首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The trans-anethole degradation pathway in an Arthrobacter sp.   总被引:2,自引:0,他引:2  
A bacterial strain (TA13) capable of utilizing t-anethole as the sole carbon source was isolated from soil. The strain was identified as Arthrobacter aurescens based on its 16 S rRNA gene sequence. Key steps of the degradation pathway of t-anethole were identified by the use of t-anethole-blocked mutants and specific inducible enzymatic activities. In addition to t-anethole, strain TA13 is capable of utilizing anisic acid, anisaldehyde, and anisic alcohol as the sole carbon source. t-Anethole-blocked mutants were obtained following mutagenesis and penicillin enrichment. Some of these blocked mutants, accumulated in the presence of t-anethole quantitative amounts of t-anethole-diol, anisic acid, and 4,6-dicarboxy-2-pyrone and traces of anisic alcohol and anisaldehyde. Enzymatic activities induced by t-anethole included: 4-methoxybenzoate O-demethylase, p-hydroxybenzoate 3-hydroxylase, and protocatechuate-4,5-dioxygenase. These findings indicate that t-anethole is metabolized to protocatechuic acid through t-anethole-diol, anisaldehyde, anisic acid, and p-hydroxybenzoic acid. The protocatechuic acid is then cleaved by protocatechuate-4,5-dioxygenase to yield 2-hydroxy-4-carboxy muconate-semialdehyde. Results from inducible uptake ability and enzymatic assays indicate that at least three regulatory units are involved in the t-anethole degradation pathway. These findings provide new routes for environmental friendly production processes of valuable aromatic chemicals via bioconversion of phenylpropenoids.  相似文献   

2.
Lignin, a major component of biomass, composed of homogeneous phenolic monomers and functions as a synthetic precursor in the production of specialty chemicals or polymers. In this study, bacterial strains that metabolize lignin-derived low molecular weight compounds (LLCs) were cultured which are capable of LLC bioconversion. We used an LLC mixture primarily composed of vanillin (VL), syringaldehyde (SA), vanillic acid (VA) and p-hydroxybenzoic acid which were prepared from a commercial alkaline lignin product. Enrichment culture was repeated twice in a medium containing the soil sample, the LLCs and inorganic salts. Three bacterial strains belonging to the genera Pseudomonas, Ochrobactrum, and Klebsiella were isolated. We found that only VL, SA, and VA were metabolized by the Pseudomonas strain, which was then found to grow in a medium with VL or VA as the sole source of carbon and energy. The VL isomers, namely, ovanillin and isovanillin were converted to the corresponding carboxylic acids but were not utilized as carbon sources by Pseudomonas. VL and VA are intermediates in the pathway of bacterial degradation of eugenol via ferulic acid. Several bacterial strains that metabolize VL, eugenol, and ferulic acid have been reported but such strains are rarely isolated from enrichment culture medium containing LLCs, due to insufficient induction by the precursors in the LLC medium. In this study, we demonstrated that the microorganisms involved in the bioconversion of LLCs can be isolated from simple enrichment culture.  相似文献   

3.
In the present study, the Salmonella typhimurium tester strain TA 100 was used in the plate-incorporation test to examine the antimutagenic potential of caffeic, ferulic and cichoric acids extracted from plant species of genera Echinacea (L) Moench, as well as of another phenolic acids, on 3-(5-nitro-2-furyl)acrylic acid (5NFAA) and sodium azide mutagenicity. All tested compounds possess antimutagenic activity. In the case of 5NFAA, the antimutagenic potency of tested compounds was in the order of gallic acid > ferulic acid > caffeic acid > syringic acid > vanillic acid. The mutagenic effect of sodium azide was inhibited by tested phenolic acids by about 20-35 %. The most effective compound, gallic acid inhibits this effect by 82 % in the concentration of 500 mug/plate. The only exception from favourable properties of tested phenolic acids is cichoric acid, which in the contrary significantly increased the mutagenic effect of 5NFAA.  相似文献   

