首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wada M  Yasuno R  Wada H 《FEBS letters》2001,506(3):286-290
In plant cells, the pyruvate dehydrogenase (PDH) complex that requires lipoic acid as an essential coenzyme is located in plastids and mitochondria. The enzyme complex has to be lipoylated in both organelles. However, the lipoyltransferase located in plastids has not been reported. In this study, an Arabidopsis thaliana LIP2p cDNA for a lipoyltransferase located in plastids has been identified. We have shown that this cDNA encodes a lipoyltransferase by demonstrating its ability to complement an Escherichia coli mutant lacking lipoyltransferase activity, and that LIP2p is targeted into chloroplasts. These findings suggest that LIP2p is located in plastids and responsible for lipoylation of the plastidial PDH complex.  相似文献   

2.
Lipoic acid is a coenzyme that is essential for the activity of enzyme complexes such as those of pyruvate dehydrogenase and glycine decarboxylase. We report here the isolation and characterization of LIP1 cDNA for lipoic acid synthase of Arabidopsis. The Arabidopsis LIP1 cDNA was isolated using an expressed sequence tag homologous to the lipoic acid synthase of Escherichia coli. This cDNA was shown to code for Arabidopsis lipoic acid synthase by its ability to complement a lipA mutant of E. coli defective in lipoic acid synthase. DNA-sequence analysis of the LIP1 cDNA revealed an open reading frame predicting a protein of 374 amino acids. Comparisons of the deduced amino acid sequence with those of E. coli and yeast lipoic acid synthase homologs showed a high degree of sequence similarity and the presence of a leader sequence presumably required for import into the mitochondria. Southern-hybridization analysis suggested that LIP1 is a single-copy gene in Arabidopsis. Western analysis with an antibody against lipoic acid synthase demonstrated that this enzyme is located in the mitochondrial compartment in Arabidopsis cells as a 43-kD polypeptide.  相似文献   

3.
In an earlier study (S. W. Jordan and J. E. Cronan, Jr., J. Biol. Chem. 272:17903-17906, 1997) we reported a new enzyme, lipoyl-[acyl carrier protein]-protein N-lipoyltransferase, in Escherichia coli and mitochondria that transfers lipoic acid from lipoyl-acyl carrier protein to the lipoyl domains of pyruvate dehydrogenase. It was also shown that E. coli lipB mutants lack this enzyme activity, a finding consistent with lipB being the gene that encoded the lipoyltransferase. However, it remained possible that lipB encoded a positive regulator required for lipoyltransferase expression or action. We now report genetic and biochemical evidence demonstrating that lipB encodes the lipoyltransferase. A lipB temperature-sensitive mutant was shown to produce a thermolabile lipoyltransferase and a tagged version of the lipB-encoded protein was purified to homogeneity and shown to catalyze the transfer of either lipoic acid or octanoic acid from their acyl carrier protein thioesters to the lipoyl domain of pyruvate dehydrogenase. In the course of these experiments the ATG initiation codon commonly assigned to lipB genes in genomic databases was shown to produce a nonfunctional E. coli LipB protein, whereas initiation at an upstream TTG codon gave a stable and enzymatically active protein. Prior genetic results (T. W. Morris, K. E. Reed, and J. E. Cronan, Jr., J. Bacteriol. 177:1-10, 1995) suggested that lipoate protein ligase (LplA) could also utilize (albeit poorly) acyl carrier protein substrates in addition to its normal substrates lipoic acid plus ATP. We have detected a very slow LplA-catalyzed transfer of lipoic acid and octanoic acid from their acyl carrier protein thioesters to the lipoyl domain of pyruvate dehydrogenase. A nonhydrolyzable lipoyl-AMP analogue was found to competitively inhibit both ACP-dependent and ATP-dependent reactions of LplA, suggesting that the same active site catalyzes two chemically diverse reactions.  相似文献   

