首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
More than half of yeast U1 snRNA is dispensable for growth.   总被引:9,自引:2,他引:7  
Yeast U1 snRNA (568 nucleotides) is 3.5-fold larger than its mammalian counterpart (164 nucleotides) and contains apparent sequence homology only at the 5' and 3' ends. We have used deletion analysis to determine whether the yeast-specific U1 sequences play essential roles in vivo. Yeast cells carrying a deletion of more than 60% (355 nucleotides) of the single-copy U1 gene are viable, though slow-growing, while a deletion of 316 nucleotides allows essentially wild-type growth. The boundaries of the viable deletions define a dispensable internal domain which comprises sequences unique to yeast. In contrast, the essential 5' and 3' terminal domains correspond to phylogenetically conserved sequences and/or structures previously implicated in RNA:RNA and RNA:protein interactions. The minimal essential sequences of yeast U1 can be drawn in a secondary structure which resembles metazoan U1 in four of seven structural domains.  相似文献   

2.
Guan BJ  Wu HY  Brian DA 《Journal of virology》2011,85(11):5593-5605
The 288-nucleotide (nt) 3' untranslated region (UTR) in the genome of the bovine coronavirus (BCoV) and 339-nt 3' UTR in the severe acute respiratory syndrome (SARS) coronavirus (SCoV) can each replace the 301-nt 3' UTR in the mouse hepatitis coronavirus (MHV) for virus replication, thus demonstrating common 3' cis-replication signals. Here, we show that replacing the 209-nt MHV 5' UTR with the ~63%-sequence-identical 210-nt BCoV 5' UTR by reverse genetics does not yield viable virus, suggesting 5' end signals are more stringent or possibly are not strictly 5' UTR confined. To identify potential smaller, 5'-common signals, each of three stem-loop (SL) signaling domains and one inter-stem-loop domain from the BCoV 5' UTR was tested by replacing its counterpart in the MHV genome. The SLI/II domain (nucleotides 1 to 84) and SLIII domain (nucleotides 85 to 141) each immediately enabled near-wild-type (wt) MHV-like progeny, thus behaving similarly to comparable 5'-proximal regions of the SCoV 5' UTR as shown by others. The inter-stem-loop domain (nt 142 to 173 between SLs III and IV) enabled small plaques only after genetic adaptation. The SLIV domain (nt 174 to 210) required a 16-nt extension into BCoV open reading frame 1 (ORF1) for apparent stabilization of a longer BCoV SLIV (nt 174 to 226) and optimal virus replication. Surprisingly, pleiomorphic SLIV structures, including a terminal loop deletion, were found among debilitated progeny from intra-SLIV chimeras. The results show the inter-stem-loop domain to be a potential novel species-specific cis-replication element and that cis-acting SLIV in the viral genome extends into ORF1 in a manner that stabilizes its lower stem and is thus not 5' UTR confined.  相似文献   

3.
4.
The function of conserved regions of the metazoan U5 snRNA was investigated by reconstituting U5 small nuclear ribonucleoprotein particles (snRNPs) from purified snRNP proteins and HeLa or Xenopus U5 snRNA mutants and testing their ability to restore splicing to U5-depleted nuclear extracts. Substitution of conserved nucleotides comprising internal loop 2 or deletion of internal loop 1 had no significant effect on the ability of reconstituted U5 snRNPs to complement splicing. However, deletion of internal loop 2 abolished U5 activity in splicing and spliceosome formation. Surprisingly, substitution of the invariant loop 1 nucleotides with a GAGA tetraloop had no effect on U5 activity. Furthermore, U5 snRNPs reconstituted from an RNA formed by annealing the 5' and 3' halves of the U5 snRNA, which lacked all loop 1 nucleotides, complemented both steps of splicing. Thus, in contrast to yeast, loop 1 of the human U5 snRNA is dispensable for both steps of splicing in HeLa nuclear extracts. This suggests that its function can be compensated for in vitro by other spliceosomal components: for example, by proteins associated with the U5 snRNP. Consistent with this idea, immunoprecipitation studies indicated that several functionally important U5 proteins associate stably with U5 snRNPs containing a GAGA loop 1 substitution.  相似文献   