4.
In this study a novel strain was isolated with the capability to grow on eugenol as a source of carbon and energy. This strain was identified as Pseudomonas resinovorans (GenBank accession no. HQ198585) based on phenotypic characterization and phylogenetic analysis of 16S rDNA gene. The intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and vanillic acid were detected in the culture supernatant during eugenol biotransformation with this strain. The products were confirmed by thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and spectral data achieved from UV-vis, FTIR and mass spectroscopy. Using eugenol as substrate and resting cells of P. resinovorans SPR1, which were harvested at the end of the exponential growth phase, without further optimization 0.24 g/L vanillin (molar yield of 10%) and 1.1g/L vanillic acid (molar yield of 44%) were produced after 30 h and 60 h biotransformation, respectively. The current work gives the first evidence for the eugenol biotransformation by P. resinovorans.  相似文献   

5.
To harness eugenol as cheap substrate for the biotechnological production of aromatic compounds, the vanillyl alcohol oxidase gene (vaoA) from Penicillium simplicissimum CBS 170.90 was cloned in an expression vector suitable for Gram-positive bacteria and expressed in the vanillin-tolerant Gram-positive strain Amycolatopsis sp. HR167. Recombinant strains harboring hybrid plasmid pRLE6SKvaom exhibited a specific vanillyl alcohol oxidase activity of 1.1U/g protein. Moreover, this strain had gained the ability to grow on eugenol as sole carbon source. The intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, guajacol, and vanillic acid were detected as excreted compounds during growth on eugenol, whereas vanillin could only be detected in trace amounts. Resting cells of Amycolatopsis sp. HR167 (pRLE6SKvaom) produced coniferyl alcohol from eugenol with a maximum conversion rate of about 2.3 mmol/h/l of culture, and a maximum coniferyl alcohol concentration of 4.7 g/1 was obtained after 16 h biotransformation without further optimization. Beside coniferyl alcohol, traces of coniferyl aldehyde and ferulic acid were also detected.  相似文献   

6.
During the screening for bacteria capable of converting eugenol to vanillin, strain OPS1 was isolated, which was identified as a new Pseudomonas species by 16 s rDNA sequence analysis. When this bacterium was grown on eugenol, the intermediates, coniferyl alcohol, ferulic acid, vanillic acid, and protocatechuic acid, were identified in the culture supernatant. The genes encoding the eugenol hydroxylase (ehyA, ehyB), which catalyzes the first step of this biotransformation, were identified in a genomic library of Pseudomonas sp. strain OPS1 by complementation of the eugenol-negative mutant SK6165 of Pseudomonas sp. strain HR199. EhyA and EhyB exhibited 57% and 85% amino acid identity to the eugenol hydroxylase subunits of Pseudomonas sp. strain HR199 and up to 34% and 54% identity to the corresponding subunits of p-cresol methylhydroxylase from P. putida. Moreover, the amino-terminal sequences of the alpha- and beta-subunits reported recently for an eugenol dehydrogenase of P fluorescens E118 corresponded well with the appropriate regions of EhyA and EhyB. Downstream of ehyB, an open reading frame was identified, whose deduced amino acid sequence exhibited up to 71% identity to azurins, representing most probably the gene (azu) of the physiological electron acceptor of the eugenol hydroxylase. The eugenol hydroxylase genes were amplified by PCR, cloned, and functionally expressed in Escherichia coli.  相似文献   

7.
The gene loci fcs, encoding feruloyl coenzyme A (feruloyl-CoA) synthetase, ech, encoding enoyl-CoA hydratase/aldolase, and aat, encoding beta-ketothiolase, which are involved in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199 (DSM7063), were localized on a DNA region covered by two EcoRI fragments (E230 and E94), which were recently cloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The nucleotide sequences of parts of fragments E230 and E94 were determined, revealing the arrangement of the aforementioned genes. To confirm the function of the structural genes fcs and ech, they were cloned and expressed in Escherichia coli. Recombinant strains harboring both genes were able to transform ferulic acid to vanillin. The feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase activities of the fcs and ech gene products, respectively, were confirmed by photometric assays and by high-pressure liquid chromatography analysis. To prove the essential involvement of the fcs, ech, and aat genes in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199, these genes were inactivated separately by the insertion of omega elements. The corresponding mutants Pseudomonas sp. strain HRfcsOmegaGm and Pseudomonas sp. strain HRechOmegaKm were not able to grow on ferulic acid or on eugenol, whereas the mutant Pseudomonas sp. strain HRaatOmegaKm exhibited a ferulic acid- and eugenol-positive phenotype like the wild type. In conclusion, the degradation pathway of eugenol via ferulic acid and the necessity of the activation of ferulic acid to the corresponding CoA ester was confirmed. The aat gene product was shown not to be involved in this catabolism, thus excluding a beta-oxidation analogous degradation pathway for ferulic acid. Moreover, the function of the ech gene product as an enoyl-CoA hydratase/aldolase suggests that ferulic acid degradation in Pseudomonas sp. strain HR199 proceeds via a similar pathway to that recently described for Pseudomonas fluorescens AN103.  相似文献   