4.
Lipoyltransferase catalyzes the transfer of the lipoyl group from lipoyl-AMP to the lysine residue of the lipoate-dependent enzymes. We isolated human lipoyltransferase cDNA and genomic DNA. The cDNA insert contained a 1119-base pair open reading frame encoding a precursor peptide of 373 amino acids. Predicted amino acid sequence of the protein shares 88 and 31% identity with bovine lipoyltransferase and Escherichia coli lipoate-protein ligase A, respectively. Northern blot analyses of poly(A)+ RNA indicated a major species of about 1.5 kb. mRNA levels of lipoyltransferase were highest in skeletal muscle and heart, showing good correlation with those of dihydrolipoamide acyltransferase subunits of pyruvate, 2-oxoglutarate and branched-chain 2-oxo acid dehydrogenase complexes and H-protein of the glycine cleavage system which accept lipoic acid as a prosthetic group. The human lipoyltransferase gene is a single copy gene composed of four exons and three introns spanning approximately 8 kb of genomic DNA. Some alternatively spliced mRNA species were found by 5'-RACE analysis, and the most abundant species lacks the third exon. The human lipoyltransferase gene was localized to chromosome band 2q11.2 by fluorescence in situ hybridization.  相似文献   

5.
A monospecific antibody recognizing two membrane proteins in Acholeplasma laidlawii identified a plasmid clone from a genomic library. The nucleotide sequence of the 4.6-kbp insert contained four sequential genes coding for proteins of 39 kDa (E1 alpha, N terminus not cloned), 36 kDa (E1 beta), 57 kDa (E2), and 36 kDa (E3; C terminus not cloned). The N termini of the cloned E2, E1 beta, and native A. laidlawii E2 proteins were verified by amino acid sequencing. Computer-aided searches showed that the translated DNA sequences were homologous to the four subenzymes of the pyruvate dehydrogenase complexes from gram-positive bacteria and humans. The plasmid-encoded 57-kDa (E2) protein was recognized by antibodies against the E2 subenzymes of the pyruvate and oxoglutarate dehydrogenase complexes from Bacillus subtilis. A substantial fraction of the E2 protein as well as part of the pyruvate dehydrogenase enzymatic activity was associated with the cytoplasmic membrane in A. laidlawii. In vivo complementation with three different Escherichia coli pyruvate dehydrogenase-defective mutants showed that the four plasmid-encoded proteins were able to restore pyruvate dehydrogenase enzyme activity in E. coli. Since A. laidlawii lacks oxoglutarate dehydrogenase and most likely branched-chain dehydrogenase enzyme complex activities, these results strongly suggest that the sequenced genes code for the pyruvate dehydrogenase complex.  相似文献   

6.
In order to purify the lipoamide dehydrogenase associated with the glycine decarboxylase complex of pea leaf mitochondria, the activity of free lipoamide dehydrogenase has been separated from those of the pyruvate and 2-oxoglutarate dehydrogenase complexes under conditions in which the glycine decarboxylase dissociates into its component subunits. This free lipoamide dehydrogenase which is normally associated with the glycine decarboxylase complex has been further purified and the N-terminal amino acid sequence determined. Positive cDNA clones isolated from both a pea leaf and embryo lambda gt11 expression library using an antibody raised against the purified lipoamide dehydrogenase proved to be the product of a single gene. The amino acid sequence deduced from the open reading frame included a sequence matching that determined directly from the N terminus of the mature protein. The deduced amino acid sequence shows good homology to the sequence of lipoamide dehydrogenase associated with the pyruvate dehydrogenase complex from Escherichia coli, yeast, and humans. The corresponding mRNA is strongly light-induced both in etiolated pea seedlings and in the leaves of mature plants following a period of darkness. The evidence suggests that the mitochondrial enzyme complexes: pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, and glycine decarboxylase all use the same lipoamide dehydrogenase subunit.  相似文献   

7.
The pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase activities of Bacillus subtilis were found to co-purify as a single multienzyme complex. Mutants of B. subtilis with defects in the pyruvate decarboxylase (E1) and dihydrolipoamide dehydrogenase (E3) components of the pyruvate dehydrogenase complex were correspondingly affected in branched-chain 2-oxo acid dehydrogenase complex activity. Selective inhibition of the E1 or lipoate acetyltransferase (E2) components in vitro led to parallel losses in pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complex activity. The pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complexes of B. subtilis at the very least share many structural components, and are probably one and the same. The E3 component appeared to be identical for the pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complexes in this organism and to be the product of a single structural gene. Long-chain branched fatty acids are thought to be essential for maintaining membrane fluidity in B. subtilis, and it was observed that the ace (pyruvate dehydrogenase complex) mutant 61142 was unable rapidly to take up acetoacetate, unlike the wild-type, indicative of a defect in membrane permeability. A single pyruvate dehydrogenase and branched-chain 2-oxo acid dehydrogenase complex can be seen as an economical means of supplying two different sets of essential metabolites.  相似文献   

