共查询到20条相似文献,搜索用时 0 毫秒
1.
Saccharomyces cerevisiae Ste24p is a multispanning membrane protein implicated in the CAAX proteolysis step that occurs during biogenesis of the prenylated a-factor mating pheromone. Whether Ste24p acts directly as a CAAX protease or indirectly to activate a downstream protease has not yet been established. In this study, we demonstrate that purified, detergent-solubilized Ste24p directly mediates CAAX proteolysis in a zinc-dependent manner. We also show that Ste24p mediates a separate proteolytic step, the first NH(2)-terminal cleavage in a-factor maturation. These results establish that Ste24p functions both as a bona fide COOH-terminal CAAX protease and as an a-factor NH(2)-terminal protease. Importantly, this study is the first to directly demonstrate that a eukaryotic multispanning membrane protein can possess intrinsic proteolytic activity. 相似文献
2.
Grosshans H Lecointe F Grosjean H Hurt E Simos G 《The Journal of biological chemistry》2001,276(49):46333-46339
Yeast Pus1p catalyzes the formation of pseudouridine (psi) at specific sites of several tRNAs, but its function is not essential for cell viability. We show here that Pus1p becomes essential when another tRNA:pseudouridine synthase, Pus4p, or the essential minor tRNA for glutamine are mutated. Strikingly, this mutant tRNA, which carries a mismatch in the T psi C arm, displays a nuclear export defect. Furthermore, nuclear export of at least one wild-type tRNA species becomes defective in the absence of Pus1p. Our data, thus, show that the modifications formed by Pus1p are essential when other aspects of tRNA biogenesis or function are compromised and suggest that impairment of nuclear tRNA export in the absence of Pus1p might contribute to this phenotype. 相似文献
3.
《The Journal of cell biology》1996,134(3):661-674
The a-factor receptor (Ste3p) is one of two pheromone receptors in the yeast Saccharomyces cerevisiae that enable the cell-cell communication of mating. In this report, we show that this receptor is subject to two distinct covalent modifications-phosphorylation and ubiquitination. Phosphorylation, evident on the unstimulated receptor, increases upon challenge by the receptor's ligand, a-factor. We suggest that this phosphorylation likely functions in the adaptive, negative regulation of receptor activity. Removal of phosphorylation by phosphatase treatment uncovered two phosphatase-resistant modifications identified as ubiquitination using a myc-epitope-tagged ubiquitin construct. Ste3p undergoes rapid, ligand-independent turnover that depends on vacuolar proteases and also on transport of the receptor from surface to vacuole (i.e., endocytosis) (Davis, N.G., J.L.Horecka, and G.F. Sprague, Jr., 1993 J. Cell Biol. 122:53-65). An end4 mutation, isolated for its defect in the endocytic uptake of alpha-factor pheromone (Raths, S., J. Rohrer, F. Crausaz, and H. Riezman. 1993. J. Cell Biol. 120:55-65), blocks constitutive endocytosis of the a-factor receptor, yet fails to block ubiquitination of the receptor. In fact, both phosphorylation and ubiquitination of the surfacebound receptor were found to increase, suggesting that these modifications may occur normally while the receptor is at the cell surface. In a mutant strain constructed to allow for depletion of ubiquitin, the level of receptor ubiquitination was found to be substantially decreased. Correlated with this was an impairment of receptor degradative turnover-receptor half-life that is normally approximately 20 min at 30 degrees C was increased to approximately 2 h under these ubiquitin-depletion conditions. Furthermore, surface residency, normally of short duration in wild-type cells (terminated by endocytosis to the vacuole), was found to be prolonged; the majority of the receptor protein remained surface localized fully 2 h after biosynthesis. Thus, the rates of a-factor receptor endocytosis and consequent vacuolar turnover depend on the available level of ubiquitin in the cell. In cells mutant for two E2 activities, i.e., ubc4 delta ubc5 delta cells, the receptor was found to be substantially less ubiquitinated, and in addition, receptor turnover was slowed, suggesting that Ubc4p and Ubc5p may play a role in the recognition of the receptor protein as substrate for the ubiquitin system. In addition to ligand-independent uptake, the a-factor receptor also undergoes a ligand-dependent form of endocytosis (Davis, N.G., J.L. Horecka, and G.F. Sprague, Jr. 1993. J. Cell. Biol. 122:53-65). Concurrent with ligand-dependent uptake, we now show that the receptor undergoes ligand-induced ubiquitination, suggesting that receptor ubiquitination may function in the ligand-dependent endocytosis of the a-factor receptor as well as in its constitutive endocytosis. To account for these findings, we propose a model wherein the covalent attachment of ubiquitin to surface receptor triggers endocytic uptake. 相似文献
4.