5.
Functional analysis of the sea urchin U7 small nuclear RNA.   总被引:11,自引:2,他引:9       下载免费PDF全文
U7 small nuclear RNA (snRNA) is an essential component of the RNA-processing machinery which generates the 3' end of mature histone mRNA in the sea urchin. The U7 small nuclear ribonucleoprotein particle (snRNP) is classified as a member of the Sm-type U snRNP family by virtue of its recognition by both anti-trimethylguanosine and anti-Sm antibodies. We analyzed the function-structure relationship of the U7 snRNP by mutagenesis experiments. These suggested that the U7 snRNP of the sea urchin is composed of three important domains. The first domain encompasses the 5'-terminal sequences, up to about nucleotides 7, which are accessible to micrococcal nuclease, while the remainder of the RNA is highly protected and hence presumably bound by proteins. This region contains the sequence complementarities between the U7 snRNA and the histone pre-mRNA which have previously been shown to be required for 3' processing (F. Schaufele, G. M. Gilmartin, W. Bannwarth, and M. L. Birnstiel, Nature [London] 323:777-781, 1986). Nucleotides 9 to 20 constitute a second domain which includes sequences for Sm protein binding. The complementarities between the U7 snRNA sequences in this region and the terminal palindrome of the histone mRNA appear to be fortuitous and play only a secondary, if any, role in 3' processing. The third domain is composed of the terminal palindrome of U7 snRNA, the secondary structure of which must be maintained for the U7 snRNP to function, but its sequence can be drastically altered without any observable effect on snRNP assembly or 3' processing.  相似文献   

6.
On the nature of 5' termini in nuclear pre-mRNA of Ehrlich carcinoma cells.   总被引:5,自引:0,他引:5  
5' terminal nucleosides of nuclear pre-mRNA of Ehrlich ascites carcinoma cells were analyzed by a combination of different chromatographic methods and phosphatase treatment. The heavy nuclear pre-mRNA contains mainly unblocked triphosphorylated nucleosides at the 5' end, although some capped 5' ends could also be found. In this respect, it differs from cytoplasmic poly(A)+ mRNA which contains blocked 5' termini and no triphosphorylated ends. The 5' terminal nucleotides in pre-mRNA are pppGp and pppAp (in a ratio of 3:2). The determination of pppNp content in poly (A)+, poly(U)+, and poly (A)-(U)- fragments of RNA has been used as an approach to establish the topography of pre-mRNA. We also established that the technique for isolation of triphosphorylated 5' terminal fragments of RNA based on hydroxyapatite chromatography (Bajszár, Samarina, and Georgiev, 1974) is still valid in the presence of blocked oligonucleotides. The latter do not interfere with fragments containing free triphosphate groups. Using this technique, we showed that a small but significant portion of triphosphorylated 5' end fragments of 100 nucleotides in length contain oligo(U) sequences reacting with poly(A)-Sepharose.  相似文献   

7.
8.
Retroviral vectors were modified to contain packaging (psi) signals of varying lengths (nucleotides 211-355, 211-565, or 211-1039 of MoMuLV RNA) between the U3-r and U5 sequences of their 5' long terminal repeat (LTR). For the vector MoTN-PR3, containing the full length 211-1039 nucleotide-long psi signal within the 5' LTR, replication, integration, and packaging were almost as efficient as for the original unmodified vector. This result confirmed that the 211-1039 nucleotide-long sequence from the MoMuLV RNA is sufficient and necessary to allow efficient packaging of RNAs. In addition, an important site was revealed where insertion of foreign DNA sequences of up to 829 nucleotides can be made within the 5' LTR, between U3-r and U5 sequences, without affecting viral replication, integration, or packaging.  相似文献   

9.
10.
The genomes of numerous avian retroviruses contain at their 3' termini a conserved domain denoted "c". The precise boundaries and function of "c" have been enigmas. In an effort to resolve these issues, we determined the sequence of over 900 nucleotides at the 3' end of the genome of the Schmidt-Ruppin subgroup A strain of avian sarcoma virus (ASV). We obtained the sequence from a suitable fragment of ASV DNA that had cloned into the single-stranded DNA phage M13mp2. Computer-assisted analysis of the sequence revealed the following structural features: i) the length of "c" - 473 nucleotides; ii) the 3' terminal domain of src, ending in an amber codon at the 5'boundary of "c"; iii) terminator codons that preclude continuous translation from "c"; iv) suitably located sequences that may serve as signals for the initiation of viral RNA synthesis and for the processing and/or polyadenylation of viral mRNA; v) a repeated sequence that flanks src and that could facilitate deletion of this gene; vi) repeated sequences within "c"; and vii) unexplained homologies between sequences in "c" and sequences in several other nucleic acids, including the 5' terminal domain of the ASV genome, tRNATrp and its inversion, the complement of tRNATrp and its inversion, and the 18S RNA of eukaryotic ribosomes. We conclude that "c" probably does not encode a protein, but its sequence may nevertheless serve several essential functions in viral replication.  相似文献   

