首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
欧洲熊蜂Bombus terretris入侵研究进展   总被引:1,自引:0,他引:1  
欧洲熊蜂Bombus terrestris被出口到自然分布区外为作物传粉,现已在澳大利亚、新西兰、日本、以色列、智利和阿根廷等国家建立野生种群.欧洲熊蜂与本土传粉生物竞争蜜粉源植物,传播病虫害,与本土熊蜂杂交产生不育子代.欧洲熊蜂入侵可能引起本地传粉昆虫牛物多样性降低,危害生态系统传粉功能的安全.中国从1998年开始引入欧洲熊蜂为大棚作物传粉,但日前尚无欧洲熊蜂入侵我国的报道.中国是熊蜂生物多样性最丰富的国家之一,具有欧洲熊蜂适生环境,欧洲熊蜂有可能入侵我国.防止欧洲熊蜂入侵最重要和最有效的办法是减少进口该物种和进行科学的放蜂管理.  相似文献   

2.
Aim Theory suggests that introduced species that are phylogenetically distant from their recipient communities should be more successful than closely related introduced species because they can exploit open niches and escape enemies in their new range, i.e. Darwin’s Naturalization Hypothesis. Alternatively, it has also been hypothesized that closely related invaders might be more successful than novel invaders because they are pre‐adapted to conditions in their new range; a paradox coined Darwin’s Naturalization Conundrum. To date, these hypotheses have been tested primarily at the regional scale, not within local plant communities where introduced species colonize, compete and encounter herbivores. Location Global. Methods and Results We used community phylogenetics to analyse data from 49 published experiments to examine the importance of phylogenetic relatedness and generalist herbivory on native and exotic plant success at the community level. Plants that were categorized as ‘invasive’ were indeed less related to the recipient community than ‘non‐pest’ exotic plants. Distantly related exotic plants were also more abundant than closely related species. Phylogenetic relatedness predicted herbivore impact, but in a way that was opposite to predictions, as herbivores had stronger, not lesser, impacts on distantly related plants. Importantly, these same patterns generally held for native plants, as distantly related native plants were more abundant and more susceptible to herbivores than closely related species, ultimately resulting in herbivores suppressing community‐level phylogenetic diversity. Main conclusions Distantly related plants were more locally successful despite experiencing stronger control by generalist herbivores, a finding that was robust across native and exotic species. To our knowledge, this is the first evidence that phylogenetic matching influences the local success of both native and exotic species and that herbivores can influence community phylodiversity. Phylogenetic relatedness explained a relatively small portion of the variance in the data even after taking herbivory into account, however, suggesting that phylogenetic matching works in combination with other factors to influence community assembly.  相似文献   

3.
Vilà M  Maron JL  Marco L 《Oecologia》2005,142(3):474-479
The enemy release hypothesis (ERH), which has been the theoretical basis for classic biological control, predicts that the success of invaders in the introduced range is due to their release from co-evolved natural enemies (i.e. herbivores, pathogens and predators) left behind in the native range. We tested this prediction by comparing herbivore pressure on native European and introduced North American populations of Hypericum perforatum (St Johns Wort). We found that introduced populations occur at larger densities, are less damaged by insect herbivory and suffer less mortality than populations in the native range. However, overall population size was not significantly different between ranges. Moreover, on average plants were significantly smaller in the introduced range than in the native range. Our survey supports the contention that plants from the introduced range experience less herbivore damage than plants from the native range. While this may lead to denser populations, it does not result in larger plant size in the introduced versus native range as postulated by the ERH.  相似文献   

4.
Introduced plants may leave their specialized herbivores behind when they invade new ranges. The Evolution of Increased Competitive Ability (EICA) Hypothesis holds that this escape from herbivory could lead to reduced investment in defenses, thereby freeing resources for growth and reproduction. We tested the prediction that introduced genotypes of Solidago gigantea would outperform native genotypes when grown in the absence of herbivores, and examined whether tolerance to insect herbivory has changed in introduced genotypes. S. gigantea is native to North America and an exotic invasive in Europe. Insect damage reduced plant growth and biomass for both native and exotic genotypes. While there was no evidence that continent of origin influenced the degree to which plants compensated for herbivory, the mechanisms contributing to recovery differed for native and exotic plants. Damaged US plants showed enhanced photosynthetic rates to a greater extent than damaged European plants, while damaged European plants carried more leaves than damaged US plants. At the end of the season, leaf mass of European plants was significantly greater than that of US plants. Contrary to the predictions of the EICA hypothesis, US plants were more likely to flower than European plants. European plants invested significantly more of their total reproductive biomass into rhizomes rather than flowers than US plants. While other work with S. gigantea has supported some aspects of the EICA hypothesis, the results reported here generally do not. We conclude that multiple factors influence the success of introduced plants.  相似文献   

