首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
WRK 1 cells were labelled to equilibrium with 2-myo-[3H]inositol and stimulated with vasopressin. Within 3 s of hormone stimulation there was a marked accumulation of 3H-labelled InsP2 and InsP3 (inositol bis- and tris-phosphate), but not of InsP (inositol monophosphate). There was an associated, and rapid, depletion of 3H-labelled PtdInsP and PtdInsP2 (phosphatidylinositol mono- and bis-phosphates), but not of PtdIns (phosphatidylinositol), in these cells. Some 4% of the radioactivity in the total inositol lipid pool of WRK 1 cells was recovered in InsP2 and InsP3 after 10 s stimulation with the hormone. The selectivity of the vasopressin receptors of WRK 1 cells for a variety of vasopressin agonists and antagonists revealed these to be of the V1a subtype. There was no receptor reserve for vasopressin-stimulated inositol phosphate accumulation in WRK 1 cells. The accumulation of inositol phosphates was enhanced in the presence of Li+ions. Half-maximal accumulation of InsP, InsP2 and InsP3 in vasopressin-stimulated cells was observed with 0.9, 3.0 and 3.6 mM-Li+ respectively. Bradykinin and 5-hydroxytryptamine also provoked inositol phosphate accumulation in WRK 1 cells. The effects of sub-optimal concentrations of bradykinin and vasopressin upon inositol phosphate accumulation were additive, but those of optimal concentrations of the hormones were not.  相似文献   

2.
Incubation of L6 skeletal myoblasts for 16 h with cholera toxin but not with pertussis toxin, led to the inhibition of inositol phosphate generation induced by subsequent exposure to vasopressin. The effects of the toxin on inositol lipid metabolism were accompanied by the total ADP-ribosylation of the available cholera-toxin substrates within the cells. Immunological analysis demonstrated that the two polypeptides modified in vivo by cholera toxin were different forms of Gs alpha (alpha subunit of Gs). No novel cholera-toxin substrate(s) were detected. The cholera-toxin-mediated inhibition of vasopressin-stimulated inositol phosphate generation could be mimicked by both forskolin and dibutyryl cyclic AMP, but not by the separated subunits of the toxin. Receptor-binding studies demonstrated that the inhibition of agonist-stimulated inositol phosphate generation was accompanied by a decrease in cell-surface vasopressin-binding sites, with no effect on the affinity of these for the hormone. We suggest that the effect of cholera toxin and agents which increase intracellular cyclic AMP on vasopressin-stimulated inositol lipid hydrolysis is an effect on receptor number, and that there is no requirement to postulate a role for a novel G-protein, which is a substrate for cholera toxin, in the regulation of inositol phospholipid metabolism.  相似文献   

3.
WRK 1, a cloned cell line derived from a rat mammary tumour, carries specific vasopressin-binding sites. Specific binding of 2-tyrosine-3H-labelled [8-lysine]vasopressin ([3H]vasopressin) was time-dependent, saturable and reversible. Scatchard-plot analysis of hormone binding indicated the presence of a single class of receptors with an equilibrium dissociation constant of 12.7 +/- 0.2 nM. The maximal binding capacity was 75 +/- 6 fmol/10(6) cells, which corresponds to approx. 45,000 sites per cell. Oxytocin and a highly potent oxytocin analogue were able to inhibit completely [3H]vasopressin binding, but, in this respect, they were far less potent than vasopressin. This clearly demonstrates the vasopressinergic nature of this receptor. Pharmacological studies using a series of 14 vasopressin or oxytocin analogues indicated that the ligand selectivity of the vasopressin receptor found on WRK 1 cells resembles that of the rat hepatocyte. This signifies that this vasopressin receptor is of the V1a subtype. This conclusion was confirmed by the observation that vasopressin did not influence the production of intracellular cyclic AMP in WRK 1 cells.  相似文献   