11.
12.
The small nucleolar RNA U3 is essential for viability in yeast. We have previously shown that U3 can be cross-linked in vivo to the pre-rRNA in the 5' external transcribed spacer (ETS), at +470. This ETS region contains 10 nucleotides of perfect complementarity to U3. In a genetic background where the mutated rDNA is the only transcribed rDNA repeat, the deletion of the 10 nt complementary to U3 is lethal. Cells lacking the U3 complementary sequence in pre-rRNA fail to accumulate 18S rRNA: pre-rRNA processing is inhibited at sites A0 in the 5' ETS, A1 at the 5' end of 18S rRNA and A2 in ITS1. We show here that effects on processing at site A0 are specific for U3 and its associated proteins and are not seen on depletion of other snoRNP components. The deletion of the sequence complementary to U3 in the ETS therefore mimics all the known effects of the depletion of U3 in trans. This indicates that we have identified an essential U3 binding site on pre-rRNA, required in cis for the maturation of 18S rRNA.  相似文献   

13.
The small nucleolar RNA U3 is essential for viability in yeast. We have previously shown that U3 can be cross-linked in vivo to the pre-rRNA in the 5' external transcribed spacer (ETS), at +470. This ETS region contains 10 nucleotides of perfect complementarity to U3. In a genetic background where the mutated rDNA is the only transcribed rDNA repeat, the deletion of the 10 nt complementary to U3 is lethal. Cells lacking the U3 complementary sequence in pre-rRNA fail to accumulate 18S rRNA: pre-rRNA processing is inhibited at sites A0 in the 5' ETS, A1 at the 5' end of 18S rRNA and A2 in ITS1. We show here that effects on processing at site A0 are specific for U3 and its associated proteins and are not seen on depletion of other snoRNP components. The deletion of the sequence complementary to U3 in the ETS therefore mimics all the known effects of the depletion of U3 in trans. This indicates that we have identified an essential U3 binding site on pre-rRNA, required in cis for the maturation of 18S rRNA.  相似文献   

14.
15.
16.
Sequences required for 3' end formation of human U2 small nuclear RNA   总被引:38,自引:0,他引:38  
C Y Yuo  M Ares  A M Weiner 《Cell》1985,42(1):193-202
Xenopus oocytes injected with human U2 snRNA genes synthesize mature U2 as well as a U2 precursor with about 10 extra 3' nucleotides (human pre-U2 RNA). Formation of the pre-U2 3' end requires a downstream element located between position +16 and +37 in the U2 3'-flanking sequence. The distance between this element and the U2 coding region can be increased without affecting formation of the pre-U2 3' end. When the natural sequence surrounding the pre-U2 3' end is changed, novel 3' ends are still generated within a narrow range upstream from the element. The 3' terminal stem-loop of U2 snRNA is not required for pre-U2 3' end formation. A sequence within the 3' element (GTTTN0-3AAAPuNNAGA) is conserved among snRNA genes transcribed by RNA polymerase II. Our results suggest that the 3' ends of pre-U2 RNA and histone mRNA may be generated by related but distinct RNA processing mechanisms.  相似文献   