5.
Aim Since ecological and evolutionary context changes when a plant species is introduced to a new area, it can be assumed that responses of alien plants to changing conditions along environmental gradients differ from those in their native range. Even if seed availability is not limited, the distribution of alien plants along such a gradient might still be restricted by their ability to germinate and establish as seedlings. In the present study, we aim at testing what factors promote or limit plant invasions during early establishment by using altitude as a model gradient. Location Altitudinal gradients in the Wallowa Mountains (Oregon, USA) and the Swiss Alps (Valais, Switzerland). Methods In transplant experiments along altitudinal gradients, we investigated the early establishment success of eight invasive alien Asteraceae species in their native and introduced ranges in the Wallowa Mountains and the Swiss Alps. Results Seedling recruitment was not restricted to relatively lower altitudes in the introduced range. In addition, we found no evidence for genetic adaptation along the altitudinal gradient in the introduced range, highlighting the importance of phenotypic flexibility for invasions. Furthermore, seedling recruitment was only enhanced by disturbance in the native range where vegetation was comparably dense but not in the introduced range. However, plant development was strongly delayed in the introduced range, probably due to low seasonal water availability. Main Conclusions We conclude that introduced plants, due to their ability to tolerate a wide range of environmental conditions, are not necessarily more restricted in their altitudinal limits than they are in their native range. Furthermore, due to other interacting factors (e.g. different competition situations among ranges), attempts to predict distributions of alien plants in the introduced range that are based on their distributions in the native range may be misleading.  相似文献   

6.
Meyer G  Clare R  Weber E 《Oecologia》2005,144(2):299-307
The mechanisms that allow introduced plants to become invasive are poorly understood. Here, we present a test of the evolution of increased competitive ability hypothesis, which holds that because specialized natural enemies may be absent from the introduced range, exotic plants may evolve to invest less in anti-herbivore defenses and thereby gain a competitive advantage over native plants. We grew Solidago gigantea plants derived from both the native range (North America) and the invasive range (Europe) in a common garden in the native range for 2 years. Half the plants were treated with insecticide to protect them from insect herbivores and the other half were exposed to insects that colonized the garden from nearby fields. Insect herbivore biomass was significantly higher on European plants than US plants in the first year but not the second. European plants were more heavily attacked by pathogens in both years of the study. When exposed to insect herbivores, US plants produced more seed than European plants, but when plants were protected from herbivores, seed production was equivalent between US plants and European plants. The presence of insect herbivores suppressed seed production of European plants much more than that of US plants, even though the level of herbivory experienced by European and US plants was similar in the second year, suggesting that the ability to tolerate herbivory was diminished in European plants. These results partially support the EICA hypothesis: plants from the introduced range were more susceptible to some natural enemies and benefited more from insect removal than plants from the native range. The prediction that European plants would perform better than US plants in the absence of insect herbivores was not supported. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

7.
As predicted by the enemy release hypothesis, plants are supposedly less attacked by herbivores in their introduced range than in their native range. However, the nature of the natural enemies, in particular their degree of specificity may also affect the level of enemy escape. It is therefore expected that ectophagous invertebrate species, being generally considered as more generalists than endophagous species, are more prompt to colonise alien plants. In Swiss, Siberian and Russian Far East arboreta, we tested whether alien woody plants are less attacked by native herbivorous insects than native congeneric woody plant species. We also tested the hypothesis that leaf miners and gall makers show stronger preference for native woody plants than external leaf chewers. In all investigated regions, leaf miners and gall makers were more abundant and showed higher species richness on native woody plants than on congeneric alien plants. In contrast, external leaf chewers did not cause more damage to native plants than to alien plants, possibly because leaf chewers are, in general, less species specific than leaf miners and gall makers. These results, obtained over a very large number of plant-enemy systems, generally support the hypothesis that alien plants partly escape from phytophagous invertebrates but also show that different feeding guilds may react differently to the introduction of alien plants.  相似文献   