4.
Previous studies have demonstrated enhanced phosphorylation of phospholipase C-tau (PLC-tau), a key regulatory enzyme in phosphoinositide metabolism, in cells treated with platelet-derived growth factor (PDGF) and epidermal growth factor, both of which act via specific receptor tyrosine kinases. Our studies on BALB/c-3T3 cells show that agents that promote cellular cyclic AMP accumulation also increase the phosphorylation, specifically the serine phosphorylation, of this enzyme. Increased phosphorylation of PLC-t (2-3-fold) was evident within 5-10 min of addition of isobutylmethylxanthine (IBMX) and either cholera toxin or forskolin to cells, and persisted for at least 3 h. Treatment of cells with cyclic AMP agonists also enhanced, with similar kinetics, the phosphorylation of a 76 kDa protein co-precipitated by anti-PLC-tau monoclonal antibodies. Brief exposure of cells to cholera toxin/IBMX or forskolin/IBMX decreased inositol phosphate formation induced by the GTP-binding protein (G-protein) activator aluminium fluoride by approx. 50%, but was without effect on PDGF-stimulated inositol phosphate formation. These findings suggest that PLC-tau, and perhaps the 76 kDa co-precipitated protein, are substrates of cyclic AMP-dependent protein kinase in BALB/c-3T3 cells: however, the lack of effect of cyclic AMP elevation on PDGF-stimulated inositol phosphate formation indicates that the intrinsic activity of PLC-tau is unaltered by cyclic AMP-mediated phosphorylation.  相似文献   

5.
We have shown previously that exposure of a non-transformed continuous line of rat liver epithelial (WB) cells to epidermal growth factor (EGF), adrenaline, angiotensin II or [Arg8]vasopressin results in an accumulation of the inositol phosphates InsP1, InsP2 and InsP3 [Hepler, Earp & Harden (1988) J. Biol. Chem. 263, 7610-7619]. Studies were carried out with WB cells to determine whether the EGF receptor and other, non-tyrosine kinase, hormone receptors stimulate phosphoinositide hydrolysis by common, overlapping or separate pathways. The time courses for accumulation of inositol phosphates in response to angiotensin II and EGF were markedly different. Whereas angiotensin II stimulated a very rapid accumulation of inositol phosphates (maximal by 30 s), increases in the levels of inositol phosphates in response to EGF were measurable only following a 30 s lag period; maximal levels were attained by 7-8 min. Chelation of extracellular Ca2+ with EGTA did not modify this relative difference between angiotensin II and EGF in the time required to attain maximal phospholipase C activation. Under experimental conditions in which agonist-induced desensitization no longer occurred in these cells, the inositol phosphate responses to EGF and angiotensin II were additive, whereas those to angiotensin II and [Arg8]vasopressin were not additive. In crude WB lysates, angiotensin II, [Arg8]vasopressin and adrenaline each stimulated inositol phosphate formation in a guanine-nucleotide-dependent manner. In contrast, EGF failed to stimulate inositol phosphate formation in WB lysates in the presence or absence of guanosine 5'-[gamma-thio]triphosphate (GTP[S]), even though EGF retained the capacity to bind to and stimulate tyrosine phosphorylation of its own receptor. Pertussis toxin, at concentrations that fully ADP-ribosylate and functionally inactivate the inhibitory guanine-nucleotide regulatory protein of adenylate cyclase (Gi), had no effect on the capacity of EGF or hormones to stimulate inositol phosphate accumulation. In intact WB cells, the capacity of EGF, but not angiotensin II, to stimulate inositol phosphate accumulation was correlated with its capacity to stimulate tyrosine phosphorylation of the 148 kDa isoenzyme of phospholipase C. Taken together, these findings suggest that, whereas angiotensin II, [Arg8]vasopressin and alpha 1-adrenergic receptors are linked to activation of one or more phospholipase(s) C by an unidentified G-protein(s), the EGF receptor stimulates phosphoinositide hydrolysis by a different pathway, perhaps as a result of its capacity to stimulate tyrosine phosphorylation of phospholipase C-gamma.  相似文献   