The yeast a-factor receptor (Ste3p) is subject to two mechanistically distinct modes of endocytosis: a constitutive, ligand-independent pathway and a ligand-dependent uptake pathway. Whereas the constitutive pathway leads to degradation of the receptor in the vacuole, the present work finds that receptor internalized via the ligand-dependent pathway recycles. With the a-factor ligand continuously present in the culture medium, trafficking of the receptor achieves an equilibrium in which continuing uptake to endosomal compartments is balanced by its recycling return to the plasma membrane. Withdrawal of ligand from the medium leads to a net return of the internalized receptor back to the plasma membrane. Although recycling is demonstrated for receptors that lack the signal for constitutive endocytosis, evidence is provided indicating a participation of recycling in wild-type Ste3p trafficking as well: a-factor treatment both slows wild-type receptor turnover and results in receptor redistribution to intracellular endosomal compartments. Apparently, a-factor acts as a switch, diverting receptor from vacuole-directed endocytosis and degradation, to recycling. A model is presented for how the two Ste3p endocytic modes may collaborate to generate the polarized receptor distribution characteristic of mating cells. 相似文献
5.
The yeast a-factor transporter Ste6p, a member of the ABC superfamily, couples ATP hydrolysis to pheromone export 总被引:3,自引:0,他引:3
Ketchum CJ Schmidt WK Rajendrakumar GV Michaelis S Maloney PC 《The Journal of biological chemistry》2001,276(31):29007-29011
ATP-binding cassette (ABC) proteins transport a diverse collection of substrates. It is presumed that these proteins couple ATP hydrolysis to substrate transport, yet ATPase activity has been demonstrated for only a few. To provide direct evidence for such activity in Ste6p, the yeast ABC protein required for the export of a-factor mating pheromone, we established conditions for purification of Ste6p in biochemical quantities from both yeast and Sf9 insect cells. The basal ATPase activity of purified and reconstituted Ste6p (V(max) = 18 nmol/mg/min; K(m) for MgATP = 0.2 mm) compares favorably with several other ABC proteins and was inhibited by orthovanadate in a profile diagnostic of ABC transporters (apparent K(I) = 12 microm). Modest stimulation (approximately 40%) was observed upon the addition of a-factor either synthetic or in native form. We also used an 8-azido-[alpha-(32)P]ATP binding and vanadate-trapping assay to examine the behavior of wild-type Ste6p and two different double mutants (G392V/G1087V and G509D/G1193D) shown previously to be mating-deficient in vivo. Both mutants displayed a diminished ability to hydrolyze ATP, with the latter uncoupled from pheromone transport. We conclude that Ste6p catalyzes ATP hydrolysis coupled to a-factor transport, which in turn promotes mating. 相似文献
6.
Peroxisome biogenesis in yeast 总被引:6,自引:0,他引:6
John D. Aitchison William M. Nuttley Rachel K. Szilard Anthony M. Brade John R. Glover Richard A. Rachubinski 《Molecular microbiology》1992,6(23):3455-3460
Eukaryotic cells have evolved a complex set of intracellular organelles, each of which possesses a specific complement of enzymes and performs unique metabolic functions. This compartmentalization of cellular functions provides a level of metabolic control not available to prokaryotes. However, it presents the eukaryotic cell with the problem of targeting proteins to their specific location(s). Proteins must be efficiently transported from their site of synthesis in the cytosol to their specific organelle(s). Such a process may require translocation across one or more hydrophobic membrane barriers and/or asymmetric integration into specific membranes. Proteins carry cis-acting amino acid sequences that serve to act as recognition motifs for protein sorting and for the cellular translocation machinery. Sequences that target proteins to the endoplasmic reticulum/secretory pathway, mitochondria, and chloroplasts are often present as cleavable amino-terminal extensions. In contrast, most peroxisomal proteins are synthesized at their mature size and are translocated to the organelle without any post-translational modification. This review will summarize what is known about how yeast solve the problem of specifically importing proteins into peroxisomes and will suggest future directions for investigations into peroxisome biogenesis in yeast. 相似文献
7.