8.
Vilà M  Gómez A  Maron JL 《Oecologia》2003,137(2):211-215
The evolution of increased competitive ability hypothesis predicts that introduced plants that are long liberated from their natural enemies may lose costly herbivore defense, enabling them to reallocate resources previously spent on defense to traits that increase competitive superiority. We tested this prediction by comparing the competitive ability of native St John's wort ( Hypericum perforatum) from Europe with introduced St John's wort from central North America where plants have long grown free of specialist herbivores, and introduced plants from western North America where plants have been subjected to over 57 years of biological control. Plants were grown in a greenhouse with and without competition with Italian ryegrass ( Lolium multiflorum). St John's wort from the introduced range were not better interspecific competitors than plants from the native range. The magnitude of the effect of ryegrass on St John's wort was similar for introduced and native genotypes. Furthermore, introduced plants were not uniformly larger than natives; rather, within each region of origin there was a high variability in size between populations. Competition with ryegrass reduced the growth of St John's wort by >90%. In contrast, St John's wort reduced ryegrass growth <10%. These results do not support the contention that plants from the introduced range evolve greater competitive ability in the absence of natural enemies.  相似文献   

9.
Aim Determining which traits predispose a species to become invasive is a fundamental question of invasion ecology, but traits affect invasiveness in concert with other factors that need to be controlled for. Here, we explore the relative effects of biological traits of plant species and their distributional characteristics in the native range on invasion success at two stages of invasion. Location Czech Republic (for native species); and the world (for alien species). Methods The source pool of 1218 species of seed plants native to Central Europe was derived from the flora of the Czech Republic, and their occurrence in 706 alien floras all over the world was recorded, distinguishing whether they were listed as an ‘alien’ or a ‘weed’ in the latest version of Randall’s ‘Global compendium of weeds’ database. The latter type of occurrence was considered to indicate species ability to invade and cause economic impact, i.e. a more advanced stage of invasion. Using the statistical technique of regression trees, we tested whether 19 biological traits and five distributional characteristics of the species in their native range can be used to predict species success in two stages of invasion. Results The probability of a species becoming alien outside its native distribution range is determined by the size of its native range, and its tolerance of a wide range of climates acquired in the region of origin. Biological traits play only an indirect role at this stage of invasion via determining the size of the native range. However, the ability of species to become a weed is determined not only by the above characteristics of native distribution, but also directly by biological traits (life form and strategy, early flowering, tall stature, generative reproduction, number of ploidy levels and opportunistic dispersal by a number of vectors). Species phylogenetic relatedness plays only a minor role; it is more important at the lowest taxonomic levels and at the later stage of invasion. Main conclusion The global success of Central European species as ‘weeds’ is determined by their distributional characteristics in the native ranges and by biological traits, but the relative importance of these determinants depends on the stage of invasion. Species which have large native ranges and are common within these ranges should be paid increased attention upon introductions, and the above biological traits should be taken into account in screening systems applied to evaluate deliberate introductions of alien plants to new regions.  相似文献   

10.
The European herb garlic mustard (Alliaria petiolata) is a serious invader of North American deciduous forests. One explanation for its success could be that in the absence of specialized herbivores, selection has favored less defended but more vigorous genotypes. This idea was addressed by comparing offspring from several native and introduced Alliaria populations with respect to their palatability to insect herbivores and their tolerance to simulated herbivory. Feeding rates of a specialist weevil from the native range were significantly greater on American plants, suggesting a loss of resistance in the introduced range. In contrast, there was significant population variation but no continent effect in the feeding rates of a generalist caterpillar. After simulated herbivory, A. petiolata showed a substantial regrowth capacity that involved changes in plant growth, architecture, and allocation. Removal of 75% leaf area or of all bolting stems reduced plant fitness to 81% and 58%, respectively, of the fitness of controls. There was no indication of a difference in tolerance between native and introduced Alliaria populations or of a trade-off between tolerance and resistance.  相似文献   

11.
The variability in the genetic variance–covariance (G‐matrix) in plant resistance and its role in the evolution of invasive plants have been long overlooked. We conducted an additional analysis of the data of a reciprocal transplant experiment with tall goldenrod, Solidago altissima, in multiple garden sites within its native range (USA) and introduced range (Japan). We explored the differences in G‐matrix of resistance to two types of foliar herbivores: (a) a lace bug that is native to the USA and recently introduced to Japan, (b) and other herbivorous insects in response to plant origins and environments. A negative genetic covariance was found between plant resistances to lace bugs and other herbivorous insects, in all combinations of garden locations and plant origins except for US plants planted in US gardens. The G‐matrix of the resistance indices did not differ between US and Japanese plants either in US or Japanese gardens, while it differed between US and Japanese gardens in both US and Japanese plants. Our results suggested that the G‐matrix of the plant resistance may have changed in response to novel environmental differences including herbivore communities and/or other biotic and abiotic factors in the introduced range. This may have revealed a hidden trade‐off between resistances, masked by the environmental factors in the origin range. These results suggest that the stability of the genetic covariance during invasion, and the environmentally triggered variability in the G‐matrices of plant resistance may help to protect the plant against multiple herbivore species without changing its genetic architecture and that this may lead to a rapid adaptation of resistance in exotic plants. Local environments of the plant also have a critical effect on plant resistance and should be considered in order to understand trait evolution in exotic plants.  相似文献   