6.
The following studies were conducted to determine whether luteinizing hormone (LH), a hormone which increases cellular levels of cyclic AMP, also provokes increases in 'second messengers' derived from inositol lipid metabolism (i.e. inositol phosphates and diacylglycerol). Rat granulosa cells isolated from mature Graafian follicles were prelabelled for 3 h with myo-[2-3H]inositol. LH provoked rapid (5 min) and sustained (up to 60 min) increases in the levels of inositol mono-, bis, and trisphosphates (IP, IP2 and IP3, respectively). Time course studies revealed that IP3 was formed more rapidly than IP2 and IP following LH treatment. The response to LH was concentration-dependent with maximal increases at LH concentrations of 1 microgram/ml. LiCl (2-40 mM) enhanced the LH-provoked accumulation of all [3H]inositol phosphates, presumably by inhibiting the action of inositol phosphate phosphatases. The effectiveness of LH, however, was dependent on the concentration of lithium employed; maximal increases in IP were observed at 10 mM-LiCl, whereas maximal increases in IP2 and IP3 were observed at 20 mM- and 40 mM-LiCl, respectively. The stimulatory effects of LH on inositol phosphate and progesterone accumulation were also compared with changes in cyclic nucleotide levels. LH rapidly increased levels of inositol phosphates, progesterone and cyclic AMP, but transiently reduced levels of cyclic GMP. These results demonstrate that LH increases both cyclic AMP and inositol trisphosphate (and presumably diacylglycerol) in rat granulosa cells. Our findings suggest that two messenger systems exist to mediate the action of LH in granulosa cells.  相似文献   

7.
Abstract Ibuprofen, an inhibitor of prostaglandin synthesis in eukaryotic cells, was shown to inhibit the accumulation of 3',5'-cyclic adenosine monophosphate (cyclic AMP) in Chinese hamster ovary (CHO) cells exposed to cholera toxin. The inhibition was dose dependent, with a dose of 100 μg/ml reducing the cholera toxin response by approximately 50%, and maximal inhibition was observed when the drug was applied to the cells simulataneously with or 1 h before the toxin. Although ibuprofen also inhibited adenylate cyclase stimulation by forskolin, suggesting a nonspecific effect, the drug had no effect on cholera toxin-induced cyclic AMP accumulation when added to the culture medium 15 min or more after the toxin.  相似文献   

8.
Effects of angiotensin II and [Arg]vasopressin on cytosolic free Ca2+ concentration ([Ca2+]i) and phosphoinositide metabolism were studied in cultured aortic smooth muscle cells obtained from Wistar-Kyoto rats and their spontaneously hypertensive substrain. [Ca2+]i was measured using the fluorescent Ca2+ indicator quin2. No clear differences in basal [Ca2+]i were detected between cells derived from the two strains. High concentrations of angiotensin II (greater than or equal to 10 nM) and [Arg]vasopressin (greater than or equal to 100 nM) elicited large and rapid increases in [Ca2+]i, followed by a rapid return to control values. Low concentrations of these peptides (less than or equal to 1.0 nM) elicited small and slow increases in [Ca2+]i that persisted for minutes. These responses were blocked by specific antagonists for each of these peptides. Only high concentrations of angiotensin II caused [Ca2+]i increases in "Ca2+-free" medium, which suggested that high concentrations of angiotensin II could release Ca2+ from intracellular pools. A high concentration of angiotensin II and [Arg]vasopressin elicited progressive accumulations of inositol phosphates. Only high concentrations of angiotensin II caused inositol phosphate accumulation in Ca2+-free medium. Maximal accumulation of inositol phosphate elicited by angiotensin II and [Arg]vasopressin was found to be additive. A desensitization to the effects of both peptides on Ca2+ mobilization occurred despite the continued accumulation of inositol phosphates. These observations indicated that angiotensin II and [Arg]vasopressin interacted with independent receptors, both of which are linked to phosphoinositide breakdown and Ca2+ mobilization.  相似文献   