A 58-residue-long, PEST-like sequence within the yeast a-factor receptor (Ste3p) specifies the ubiquitination, endocytosis, and consequent vacuolar degradation of the receptor protein (Roth, A. F., Sullivan, D. M., and Davis, N. G. (1998) J. Cell Biol. 142, 949-961). The present work investigates three lysyl residues that map within this sequence as the potential ubiquitin acceptor sites. Lys --> Arg substitution mutants were tested for effects on both ubiquitination and endocytosis. Results indicate that the three lysines function redundantly; a severe blockade to both ubiquitination and endocytosis is seen only for receptors having all three lysines replaced. Of the three, Lys(432) plays the predominant role; ubiquitination and turnover are significantly impaired for receptors having just the K432R mutation. CNBr fragmentation of the receptor protein, used for the physical mapping of the ubiquitin attachment sites, showed PEST-like sequence lysines to be modified both with single ubiquitin moieties as well with short multi-ubiquitin chains, two or three ubiquitins long. Thus, in addition to being the signal for ubiquitination, the Ste3p PEST-like sequence also provides the site for ubiquitin attachment. To test if this endocytosis signal functions solely for ubiquitination, we have asked if the requirement for the PEST-like sequence in endocytosis might be bypassed through pre-attachment of ubiquitin to the receptor protein. Indeed, Ste3-ubiquitin translational fusions that have a ubiquitin moiety fused to the receptor in place of the PEST-like signal do undergo rapid endocytosis and vacuolar turnover. We conclude that ubiquitin alone, with no required contribution from receptor sequences, provides the sufficient signal for initiating uptake. In addition, our results confirm conclusions originally drawn from studies with the alpha-factor receptor (Terrell, J., Shih, S., Dunn, R., and Hicke, L. (1998) Mol. Cell 1, 193-202), namely that mono-ubiquitin, and not multi-ubiquitin chains provide the primary recognition determinant for uptake. Although mono-ubiquitination suffices, our results indicate that multi-ubiquitination serves to augment the rate of uptake. 相似文献
8.
Tilman Achstetter Claudia Ehmann Dieter H. Wolf 《Archives of biochemistry and biophysics》1981,207(2):445-454
Yeast mutants lacking three proteolytic enzymes—proteinase B, carboxypeptidase Y, and carboxypeptidase S—have been constructed. Search for new proteolytic activities in these mutants with the aid of chromogenic peptide substrates developed for serum proteinases led to the detection of new proteolytic activities, active in the neutral pH range. Sephadex chromatography of a 100,000g supernate of mutant extracts, tests against four different substrates, and partial characterization of their sensitivity to various inhibitors indicate multiple activities. Two activities, called proteinase M and proteinase P, were found in the sedimentable membranous fraction of mutant extracts. 相似文献
9.
Multiple roles for Rsp5p-dependent ubiquitination at the internalization step of endocytosis 总被引:10,自引:0,他引:10
Ubiquitination of integral plasma membrane proteins triggers their rapid internalization into the endocytic pathway. The yeast ubiquitin ligase Rsp5p, a homologue of mammalian Nedd4 and Itch, is required for the ubiquitination and subsequent internalization of multiple plasma membrane proteins, including the alpha-factor receptor (Ste2p). Here we demonstrate that Rsp5p plays multiple roles at the internalization step of endocytosis. Temperature-sensitive rsp5 mutant cells were defective in the internalization of alpha-factor by a Ste2p-ubiquitin chimera, a receptor that does not require post-translational ubiquitination. Similarly, a modified version of Ste2p bearing a NPFXD linear peptide sequence as its only internalization signal was not internalized in rsp5 cells. Internalization of these variant receptors was dependent on the catalytic cysteine residue of Rsp5p and on ubiquitin-conjugating enzymes that bind Rsp5p. Thus, a Rsp5p-dependent ubiquitination event is required for internalization mediated by ubiquitin-dependent and -independent endocytosis signals. Constitutive Ste2p-ubiquitin internalization and fluid-phase endocytosis also required active ubiquitination machinery, including Rsp5p. These observations indicate that Rsp5p-dependent ubiquitination of a trans-acting protein component of the endocytosis machinery is required for the internalization step of endocytosis. 相似文献
10.