12.
Introduced species, which establish in novel environments, provide an opportunity to explore trait evolution and how it may contribute to the distribution and spread of species. Here, we explore trait changes of the perennial herb Lupinus polyphyllus based on 11 native populations in the western USA and 17 introduced populations in Finland. More specifically, we investigated whether introduced populations outperformed native populations in traits measured in situ (seed mass) and under common garden conditions during their first year (plant size, flowering probability, and number of flowering shoots). We also explored whether climate of origin (temperature) influenced plant traits and quantified the degree to which trait variability was explained collectively by country and temperature as compared to other population‐level differences. Three out of four plant traits differed between the native and introduced populations; only seed mass was similar between countries, with most of its variation attributed to other sources of intraspecific variation not accounted for by country and temperature. Under common garden conditions, plants originating from introduced populations were larger than those originating from native populations. However, plants from the introduced range flowered less frequently and had fewer flowering shoots than their native‐range counterparts. Temperature of a population''s origin influenced plant size in the common garden, with plant size increasing with increasing mean annual temperature in both native and introduced populations. Our results of the first year reveal genetic basis for phenotypic differences in some fitness‐related traits between the native and introduced populations of L. polyphyllus. However, not all of these trait differences necessarily contribute to the invasion success of the species and thus may not be adaptive, which raises a question how persistent the trait differences observed in the first year are later in individuals’ life for perennial herbs.  相似文献   

13.
Niche conservatism, the hypothesis that niches remain constant through time and space, is crucial for the study of biological invasions as it underlies native‐range based predictions of invasion risk. Niche changes between native and non‐native populations are increasingly reported. However, it has been argued that these changes arise mainly because in their novel range, species occupy only a subset of the environments they inhabit in their native range, and not because they expand into environments entirely novel to them. Here, using occurrences of 29 vertebrate species native to either Europe or North America and introduced into the other continent, we assess the prevalence of niche changes between native and non‐native populations and assess whether the changes detected are caused primarily by native niche unfilling in the non‐native range rather than by expansion into novel environments. We show that niche overlap between native and non‐native populations is generally low because of a large degree of niche unfilling in the non‐native range. This most probably reflects an ongoing colonization of the novel range, as niche changes were smaller for species that were introduced longer ago and into a larger number of locations. Niche expansion was rare, and for the few species exhibiting larger amounts of niche overlap, an unfilling of the niche in the native range (e.g. through competition or dispersal limitations) is the most probable explanation. The fact that for most species, the realized non‐native niche is a subset of the realized native niche allows native‐range based niche models to generate accurate predictions of invasion risk. These results suggest that niche changes arising during biological invasions are strongly influenced by propagule pressure and colonization processes, and we argue that introduction history should be taken into account when evaluating niche conservatism in the context of biological invasions.  相似文献   

14.
It is now generally recognized that human-mediated biological invasion is a multistage process, successively comprising transport, introduction, establishment, and spread, and that a complete understanding of the causes of invasion requires studies of all stages. However, while many studies address the characteristics that influence establishment, relatively few address the characteristics that influence whether or not a species transits the earlier stages of transport and introduction. Here, we use data on the rich exotic avifauna of Florida to assess non-randomness in the identities of species that have passed through the transport and introduction stages. Bird species transported and introduced to Florida are non-random with respect to their taxonomic affiliations, body mass, native geographical range size, and region of origin: introductions are more likely for widespread, large-bodied species from the Neotropics and belonging to the Anatidae, Psittacidae, Ciconiidae, and Passeridae. Data on the identities of species that have attempted to breed but failed, and on the breeding population size for most established species, also allowed us to assess the extent to which the same variables influenced various aspects of post-introduction establishment. Only native geographical range size and latitudinal range mid-point distinguish between these different classes of exotic species. Geographical range size is the most general correlate of different classes of invaders in our analyses.  相似文献   