9.
Vasopressin stimulates the liberation of labelled inositol phosphate in partially purified plasma membranes prepared from myo-[3H]inositol prelabelled WRK1 cells. This stimulatory effect was very rapid (165% stimulation of inositol trisphosphate accumulation after a 10 s incubation period in the presence of 1 microM vasopressin), concentration dependent (EC50 = 12 nM) and was abolished by an antagonist of the vasopressor response to vasopressin. GTP, even at high concentrations (0.1 mM), did not increase inositol phosphate release: it was found to be absolutely necessary for hormonal stimulation of phospholipase C activity. Non-hydrolysable analogues of GTP may also stimulate this enzyme activity.  相似文献   

10.
Addition of vasopressin (100 nM) to rat hepatocytes prelabelled with [3H]inositol stimulated the production of inositol phosphates in the presence of 20 mM Li+. Preincubation of hepatocytes with insulin (50 nM) or glucagon (10 nM) had no significant effect alone but enhanced the effects of vasopressin after a lag period of at least 1 min. The effects of insulin and glucagon appeared additive in this respect. Insulin also enhanced the norepinephrine-mediated stimulation of inositol phosphate accumulation. The enhancement by insulin of the effects of vasopressin required at least 0.5-5 nM insulin and did not involve changes in [3H]inositol lipid labelling or IP3 phosphatase activity. The effect of insulin appeared insensitive to prior treatment of hepatocytes with pertussis toxin (200 ng/ml for 18-24 h) or cholera toxin (100 ng/ml for 3-4 h). The glucagon enhancement of the effects of vasopressin was not affected by pertussis toxin but was mimicked by cholera toxin. The response of hepatocytes to vasopressin in the absence of Li+ was smaller and more transient. Under these conditions a 5 min prior incubation with insulin inhibited the stimulation by vasopressin of inositol phosphate accumulation. A similar inhibitory effect of prior insulin exposure on the transient activation by vasopressin of exogenous phosphatidylinositol 4,5-bisphosphate breakdown by hepatocyte homogenates was also seen. These data indicate that insulin, although having no effect on basal inositol phosphate accumulation, can either enhance or antagonise the effects of vasopressin in primary rat liver hepatocyte cultures depending on the experimental conditions.  相似文献   

11.
Mastoparan inhibited [3H]inositol phosphate accumulation induced by carbachol as well as cyclic AMP accumulation induced by isoproterenol in 1321N1 human astrocytoma cells. Mastoparan inhibited GTP gamma S-induced, but not Ca2(+)-induced, [3H]inositol phosphate accumulation in membrane preparations with an IC50 of approximately 10 microM. The inhibitory effect of mastoparan on carbachol-induced [3H]inositol phosphate accumulation was resistant to pertussis toxin (IAP) treatment in intact cells. These results suggest that mastoparan inhibits phospholipase C in human astrocytoma cells via a GTP binding protein, which is not a substrate for IAP.  相似文献   

12.
Activation of phospholipase C by angiotensin II in vascular smooth muscle has been postulated to be mediated by an unidentified GTP-binding protein (G-protein). Using a permeabilized preparation of myo-[3H]inositol-labelled cultured vascular smooth muscle cells, we examined the ability of a non-hydrolysable analogue of GTP, guanosine 5'-[gamma-thio]triphosphate (GTP[S]), to stimulate inositol phosphate formation. GTP[S] (5 min exposure) stimulated inositol polyphosphate release by up to 3.8-fold in a dose-dependent manner, with an EC50 (concn. producing half-maximal stimulation) of approx. 50 microM. Inositol bisphosphate (IP2) and inositol trisphosphate (IP3) accumulations were also stimulated by NaF (5-20 mM). Furthermore, angiotensin II-induced inositol phosphate formation could be potentiated by a submaximal concentration of GTP[S] (10 microM), and this treatment appeared to interfere with the normal termination mechanism of the initial hormonal signal. The G-protein mediating angiotensin II-stimulated phospholipase C activation was insensitive to pertussis toxin at an exposure time and concentration which were sufficient to completely ADP-ribosylate all available substrate (100 ng/ml, 16 h). In contrast, a similar incubation with cholera toxin markedly inhibited angiotensin II-stimulated IP2 and IP3 release by 67 +/- 6% and 62 +/- 6% respectively. Cholera toxin appeared to inhibit angiotensin II stimulation of phospholipase C by a dual mechanism: it caused a 45% decrease in angiotensin II receptor number, and also inhibited G-protein transduction as assessed by GTP[S]-stimulated IP2 formation. This latter inhibition may be secondary to an increase in cyclic AMP, since it could be simulated by addition of dibutyryl cyclic AMP. Thus angiotensin II-stimulated inositol phosphate formation is cholera-toxin-sensitive, and is mediated by a pertussis-toxin-insensitive G-protein, which may be involved directly in termination of early signal generation.  相似文献   

