinct innate immune cell subsets, CD209(+) macrophages and CD1b(+) dendritic cells. Furthermore, P. acnes induced expression of mRNA for the cytokines IL-15 and GM-CSF, which differentiate CD209(+) and CD1b(+) cells, respectively. The CD209(+) cells were more effective in uptake of P. acnes, compared with the CD1b(+) cells, and demonstrated a 2-fold greater antimicrobial activity against the phagocytosed bacteria. Although CD1b(+) cells secreted inflammatory cytokines in response to both P. acnes and a TLR2 ligand control, the CD209(+) cells responded only to P. acnes. The addition of all-trans retinoic acid, a commonly used agent for the treatment of acne, directly induced differentiation of monocytes into CD209(+) macrophages and enhanced the P. acnes-mediated differentiation of the CD209(+) subset. Therefore, the differentiation of monocytes into CD209(+) macrophages and CD1b(+) dendritic cells distinctly mediate the innate immune response to P. acnes.  相似文献   

15.
The present study aimed to define the ability of erythropoietin (EPO) to mobilize hematopoietic stem cells (c-kit(+)/sca-1(+)/lin-1(-); KSL-cells) and hematopoietic progenitor cells (CD34(+) cells), including vascular endothelial growth factor receptor 2 expressing hematopoietic progenitor cells (CD34(+)/Flk-1(+) cells). We also sought to determine the role of endothelial nitric oxide synthase (eNOS) in EPO-induced mobilization. Wild type (WT) and eNOS(-/-) mice were injected bi-weekly with recombinant erythropoietin (EPO, 1000U/kg, s.c.) for 14 days. EPO increased the number of KSL, CD34(+), CD34(+)/Flk-1(+) cells in circulating blood of wild type mice. These effects of EPO were abolished in eNOS(-/-) mice. Our results demonstrate that, EPO stimulates mobilization of hematopoietic stem and progenitor cells. This effect of EPO is critically dependent on activation of eNOS.  相似文献   

16.
The number of colony forming unit-endothelial cells (CFU-EC) in human peripheral blood was found to be a biological marker for several vascular diseases. In this study, the heterogeneous composition of immune cells in the CFU-ECs was investigated. We confirmed that monocytes are essential for the formation of CFU-ECs. Also, however, CD4(+) T cells were found to be indispensable for the induction of CFU-EC colonies, mainly through cell-cell contact. By blocking or activating CD3 receptors on CD4(+) T cells or blocking MHC class II molecules on monocytes, it was shown that TCR-MHCII interactions are required for induction of CFU-EC colonies. Because the supernatant from preactivated T cells could also induce colony formation from purified monocytes, the T cell support turned out to be cytokine mediated. Gene expression analysis of the endothelial-like colonies formed by CD14(+) cells showed that colony formation is a proangiogenic differentiation and might reflect the ability of monocytes to facilitate vascularization. This in vitro study is the first to reveal the role of TCR-MHC class II interactions between T cells and monocytes and the subsequent inflammatory response as stimulus of monocytic properties that are associated with vascularization.  相似文献   

17.
In addition to lowering blood lipids, clinical benefits of 3-hydroxy-3-methylglutaryl coenzyme A (HMG Co-A; EC 1.1.1.34) reductase inhibitors may derive from altered vascular function favoring fibrinolysis over thrombosis. We examined effects of pitavastatin (NK-104), a relatively novel and long acting statin, on expression of tissue factor (TF) in human monocytes (U-937), plasminogen activator inhibitor-1 (PAI-1), and tissue-type plasminogen activator (t-PA) in human aortic smooth muscle cells (SMC) and human umbilical vein endothelial cells (HUVEC). In monocytes, pitavastatin reduced expression of TF protein induced by lipopolysaccharide (LPS) and oxidized low-density lipoprotein (OxLDL). Similarly, pitavastatin also reduced expression of TF mRNA induced by LPS. Pitavastatin reduced PAI-1 antigen released from HUVEC under basal, OxLDL-, or tumor necrosis factor-alpha (TNF-alpha)-stimulated conditions. Reductions of PAI-1 mRNA expression correlated with decreased PAI-1 antigen secretion and PAI-1 activity as assessed by fibrin-agarose zymography. In addition, pitavastatin decreased PAI-1 antigen released from OxLDL-treated and untreated SMC. Conversely, pitavastatin enhanced t-PA mRNA expression and t-PA antigen secretion in untreated OxLDL-, and TNF-alpha-treated HUVEC and untreated SMC. Finally, pitavastatin increased t-PA activity as assessed by fibrin-agarose zymography. Our findings demonstrate that pitavastatin may alter arterial homeostasis favoring fibrinolysis over thrombosis, thereby reducing risk for thrombi at sites of unstable plaques.  相似文献   

18.
Tumor necrosis factor-α (TNF-α) plays an important role in pathological angiogenesis associated with inflammatory response. Pim-3 kinase belonging to serine/threonine protein kinases is a potent suppressor of myc-induced apoptosis. We have recently demonstrated that Pim-3 plays an essential role in endothelial cell (EC) spreading and migration. In this study, we showed that TNF-α transiently increased Pim-3 mRNA expression, and this was mediated through Tumor necrosis factor-α receptor-1 (TNFR1) pathway in ECs. TNF-α could promote stabilization of Pim- 3 mRNA in ECs. Small-interfering RNA (siRNA)-mediated gene knockdown of Pim-3 significantly impaired TNF-α-induced formation of EC membrane protrusions in vitro. Furthermore, Pim-3 silencing inhibited EC sprouting in subcutaneous Matrigel in vivo. eNOS mRNA abundance was lower in Pim-3 siRNA transfected ECs compared with the control ECs. These observations suggest that Pim-3 plays a role in TNF-α-induced angiogenesis.  相似文献   

19.
Smooth muscle cells (SMC) and endothelial cells (EC) play a pivotal role in arteriogenesis and atherosclerosis. We evaluated the role of EC on the growth of SMC and neonatal cardiomyocytes (NEO) by using serum-free EC-supernatant (AoCM). Five percent fetal calf serum was used in order to mimic growth effects of blood. EC and SMC purities were 99% as determined by absence or presence of markers such as CD31, desmin, -smooth muscle actin and tropomyosin using immunostaining and FACS analysis. AoCM markedly influenced the morphology of NEO as determined by -actinin staining but showed only little effect on the phenotype of SMC. Protein synthesis after 2 days increased 2.5-fold in SMC and 3.7-fold in NEO as determined by tritium incorporation. The values for serum (2.8 and 2.3-fold, respectively) were comparable. The induction of DNA-synthesis by serum in NEO was twice that of AoCM (3.9-fold). However, proliferative effects of serum and AoCM on SMC differed markedly: Serum induced a 66-fold increase in DNA-synthesis resulting in a 54% higher cell number. DNA-synthesis after AoCM treatment lead to a nonsignificant small increase and no proliferation was detected. Platelet derived growth factor (PDGF-AB), present in blood, induced a 47-fold increase in DNA-synthesis and a 38% increase in cell number. Our data suggest that EC in the absence of physical forces exert strong morphogenic effects on cardiomyocytes but they lack specific effects on smooth muscle cells. In vessels EC might function as a border to isolate SMC from key regulators in blood such as PDGFs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号