11.
Nucleo-mitochondrial interactions in yeast mitochondrial biogenesis 总被引:26,自引:0,他引:26
L A Grivell 《European journal of biochemistry》1989,182(3):477-493
12.
The yeast Saccharomyces cerevisiae exhibits two mating types, a and alpha. Efficient mating of a and alpha cells requires the action of peptide pheromones secreted by each cell type. For example, a cells secrete a-factor, which alters the physiology of alpha cells, thereby preparing those cells for mating. To investigate the mechanism by which the pheromones act on the target cells, we have examined the effect of a-factor on expression of the STE3 gene, a gene which is required for mating by alpha cells and which is expressed only in alpha cells. We have monitored STE3 expression by two assays: RNA production from the chromosomal STE3 locus and beta-galactosidase activity produced from a plasmid-borne STE3-lacZ gene fusion. By both assays we show that a-factor induces a rapid increase in STE3 expression. Induction of STE3 RNA occurs even if protein synthesis is blocked by cycloheximide. Using temperature-sensitive cell division cycle mutants, we have also shown that induction occurs in cells arrested at several discrete positions in the cell cycle. These results demonstrate (1) that induction of STE3 expression by a-factor is a primary response to the pheromone, and (2) that alpha cells are capable of responding to a-factor regardless of their position in the cell cycle. 相似文献
13.
Recently, a novel membrane-associated metalloprotease, designated Ste24p, has been identified in Saccharomyces cerevisiae [K. Fujimura-Kamada, F.J. Nouvet, S. Michaelis, J. Cell Biol. 27 (1997) 271-285]. We cloned a human brain cDNA encoding a protein homologous to Ste24p (designated Hs Ste24p). The predicted 475-amino acid product of its open reading frame exhibited 62% similarity to Ste24p, and contained a zinc metalloprotease motif (HEXXH) and multiple predicted membrane spans. Northern blot analysis showed that this gene was expressed in most tissues. Immunofluorescence analysis of epitope-tagged Hs Ste24p constructs suggested that it is localized in the ER and possibly also in the Golgi compartment. A search of the expression sequence tag database identified a fragment of DNA encoding a segment homologous to the segment of Hs Ste24p containing the HEXXH motif in insects and nematodes. Thus, Hs Ste24p could be a member of a new family of Ste24p-like membrane-associated metalloproteases which are widely conserved in eukaryotes. 相似文献
14.
Mutations within the first LSGGQ motif of Ste6p cause defects in a-factor transport and mating in Saccharomyces cerevisiae.
下载免费PDF全文

Mating between the two haploid cell types (a and alpha) of the yeast Saccharomyces cerevisiae depends upon the efficient secretion and delivery of the a- and alpha-factor pheromones to their respective target cells. However, a quantitative correlation between the level of transported a-factor and mating efficiency has never been determined. a-Factor is transported by Ste6p, a member of the ATP-binding cassette (ABC) family of transporter proteins. In this study, several missense mutations were introduced in or near the conserved LSGGQ motif within the first nucleotide-binding domain of Ste6p. Quantitation of extracellular a-factor levels indicated that these mutations caused a broad range of a-factor transport defects, and those directly within the LSGGQ motif caused the most severe defects. Overall, we observed a strong correlation between the level of transported a-factor and the mating efficiency of these strains, consistent with the role of Ste6p as the a-factor transporter. The LSGGQ mutations did not cause either a significant alteration in the steady-state level of Ste6p or a detectable change in its subcellular localization. Thus, it appears that these mutations interfere with the ability of Ste6p to transport a-factor out of the MATa cell. The possible involvement of the LSGGQ motif in transporter function is consistent with the strong conservation of this sequence motif throughout the ABC transporter superfamily. 相似文献
15.