13.
Isolated rat hepatocytes in primary monolayer culture were maintained for 18-24 h in the presence of 10% (v/v) serum and [3H]inositol. Vasopressin (100 nM) stimulated the production of inositol mono-, bis- and tris-phosphates (IP1, IP2, and IP3). Prior exposure of hepatocytes to 8-bromo cyclic AMP (8Br-cAMP; 100 microM), but not 8-bromo cyclic GMP, enhanced the vasopressin-mediated stimulation of inositol phosphate accumulation, but had no significant effect on their formation in the absence of vasopressin. The effect of the cyclic AMP analogue was mimicked by glucagon (10 nM), and was seen whether cyclic AMP or glucagon was added 5 min or 12 h before the addition of vasopressin. An 8 h incubation with dexamethasone (100 nM) enhanced the accumulation of IP3, but not that of IP2 or IP1, in the presence of 8Br-cAMP and vasopressin. Cycloheximide or actinomycin D had little effect on the vasopressin stimulation of inositol phosphate accumulation, after an 8 h incubation in the presence or absence of 8Br-cAMP.  相似文献   

14.
The effect of forskolin on 5-hydroxytryptamine (5-HT)-induced inositol phosphate (IP) and Ca2+ mobilisation was investigated in canine cultured aorta smooth muscle cells (ASMCs). Pretreatment of ASMCs with forskolin attenuated 5-HT-induced IP accumulation and Ca2+ mobilisation in a time- and concentration-dependent manner. The half-maximal effects (pEC50) of forskolin to attenuate IP and Ca2+ responses to 5-HT occurred at concentrations of 6.28 and 6.64, respectively. Pretreatment of ASMCs with cholera toxin caused a similar inhibition on 5-HT-induced responses. Even after treatment with forskolin for 24 h, the 5-HT-induced responses were still inhibited. The inhibitory effect of forskolin resulted from both a depression of the maximal response and a shift to the right of the concentration-effect curves of 5-HT in these responses. The water-soluble forskolin analogue L-858051 [7-deacetyl-7beta-(gamma-N-methylpiperazino)-butyryl forskolin] significantly inhibited the 5-HT-stimulated IP accumulation. In contrast, the addition of 1,9-dideoxy forskolin, an inactive forskolin analogue, had little effect on IP response. Moreover, SQ-22536 [9-(tetrahydro-2-furanyl)-9-H-purin-6-amine], an inhibitor of adenylate cyclase, and both H-89 [N-(2-aminoethyl)-5-iosquinolinesulphonamide] and HA-1004 [N-(2-guanidinoethyl)-5-iosquinolinesulphonamide], inhibitors of cAMP-dependent protein kinase (PKA), attenuated the ability of forskolin to inhibit the 5-HT-stimulated accumulation of IP in ASMCs. These results indicate that activation of cAMP/PKA might inhibit the 5-HT-stimulated IP accumulation and consequently reduce Ca2+ mobilisation, or inhibit both responses independently.  相似文献   