8.
H-protein, a component of the glycine cleavage system with lipoic acid as a prosthetic group, was expressed in Escherichia coli using a T7 RNA polymerase plasmid expression system. After induction with 25 microM isopropyl-beta-D-thiogalactopyranoside, bacteria harboring the recombinant plasmid expressed mature bovine H-protein as a soluble form at a level of about 10% of the total bacterial protein. Little of the H-protein was lipoylated in E. coli cultured without added lipoate, but when the cells were cultured in medium supplemented with 30 microM lipoate, about 10% of the recombinant protein expressed was the correctly lipoylated active form, 10% was an inactive aberrantly modified form, presumably with an octanoyl group, and the remaining 80% was the unlipoylated apoform. Each of the three forms was purified to homogeneity and shown to have the same NH2-terminal amino acid sequence as that of native bovine H-protein. The specific activity of the lipoylated form of H-protein expressed was consistent with that of H-protein purified from bovine liver. The purified recombinant apo-H-protein was lipoylated and consequently activated in vitro with lipoyl-AMP as a lipoyl donor by lipoyltransferase purified 150-fold from bovine liver mitochondria. The lipoylation was dependent on lipoyl-AMP, apo-H-protein, and lipoyltransferase. The partially purified lipoyltransferase had no lipoate-activating activity. These results provide the first evidence that in mammals two consecutive reactions are required for the attachment of lipoic acid to the acceptor protein: the activation of lipoic acid to lipoyl-AMP catalyzed by lipoate-activating enzyme and the transfer of the lipoyl group to an N epsilon-amino group of a lysine residue to apoprotein by lipoyl-AMP:N epsilon-lysine lipoyltransferase.  相似文献   

9.
The dihydrolipoamide S-acetyltransferase (E2) subunit of the maize mitochondrial pyruvate dehydrogenase complex (PDC) was postulated to contain a single lipoyl domain based upon molecular mass and N-terminal protein sequence (Thelen, J. J., Miernyk, J. A., and Randall, D. D. (1998) Plant Physiol. 116, 1443-1450). This sequence was used to identify a cDNA from a maize expressed sequence tag data base. The deduced amino acid sequence of the full-length cDNA was greater than 30% identical to other E2s and contained a single lipoyl domain. Mature maize E2 was expressed in Escherichia coli and purified to a specific activity of 191 units mg(-1). The purified recombinant protein had a native mass of approximately 2.7 MDa and assembled into a 29-nm pentagonal dodecahedron as visualized by electron microscopy. Immunoanalysis of mitochondrial proteins from various plants, using a monoclonal antibody against the maize E2, revealed 50-54-kDa cross-reacting polypeptides in all samples. A larger protein (76 kDa) was also recognized in an enriched pea mitochondrial PDC preparation, indicating two distinct E2s. The presence of a single lipoyl-domain E2 in Arabidopsis thaliana was confirmed by identifying a gene encoding a hypothetical protein with 62% amino acid identity to the maize homologue. These data suggest that all plant mitochondrial PDCs contain an E2 with a single lipoyl domain. Additionally, A. thaliana and other dicots possess a second E2, which contains two lipoyl domains and is only 33% identical at the amino acid level to the smaller isoform. The reason two distinct E2s exist in dicotyledon plants is uncertain, although the variability between these isoforms, particularly within the subunit-binding domain, suggests different roles in assembly and/or function of the plant mitochondrial PDC.  相似文献   