15.
Determining the degree to which climate niches are conserved across plant species' native and introduced ranges is valuable to developing successful strategies to limit the introduction and spread of invasive plants, and also has important ecological and evolutionary implications. Here, we test whether climate niches differ between native and introduced populations of Impatiens walleriana, globally one of the most popular horticultural species. We use approaches based on both raw climate data associated with occurrence points and ecological niche models (ENMs) developed with Maxent. We include comparisons of climate niche breadth in both geographic and environmental spaces, taking into account differences in available habitats between the distributional areas. We find significant differences in climate envelopes between native and introduced populations when comparing raw climate variables, with introduced populations appearing to expand into wetter and cooler climates. However, analyses controlling for differences in available habitat in each region do not indicate expansion of climate niches. We therefore cannot reject the hypothesis that observed differences in climate envelopes reflect only the limited environments available within the species' native range in East Africa. Our results suggest that models built from only native range occurrence data will not provide an accurate prediction of the potential for invasiveness if applied to areas containing a greater range of environmental combinations, and that tests of niche expansion may overestimate shifts in climate niches if they do not control carefully for environmental differences between distributional areas.  相似文献   

16.
Williams JL  Auge H  Maron JL 《Oecologia》2008,157(2):239-248
Invasive plants may respond through adaptive evolution and/or phenotypic plasticity to new environmental conditions where they are introduced. Although many studies have focused on evolution of invaders particularly in the context of testing the evolution of increased competitive ability (EICA) hypothesis, few consistent patterns have emerged. Many tests of the EICA hypothesis have been performed in only one environment; such assessments may be misleading if plants that perform one way at a particular site respond differently across sites. Single common garden tests ignore the potential for important contributions of both genetic and environmental factors to affect plant phenotype. Using a widespread invader in North America, Cynoglossum officinale, we established reciprocal common gardens in the native range (Europe) and introduced range (North America) to assess genetically based differences in size, fecundity, flowering phenology and threshold flowering size between native and introduced genotypes as well as the magnitude of plasticity in these traits. In addition, we grew plants at three nutrient levels in a pot experiment in one garden to test for plasticity across a different set of conditions. We did not find significant genetically based differences between native and introduced populations in the traits we measured; in our experiments, introduced populations of C. officinale were larger and more fecund, but only in common garden experiments in the native range. We found substantial population-level plasticity for size, fecundity and date of first flowering, with plants performing better in a garden in Germany than in Montana. Differentiation of native populations in the magnitude of plasticity was much stronger than that of introduced populations, suggesting an important role for founder effects. We did not detect evidence of an evolutionary change in threshold flowering size. Our study demonstrates that detecting genetically based differences in traits may require measuring plant responses to more than one environment.  相似文献   

17.
The evolution of increased competitive ability (EICA) hypothesis predicts that release from natural enemies in the introduced range favors exotic plants evolving to have greater competitive ability and lower herbivore resistance than conspecifics from the native range. We tested the EICA hypothesis in a common garden experiment with Sapium sebiferum in which seedlings from native (China) and invasive (USA) populations were grown in all pairwise combinations in the native range (China) in the presence of herbivores. When paired seedlings were from the same continent, shoot mass and leaf damage per seedling were significantly greater for plants from invasive populations than those from native populations. Despite more damage from herbivores, plants from invasive populations still outperformed those from native populations when they were grown together. Increased competitive ability and higher herbivory damage of invasive populations relative to native populations of S. sebiferum support the EICA hypothesis. Regression of biomass against percent leaf damage showed that plants from invasive populations tolerated herbivory more effectively than those from native populations. The results of this study suggest that S. sebiferum has become a faster-growing, less herbivore-resistant, and more herbivore-tolerant plant in the introduced range. This implies that increased competitive ability of exotic plants may be associated with evolutionary changes in both resistance and tolerance to herbivory in the introduced range. Understanding these evolutionary changes has important implications for biological control strategies targeted at problematic invaders.  相似文献   