15.
Dispersed chick adrenal cells were incubated with either ACTH, cholera toxin or forskolin. All three agents stimulated cyclic AMP accumulation and secretion of corticosterone and aldosterone by the dispersed cells. The dose-response to ACTH was similar for cyclic AMP and corticosterone but aldosterone secretion appeared to be more sensitive to ACTH stimulation. Concentrations higher than 10(-8) M of ACTH caused suppression of corticosterone output but not of cyclic AMP accumulation or aldosterone secretion. A significant cyclic AMP accumulation occurred within 30 min of exposure to ACTH whereas significant increases in steroid secretion were observed only after 30 min. An early increase (within 30 min) in cyclic AMP accumulation with both cholera toxin and forskolin was not accompanied by any significant stimulation of steroid secretion, which occurred only after 120 min. The results with the avian adrenal cells are consistent with the thesis that steroid production in the adrenocortical cells is stimulated by cyclic AMP-dependent pathways, whereas steroid release may be modulated by others.  相似文献   

16.
T Emoto  K Kasai  M Hiraiwa  S Shimoda 《Life sciences》1988,42(22):2249-2257
In cultured porcine thyroid cells, during 60 min incubation phorbol 12-myristate 13-acetate (PMA) had no effect on basal cyclic AMP accumulation and slightly stimulated cyclic AMP accumulation evoked by thyroid stimulating hormone (TSH) or forskolin. Cholera toxin-induced cyclic AMP accumulation was significantly stimulated by PMA. On the other hand, cyclic AMP accumulation evoked by prostaglandin E1 or E2 (PGE1 or PGE2) was markedly depressed by simultaneous addition of PMA. These opposing effects of PMA on cyclic AMP accumulation evoked by PGE and cholera toxin were observed in a dose-related fashion, with half-maximal effect of around 10(-9) M in either case. The almost same effects of PMA on cyclic AMP accumulation in basal and stimulated conditions were also observed in freshly prepared thyroid cells. The present study was performed in the presence of phosphodiesterase inhibitor, 3-iso-butyl-1-methylxanthine (IBMX), indicating that PMA affected adenylate cyclase activity. Therefore, it is suggested that PMA may modulate the production of cyclic AMP in response to different stimuli, possibly by affecting several sites in the adenylate cyclase complex in thyroid cells.  相似文献   

17.
Cells from the zona glomerulosa of rat adrenals were isolated and maintained for 3 days in primary culture. Specific vasopressin binding was determined by using [3H]vasopressin. [3H]Vasopressin binding was time-dependent (half-time of about 2 min for 6 nM free ligand) and reversible on addition of unlabelled vasopressin (80% dissociation within 30 min). Dose-dependent [3H]vasopressin binding at equilibrium indicated that vasopressin interacted with two populations of sites: high-affinity sites (dissociation constant, Kd = 1.8 nM; maximal binding capacity = 10 fmol/10(6) cells) and low-affinity sites. Vasopressin increased the cellular content of labelled inositol mono-, bis- and tris-phosphate in cells prelabelled with myo-[3H]inositol. The vasopressin concentration eliciting half-maximal inositol phosphate accumulation was very close to the Kd value for vasopressin binding to high-affinity sites. Competition experiments using agonists and antagonists with enhanced selectivity for previously characterized vasopressin receptors indicated that vasopressin receptors from rat glomerulosa cells are V1 receptors of the vascular or hepatic subtype. The detected specific vasopressin-binding sites might represent the specific receptors mediating the mitogenic and steroidogenic effects of vasopressin on glomerulosa cells from rat adrenals.  相似文献   