10.
The alpha-ketoglutarate dehydrogenase complex of Escherichia coli utilizes pyruvate as a poor substrate, with an activity of 0.082 units/mg of protein compared with 22 units/mg of protein for alpha-ketoglutarate. Pyruvate fully reduces the FAD in the complex and both alpha-keto[5-14C]glutarate and [2-14C]pyruvate fully [14C] acylate the lipoyl groups with approximately 10 nmol of 14C/mg of protein, corresponding to 24 lipoyl groups. NADH-dependent succinylation by [4-14C]succinyl-CoA also labels the enzyme with approximately 10 nmol of 14C/mg of protein. Therefore, pyruvate is a true substrate. However, the pyruvate and alpha-ketoglutarate activities exhibit different thiamin pyrophosphate dependencies. Moreover, 3-fluoropyruvate inhibits the pyruvate activity of the complex without affecting the alpha-ketoglutarate activity, and 2-oxo-3-fluoroglutarate inhibits the alpha-ketoglutarate activity without affecting the pyruvate activity. 3-Fluoro[1,2-14C]pyruvate labels about 10% of the E1 components (alpha-ketoacid dehydrogenases). The dihydrolipoyl transsuccinylase-dihydrolipoyl dehydrogenase subcomplex (E2E3) is activated as a pyruvate dehydrogenase complex by addition of E. coli pyruvate dehydrogenase, the E1 component of the pyruvate dehydrogenase complex. All evidence indicates that the alpha-ketoglutarate dehydrogenase complex purified from E. coli is a hybrid complex containing pyruvate dehydrogenase (approximately 10%) and alpha-ketoglutarate dehydrogenase (approximately 90%) as its E1 components.  相似文献   

11.
A cDNA for branched-chain alpha-ketoacid dehydrogenase kinase was cloned from a rat heart cDNA library. The cDNA had an open reading frame encoding a protein of 382 amino acid residues with a calculated molecular weight of 43,280. The clone codes for the branched-chain alpha-ketoacid dehydrogenase kinase based on the following: 1) the deduced amino acid sequence contained the partial sequence of the kinase determined by direct sequencing; 2) expression of the cDNA in Escherichia coli resulted in synthesis of a 43,000-Da protein that was recognized specifically by kinase antibodies; and 3) enzyme activity that phosphorylated and inactivated the branched-chain alpha-ketoacid dehydrogenase complex was found in extracts of E. coli expressing the protein. Northern blot analysis indicated the mRNA for the branched-chain alpha-ketoacid dehydrogenase kinase was more abundant in rat heart than in rat liver, as expected from the relative amounts of kinase activity expressed in these tissues. The deduced sequence of the kinase aligned with a high degree of similarity within subdomains characteristic of procaryotic histidine protein kinases. This first mitochondrial protein kinase to be cloned appears more closely related in sequence to procaryotic histidine protein kinases than to eucaryotic serine/threonine protein kinases.  相似文献   

12.
To gain further insight into the nature and function of the domains of the human protein X (a pyruvate dehydrogenase complex component also known as the E3-binding protein), we expressed the wild-type as well as two artificially created variants, K37E and S422H, in SV40-immortalized protein X-deficient and E2-deficient human skin fibroblasts. The former mutant does not carry the lipoic acid moiety, the latter mutant was designed to investigate the possibility that protein X could exhibit an intrinsic acetyltransferase activity and use either its own catalytic center or the catalytic center of E2. Similar experiments have been performed in the past using the Saccharomyces cerevisiae expression system. However, lack of sequence similarity between the mammalian and the yeast protein X homologues suggests they are not biochemically equivalent. Mutant cells transfected with the wild-type gene for protein X produced a PDH complex that exhibited about 50% overall activity of the control cells. None of the expressed protein X variants had an effect on the specific activity of the PDH complex, suggesting that the human protein X plays a purely structural role in the functioning of the pyruvate dehydrogenase complex.  相似文献   

13.
A simple method was developed for assessing the intramolecular coupling of active sites in the lipoate acetyltransferase (E2) component of the pyruvate dehydrogenase multienzyme complexes from Escherichia coli, Bacillus stearothermophilus and ox heart and pig heart mitochondria. Samples of enzyme complex were prepared in which the pyruvate decarboxylase (E1) component was selectively and partly inhibited by treatment with increasing amounts of a transition-state analogue, thiamin thio-thiazolone pyrophosphate. The fraction of the E2 component acetylated by incubation with [2-14C] pyruvate, in the absence of CoA, was determined for each sample of partly inhibited enzyme and was found in all cases to exceed the fraction of overall complex activity remaining. This indicated the potential for transacetylation reactions among the lipoic acid residues within the E2 core. A graphic presentation of the data allowed comparison of the active-site coupling in the various enzymes, which may differ in their lipoic acid content (one or two residues per E2 chain). It is clear that active-site coupling is a general property of pyruvate dehydrogenase complexes of octahedral and icosahedral symmetries, the large numbers of subunits in each E2 core enhancing the effect.  相似文献   