17.
The 3' end of Sindbis virus minus-sense RNA was tested for its ability to bind proteins in mosquito cell extracts, using labeled riboprobes that represented different parts of this region. We found four domains in the first 250 nucleotides that could bind the same 50- and 52-kDa proteins, three with high affinity and one with low affinity, whereas tested domains outside this region did not bind these proteins. The first binding domain was found in the first 60 nucleotides, which represents the complement of the 5'-nontranslated region, the second in the next 60 nucleotides, the third in the following 60 nucleotides, and the fourth between nucleotides 194 and 249 (all numbering is 3' to 5'). The relative binding constants, Kr, of the first, second, and fourth sites were similar, whereas that of domain 2 was fivefold less. Deletion mapping of the first domain showed that the first 10 nucleotides were critical for binding. Deletion of nucleotides 2 to 4, deletion or replacement of nucleotide 5, or deletion of the first 15 nucleotides was deleterious for binding, deletion of nucleotides 10 to 15, 26 to 40, or 41 to 55 had little effect on the binding, and deletion of nucleotides 15 to to 25 increased the binding affinity. We also found that the corresponding riboprobes derived from two other alphaviruses, Ross River virus and Semliki Forest virus, and from rubella virus were also able to interact with the 50- and 52-kDa proteins. The Kr value for the Semliki Forest virus probe was similar to that for the Sindbis virus probe, while that for the Ross River virus probe was four times greater. The rubella virus probe was bound only weakly, consistent with the fact that mosquito cells are not permissive for rubella virus replication. We suggest that the binding of the 50- and 52-kDa proteins to the 3' end of alphavirus minus-sense RNA represents an important step in the initiation of RNA replication.  相似文献   

18.
Four novel U RNAs are encoded by a herpesvirus   总被引:23,自引:0,他引:23  
Marmoset T lymphocytes transformed by herpesvirus saimiri contain the first virally encoded U RNAs (called HSURs) to be identified. HSURs assemble into small nuclear ribonucleoproteins of low abundance (less than or equal to 2 x 10(4) copies/cell). They bind proteins with Sm determinants and acquire a 5' trimethylguanosine cap structure. The sequences of HSUR 1 (143 nucleotides), HSUR 2 (115 nucleotides), HSUR 3 (76 nucleotides), and HSUR 4 (106 nucleotides) are related to each other but are distinct from any previously characterized cellular U RNA. The viral genes encoding the HSURs possess conserved enhancer, promoter, and 3' end formation signals unique to U RNA genes. HSUR 1 and HSUR 2 have a similar 5' end sequence that exhibits perfect complementarity to the highly conserved AAUAAA polyadenylation signal. Oligonucleotide directed RNAase H degradation indicates that this 5' end region is available for base pairing interactions within the HSUR 1 and HSUR 2 snRNP particles.  相似文献   

19.
Precursor-specific nucleotide sequences can govern RNA folding.   总被引:9,自引:0,他引:9  
D A Stahl  T A Walker  B Meyhack  N R Pace 《Cell》1979,18(4):1133-1143
  相似文献   

20.
The 5' nontranslated RNA (5'NTR) of the HM175 strain of human hepatitis A virus contains several pyrimidine-rich regions, the largest and most 5' of which (pY1) is an almost pure polypyrimidine tract located between nucleotides (nt) 99 and 138, which includes five tandem repeats of the sequence motif (U)UUCC(C). Previous modeling of the RNA secondary structure suggested that this region was likely to be single-stranded, but repetitive RNase V1 cleavage sites within these (U)UUCC(C) motifs indicated that pY1 possesses an ordered structure. To assess the role of this domain in replication of the virus, a series of large deletion mutations were created which involved the pY1 domain of an infectious cDNA clone. Deletion of 44 nt between nt 96 and 139, including the entire pY1 domain, did not reduce the capacity of the virus to replicate in BS-C-1 or FRhK-4 cells, as assessed by the size of replication foci in radioimmunofocus assays or by virus yields under one-step growth conditions. In contrast, viable virus could not be recovered from transfected RNAs in which the deletion was extended in a 5' direction by an additional 3 nt (delta 93-134), most likely because of the destabilization of a predicted stem-loop structure upstream of pY1. Deletion mutations extending in a 3' fashion to nt 140, 141, or 144 resulted in moderately (delta 96-140 and delta 96-141) or strongly (delta 99-144, delta 116-144, and delta 131-144) temperature-sensitive replication phenotypes. Although deletion of the pY1 domain did not by itself affect the replication phenotype of virus, the additional deletion of sequence elements within the pY1 domain (nt 99 to 130) substantially enhanced the temperature-sensitive phenotype of delta 131-144 virus. These data suggest that the (U)UUCC(C) motifs within the pY1 domain are conserved among wild-type viruses in order to serve a function required during infection in vivo but not in cell culture. In contrast, the single-stranded region located immediately downstream of pY1 (nt 140 to 144) is essential for efficient replication in cultured cells at physiological temperature. Viruses with deletion mutations involving nt 140 to 144 and viruses with large pY1 deletions but normal replication phenotypes in cell culture may have attenuation properties which could be exploited for vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号