18.
Abstract: The role of the stimulatory GTP-binding protein (GS) in the α2-autoinhibitory modulation of noradrenaline release was investigated in cultured chick sympathetic neurons. The α2-adrenoceptor agonist UK 14,304 caused a concentration-dependent reduction of electrically evoked [3H]noradrenaline release with half-maximal effects at 14.0 ± 5.5 nM. In neurons treated with 100 ng/ml cholera toxin for 24 h, the half-maximal concentration was lowered to 3.2 ± 1.4 nM without changes in the maximal effect of UK 14,304. The pretreatment with cholera toxin also increased the inhibitory action of 10 nM UK 14,304 when compared with the inhibition of noradrenaline release in untreated cultures derived from the same cell population. In cultures treated with either 10 µM forskolin or 100 µM 8-bromo-cyclic AMP, neither the half-maximal concentration nor the maximal effect of UK 14,304 was altered. Cholera toxin, forskolin, and 8-bromo-cyclic AMP all induced an increase in spontaneous outflow and a reduction in electrically evoked overflow, effects not observed after a pretreatment with dideoxyforskolin. Exposure of neurons to cholera toxin, but not to forskolin or 8-bromo-cyclic AMP, induced a translocation of α-subunits of Gs (G) from particulate to soluble fractions and led ultimately to a complete loss of G from the neurons. In contrast, no effect was seen on the distribution of either α-subunits of Gi- or Go-type G proteins or of β-subunits. These results indicate that cholera toxin causes a selective, cyclic AMP-independent down-regulation of G. This down-regulation of G is associated with the sensitization of α2-autoreceptors.  相似文献   

19.
The influence of protein kinase C (PKC) activation on cyclic AMP production in GH3 cells has been studied. The stimulation of cyclic AMP accumulation induced by forskolin and cholera toxin was potentiated by 4 beta-phorbol 12,13-dibutyrate (PDBu). Moreover, PDBu, which causes attenuation of the maximal response to vasoactive intestinal polypeptide (VIP), also induced a small right shift in the dose-response curve for VIP-induced cyclic AMP accumulation. PDBu-stimulated cyclic AMP accumulation was unaffected by pretreatment of cells with pertussis toxin or the inhibitory muscarinic agonist, oxotremorine. PDBu stimulation of adenylate cyclase activity required the presence of a cytosolic factor which appeared to translocate to the plasma membrane in response to the phorbol ester. The diacylglycerol-generating agents thyroliberin, bombesin and bacterial phospholipase C each stimulated cyclic AMP accumulation, but, unlike PDBu, did not attenuate the stimulation induced by VIP. These results suggest that PKC affects at least two components of the adenylate cyclase complex. Stimulation of cyclic AMP accumulation is probably due to modification of the catalytic subunit, whereas attenuation of VIP-stimulated cyclic AMP accumulation appears to be due to the phosphorylation of a different site, which may be the VIP receptor.  相似文献   

20.
We examined the mechanism by which adenosine inhibits prolactin secretion from GH3 cells, a rat pituitary tumour line. Prolactin release is enhanced by vasoactive intestinal peptide (VIP), which increases cyclic AMP, and by thyrotropin-releasing hormone (TRH), which increases inositol phosphates (IPx). Analogues of adenosine decreased prolactin release, VIP-stimulated cyclic AMP accumulation and TRH-stimulated inositol phospholipid hydrolysis and IPx generation. Inhibition of InsP3 production by R-N6-phenylisopropyladenosine (R-PIA) was rapid (15 s) and was not affected by the addition of forskolin or the removal of external Ca2+. Addition of adenosine deaminase or the potent adenosine-receptor antagonist, BW-A1433U, enhanced the accumulation of cyclic AMP by VIP, indicating that endogenously produced adenosine tonically inhibits adenylate cyclase. The potency order of adenosine analogues for inhibition of cyclic AMP and IPx responses (measured in the presence of adenosine deaminase) was N6-cyclopentyladenosine greater than R-PIA greater than 5'-N-ethylcarboxamidoadenosine. This rank order indicates that inhibitions of both cyclic AMP and InsP3 production are mediated by adenosine A1 receptors. Responses to R-PIA were blocked by BW-A1433U (1 microM) or by pretreatment of cells with pertussis toxin. A greater amount of toxin was required to eliminate the effect of R-PIA on inositol phosphate than on cyclic AMP accumulation. These data indicate that adenosine, in addition to inhibiting cyclic AMP accumulation, decreases IPx production in GH3 cells, possibly by directly inhibiting phosphoinositide hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号