14.
J E Lawson  X D Niu  L J Reed 《Biochemistry》1991,30(47):11249-11254
The LAT1 gene encoding the dihydrolipoamide acetyltransferase component (E2) of the pyruvate dehydrogenase (PDH) complex from Saccharomyces cerevisiae was disrupted, and the lat1 null mutant was used to analyze the structure and function of the domains of E2. Disruption of LAT1 did not affect the viability of the cells. Apparently, flux through the PDH complex is not required for growth of S. cerevisiae under the conditions tested. The wild-type and mutant PDH complexes were purified to near-homogeneity and were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting, and enzyme assays. Mutant cells transformed with LAT1 on a unit-copy plasmid produced a PDH complex very similar to that of the wild-type PDH complex. Deletion of most of the putative lipoyl domain (residues 8-84) resulted in loss of about 85% of the overall activity, but did not affect the acetyltransferase activity of E2 or the binding of pyruvate dehydrogenase (E1), dihydrolipoamide dehydrogenase (E3), and protein X to the truncated E2. Similar results were obtained by deleting the lipoyl domain plus the first hinge region (residues 8-145) and by replacing lysine-47, the putative site of covalent attachment of the lipoyl moiety, by arginine. Although the lipoyl domain of E2 and/or its covalently bound lipoyl moiety were removed, the mutant complexes retained 12-15% of the overall activity of the wild-type PDH complex. Replacement of both lysine-47 in E2 and the equivalent lysine-43 in protein X by arginine resulted in complete loss of overall activity of the mutant PDH complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Enterococcus faecalis lipoamidase was discovered almost 50 years ago (Reed, L. J., Koike, M., Levitch, M. E., and Leach, F. R. (1958) J. Biol. Chem. 232, 143-158) as an enzyme activity that cleaved lipoic acid from small lipoylated molecules and from pyruvate dehydrogenase thereby inactivating the enzyme. Although the partially purified enzyme was a key reagent in proving the crucial role of protein-bound lipoic acid in the reaction mechanism of the 2-oxoacid dehydrogenases, the identity of the lipoamidase protein and the encoding gene remained unknown. We report isolation of the lipoamidase gene by screening an expression library made in an unusual cosmid vector in which the copy number of the vector is readily varied from 1-2 to 40-80 in an appropriate Escherichia coli host. Although designed for manipulation of large genome segments, the vector was also ideally suited to isolation of the gene encoding the extremely toxic lipoamidase. The gene encoding lipoamidase was isolated by screening for expression in E. coli and proved to encode an unexpectedly large protein (80 kDa) that contained the sequence signature of the Ser-Ser-Lys triad amidohydrolase family. The hexa-histidine-tagged protein was expressed in E. coli and purified to near-homogeneity. The purified enzyme was found to cleave both small molecule lipoylated and biotinylated substrates as well as lipoic acid from two 2-oxoacid dehydrogenases and an isolated lipoylated lipoyl domain derived from the pyruvate dehydrogenase E2 subunit. Lipoamidase-mediated inactivation of the 2-oxoacid dehydrogenases was observed both in vivo and in vitro. Mutagenesis studies showed that the residues of the Ser-Ser-Lys triad were required for activity on both small molecule and protein substrates and confirmed that lipoamidase is a member of the Ser-Ser-Lys triad amidohydrolase family.  相似文献   