Suk K Choi J Suzuki Y Ozturk SB Mellor JC Wong KH MacKay JL Gregory RI Roth FP 《Nucleic acids research》2011,39(7):e43
Although RNA-mediated interference (RNAi) is a widely conserved process among eukaryotes, including many fungi, it is absent from the budding yeast Saccharomyces cerevisiae. Three human proteins, Ago2, Dicer and TRBP, are sufficient for reconstituting the RISC complex in vitro. To examine whether the introduction of human RNAi genes can reconstitute RNAi in S. cerevisiae, genes encoding these three human proteins were introduced into S. cerevisiae. We observed both siRNA and siRNA- and RISC-dependent silencing of the target gene GFP. Thus, human Ago2, Dicer and TRBP can functionally reconstitute human RNAi in S. cerevisiae, in vivo, enabling the study and use of the human RNAi pathway in a facile genetic model organism. 相似文献
16.
Three proteolytic systems in the yeast saccharomyces cerevisiae 总被引:23,自引:0,他引:23
E W Jones 《The Journal of biological chemistry》1991,266(13):7963-7966
17.
Derek Meissner Jothini Odman-Naresh Inga Vogelpohl Hans Merzendorfer 《Molecular biology of the cell》2010,21(14):2425-2433
Ste24 is a membrane-integral CaaX metalloprotease residing in the endoplasmic reticulum (ER). In yeast, the only known substrate of Ste24 is the mating factor a precursor. A global screening for protein–protein interactions indicated that Ste24 interacts with chitin synthesis deficient (Chs)3, an enzyme required for chitin synthesis. We confirmed this interaction by yeast two-hybrid analyses and mapped the interacting cytoplasmic domains. Next, we investigated the influence of Ste24 on chitin synthesis. In sterile (ste)24Δ mutants, we observed resistance to calcofluor white (CFW), which was also apparent when the cells expressed a catalytically inactive version of Ste24. In addition, ste24Δ cells showed a decrease in chitin levels and Chs3-green fluorescent protein localized less frequently at the bud neck. Overexpression of STE24 resulted in hypersensitivity to CFW and a slight increase in chitin levels. The CFW phenotype of ste24Δ cells could be rescued by its human and insect orthologues. Although Chs3 binds to Ste24, it seems not to be a substrate for this protease. Instead, our data suggest that Chs3 and Ste24 form a complex in the ER that facilitates protease action on prenylated Chs4, a known activator of Chs3 with a C-terminal CaaX motif, leading to a more efficient localization of Chs3 at the plasma membrane. 相似文献
18.
M. Ramezani Rad G. Jansen F. Bühring C. P. Hollenberg 《Molecular genetics and genomics : MGG》1998,259(1):29-38
STE50 is required to sustain pheromone-induced signal transduction in?S. cerevisiae. Here we report that Ste50p is involved in regulating pseudohyphal development. Both of these processes are also dependent on Ste11p. Deletion of STE50 leads to defects in filamentous growth, which can be suppressed by overproduction of Ste11p. Overexpression of STE11 also suppresses the mating defects of ste50 mutants. We have analysed the physical association between Ste50p and Ste11p in extracts of cells harvested under various conditions. A Ste11p-Ste50p complex can be isolated from extracts of cells in which the pheromone response has been activated, as well as from normally growing cells. Formation of the Ste50p-Ste11p complex does not require Gα, Gβ, Ste20p or Ste5p. Oligomerisation of Ste11p is shown to be independent of activation of the pheromone response pathway, and occurs in the absence of Ste50p. We conclude that Ste50p is necessary for Ste11p activity in at least two differentiation programmes: mating and filamentous growth. 相似文献
19.
Yeast mcd4-174 mutants are blocked in glycosylphosphatidylinositol (GPI) anchoring of protein, but the stage at which GPI biosynthesis is interrupted in vivo has not been identified, and Mcd4p has also been implicated in phosphatidylserine and ATP transport. We report that the major GPI that accumulates in mcd4-174 in vivo is Man(2)-GlcN-(acyl-Ins)PI, consistent with proposals that Mcd4p adds phosphoethanolamine to the first mannose of yeast GPI precursors. Mcd4p-dependent modification of GPIs can partially be bypassed in the mcd4-174/gpi11 double mutant and in mcd4Delta; mutants by high-level expression of PIG-B and GPI10, which respectively encode the human and yeast mannosyltransferases that add the third mannose of the GPI precursor. Rescue of mcd4Delta; by GPI10 indicates that Mcd4p-dependent addition of EthN-P to the first mannose of GPIs is not obligatory for transfer of the third mannose by Gpi10p. 相似文献