18.
Invasive plants generally have fewer aboveground pathogens and viruses in their introduced range than in their natural range, and they also have fewer pathogens than do similar plant species native to the introduced range. However, although plant abundance is strongly controlled by root herbivores and soil pathogens, there is very little knowledge on how invasive plants escape from belowground enemies. We therefore investigated if the general pattern for aboveground pathogens also applies to root-feeding nematodes and used the natural foredune grass Ammophila arenariaas a model. In the late 1800s, the European A. arenariawas introduced into southeast Australia (Tasmania), New Zealand, South Africa, and the west coast of the USA to be used for sand stabilization. In most of these regions, it has become a threat to native vegetation, because its excessive capacity to stabilize wind-blown sand has changed the geomorphology of coastal dunes. In stable dunes of most introduced regions, A. arenaria is more abundant and persists longer than in stabilized dunes of the natural range. We collected soil and root samples and used additional literature data to quantify the taxon richness of root-feeding nematodes on A.␣arenaria in its natural range and collected samples from the four major regions where it has been introduced. In most introduced regions A. arenaria did not have fewer root-feeding nematode taxa than the average number in its natural range, and native plant species did not have more nematode taxa than the introduced species. However, in the introduced range native plants had more feeding-specialist nematode taxa than A. arenaria and major feeding specialists (the sedentary endoparasitic cyst and root knot nematodes) were not found on A. arenaria in the southern hemisphere. We conclude that invasiveness of A. arenaria correlates with escape from feeding specialist nematodes, so that the pattern of escape from root-feeding nematodes is more alike escape from aboveground insect herbivores than escape from aboveground pathogens and viruses. In the natural range of A. arenaria, the number of specialist-feeding nematode taxa declines towards the margins. Growth experiments are needed to determine the relationship between nematode taxon diversity, abundance, and invasiveness of A. arenaria.  相似文献   

19.
Aims In view of the growing interest in modelling the potential spread of invasive species, prediction of plant invasiveness on the basis of native range size holds considerable promise. Our objective was to use a simple model to evaluate whether a wider native range predisposes plant species to become invasive in non-native regions and to easily identify potential invaders on this basis. The Kashmir Himalayan alien flora, of which a large proportion is native to Europe, was used to test this model.Methods The Kashmir Himalayan alien flora comprises 436 species of vascular plants at different stages of invasion. We focussed on plant species at two critical invasion stages (sensu Colautti and MacIsaac 2004), i.e. Stage II (species that are just at the earliest phase of introduction) and Stage V (species that are widespread and dominant in the invaded region and are thus considered invasive). We used the territorial distribution in Europe (number of countries) as a surrogate for the native range size of plants of European origin.Important findings Using a subset of 88 species, for which information on the native European range was available, we showed that a large proportion (68%) of Stage II species growing in the Kashmir Valley had a relatively restricted European range (present in ≤20 countries); on the other hand, 77% of Stage V species had an extensive native range (present in>20 countries). We consequently hypothesized that 14 Kashmir Himalayan Stage II species of European origin that are distributed in>20 European countries are at risk of becoming future invaders in Kashmir. On the other hand, those Kashmir Himalayan Stage II species of European origin distributed in ≤20 European countries are less likely to become invasive. Although this analysis is quite simple, the data suggest that a wider native range is a good predictor of plant invasiveness and could be used as a simple and low-cost early warning tool in predicting potential invasive species.  相似文献   

20.
Caño L  Escarré J  Vrieling K  Sans FX 《Oecologia》2009,159(1):95-106
This paper tests the prediction that introduced plants may become successful invaders because they experience evolutionary changes in growth and defence in their new range [evolution of increased competitive ability hypothesis (EICA)]. Interspecific and intraspecific binary feeding choices were offered to the snail Helix aspersa. The choices were between: (1) plants of the invasive Senecio inaequidens and Senecio pterophorus derived from populations in the introduced range (Europe) and plants of three indigenous species (Senecio jacobea, Senecio vulgaris and Senecio malacitanus) from populations in Europe; (2) plants of the invasive S. inaequidens and S. pterophorus from populations in the introduced range (Europe) and from populations in the native range (South Africa). We did not find a clear pattern of preference for indigenous or alien species of Senecio. However, we found that European invasive populations of S. inaequidens and S. pterophorus were less palatable than South African native populations. Moreover, in contrast to the predictions of the EICA hypothesis, the invasive genotypes of both species also showed a higher total concentration of pyrrolizidine alkaloids, and in the case of S. inaequidens we also found higher growth than in native genotypes. Our results are discussed with respect to the refinement of the EICA hypothesis that takes into account the difference between specialist and generalist herbivores and between qualitative and quantitative defences. We conclude that invasive populations of S. inaequidens and S. pterophorus are less palatable than native populations, suggesting that genetic differentiation associated with founding may occur and contribute to the plants’ invasion success by selecting the best-defended genotypes in the introduced range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号