16.
The cDNA sequences encoding mature and precursor forms of human dihydrolipoamide dehydrogenase (E3) were expressed in Escherichia coli using a lambda PL promoter-driven prokaryotic expression vector. The expressed proteins in total cell extracts were identified by Western blot analysis using anti-pig heart E3 antibody and also by measurement of E3 activity. Most of the expressed human E3 polypeptides (five bands) were found in the insoluble pellet while primarily full-length mature E3 was found in the soluble fraction. About 2% of the total soluble protein was mature human E3 when expressed in wild type E. coli AR120. Since wild type E. coli has its own endogenous E3 activity, the expression of human E3 was performed in a pyruvate dehydrogenase complex-deficient strain of E. coli, JRG1342. The expressed recombinant human E3s in JRG1342 were purified to near homogeneity. The amino-terminal amino acid sequence analysis revealed that the recombinant mature E3 had an expected sequence while the recombinant precursor E3 lost 19 amino acid residues of its 35-amino acid leader sequence presumably due to a proteolytic cleavage. The recombinant mature E3 displayed comparable kinetic properties to those reported for highly purified mammalian E3s. The truncated precursor E3 showed about half of the mature E3 activity. The double-reciprocal plot for the mature E3 in the direction of NAD+ reduction showed parallel lines (ping-pong mechanism) while that for the truncated precursor E3 displayed intersecting lines (sequential mechanism). In the direction of NADH oxidation, the kinetic mechanisms of both E3s were apparently a ping-pong mechanism. These kinetic results showed that the partial 16-amino acid extension in the leader sequence changed the kinetic mechanism of human E3 so that it resembled that of glutathione reductase.  相似文献   

17.
Yasuno R  Wada H 《FEBS letters》2002,517(1-3):110-114
In eukaryotes, the biosynthetic pathway for lipoic acid is present in mitochondria. However, it has been hypothesized that, in plants, the biosynthetic pathway is present in plastids in addition to mitochondria. In this study, Arabidopsis thaliana LIP1p cDNA for a plastidial form of lipoic acid synthase has been identified. We show that it encodes a lipoic acid synthase by demonstrating its ability to complement an Escherichia coli mutant lacking lipoic acid synthase activity. We also show that LIP1p is targeted to chloroplasts. These findings suggest that the biosynthetic pathway for lipoic acid is present not only in mitochondria but also in plastids.  相似文献   

18.
I purified a new dihydrolipoamide dehydrogenase from a lpd mutant of Escherichia coli deficient in the lipoamide dehydrogenase (EC 1.6.4.3) common to the pyruvate dehydrogenase (EC 1.2.4.1) and 2-oxoglutarate dehydrogenase complexes. The occurrence of the new lipoamide dehydrogenase in lpd mutants, including a lpd deletion mutant and the immunological properties of the enzyme, showed that it is different from the lpd gene product. The new dihydrolipoamide dehydrogenase had a molecular weight of 46,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was expressed in low amounts. It catalyzed the NAD+-dependent reduction of dihydrolipoamide with a maximal activity of 20 mumol/min per mg of protein and exhibited a hyperbolic dependence of catalytic activity on the concentration of both dihydrolipoamide and NAD+. The possible implication of the new dihydrolipoamide in the function of 2-oxo acid dehydrogenase complexes is discussed, as is its relation to binding protein-dependent transport.  相似文献   

19.
Dihydrolipoamide dehydrogenase (E3) is the common component of the three alpha-ketoacid dehydrogenase complexes oxidizing pyruvate, alpha-ketoglutarate, and the branched-chain alpha-ketoacids. E3 also participates in the glycine cleavage system. E3 belongs to the enzyme family called pyridine nucleotide-disulfide oxidoreductases, catalyzing the electron transfer between pyridine nucleotides and disulfide compounds. This review summarizes the information available for E3 from a variety of species, from a halophilic archaebacterium which has E3 but no alpha-ketoacid dehydrogenase complexes, to mammalian species. Evidence is reviewed for the existence of two E3 isozymes (one for pyruvate dehydrogenase complex and alpha-ketoglutarate dehydrogenase complex and the other for branched-chain alpha-ketoacid dehydrogenase complex) in Pseudomonas species and for possible mammalian isozymes of E3, one associated with the three alpha-ketoacid dehydrogenase complexes and one for the glycine cleavage system. The comparison of the complete amino acid sequences of E3 from Escherichia coli, yeast, pig, and human shows considerable homologies of certain amino acid residues or short stretches of sequences, especially in the specific catalytic and structural domains. Similar homology is found with the limited available amino acid sequence information on E3 from several other species. Sequence comparison is also presented for other member flavoproteins [e.g., glutathione reductase and mercury(II) reductase] of the pyridine nucleotide-disulfide oxidoreductase family. Based on the known tertiary structure of human glutathione reductase it may be possible to predict the domain structures of E3. Additionally, the sequence information may help to better understand a divergent evolutionary relationship among these flavoproteins in different species.  相似文献   

20.
ZMPP2, a novel type-2C protein phosphatase from maize   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号