8.
The vaoA gene from Penicillium simplicissimum CBS 170.90, encoding vanillyl alcohol oxidase, which also catalyzes the conversion of eugenol to coniferyl alcohol, was expressed in Escherichia coli XL1-Blue under the control of the lac promoter, together with the genes calA and calB, encoding coniferyl alcohol dehydrogenase and coniferyl aldehyde dehydrogenase of Pseudomonas sp. strain HR199, respectively. Resting cells of the corresponding recombinant strain E. coli XL1-Blue(pSKvaomPcalAmcalB) converted eugenol to ferulic acid with a molar yield of 91% within 15 h on a 50-ml scale, reaching a ferulic acid concentration of 8.6 g liter(-1). This biotransformation was scaled up to a 30-liter fermentation volume. The maximum production rate for ferulic acid at that scale was 14.4 mmol per h per liter of culture. The maximum concentration of ferulic acid obtained was 14.7 g liter(-1) after a total fermentation time of 30 h, which corresponded to a molar yield of 93.3% with respect to the added amount of eugenol. In a two-step biotransformation, E. coli XL1-Blue(pSKvaomPcalAmcalB) was used to produce ferulic acid from eugenol and, subsequently, E. coli(pSKechE/Hfcs) was used to convert ferulic acid to vanillin (J. Overhage, H. Priefert, and A. Steinbüchel, Appl. Environ. Microbiol. 65:4837-4847, 1999). This process led to 0.3 g of vanillin liter(-1), besides 0.1 g of vanillyl alcohol and 4.6 g of ferulic acid liter(-1). The genes ehyAB, encoding eugenol hydroxylase of Pseudomonas sp. strain HR199, and azu, encoding the potential physiological electron acceptor of this enzyme, were shown to be unsuitable for establishing eugenol bioconversion in E. coli XL1-Blue.  相似文献   

9.
Towards a high-yield bioconversion of ferulic acid to vanillin   总被引:13,自引:2,他引:11  
Natural vanillin is of high interest in the flavor market. Microbial routes to vanillin have so far not been economical as the medium concentrations achieved have been well below 1 g l−1. We have now screened microbial isolates from nature and known strains for their ability to convert eugenol or ferulic acid into vanillin. Ferulic acid, in contrast to the rather toxic eugenol, was found to be an excellent precursor for the conversion to vanillin, as doses of several g l−1 could be fed. One of the isolated microbes, later identified as Pseudomonas putida, very efficiently converted ferulic acid to vanillic acid. As vanillin was oxidized faster than ferulic acid, accumulation of vanillin as an intermediate was not observed. A completely different metabolic flux was observed with Streptomyces setonii. During the metabolism of ferulic acid, this strain accumulated vanillic acid only to a level of around 200 mg l−1 and then started to accumulate vanillin as the principal metabolic overflow product. In shake-flask experiments, vanillin concentrations of up to 6.4 g l−1 were achieved with a molar yield of 68%. This high level now forms the basis for an economical microbial production of vanillin that can be used for flavoring purposes. Received: 15 October 1998 / Received revision: 13 January 1999 / Accepted: 18 January 1999  相似文献   

10.
AIMS: The ability of lactic acid bacteria (LAB) to metabolize certain phenolic precursors to vanillin was investigated. METHODS AND RESULTS: Gas chromatography-mass spectrometry (GC-MS) or HPLC was used to evaluate the biosynthesis of vanillin from simple phenolic precursors. LAB were not able to form vanillin from eugenol, isoeugenol or vanillic acid. However Oenococcus oeni or Lactobacillus sp. could convert ferulic acid to vanillin, but in low yield. Only Lactobacillus sp. or Pediococcus sp. strains were able to produce significant quantities of 4-vinylguaiacol from ferulic acid. Moreover, LAB reduced vanillin to the corresponding vanillyl alcohol. CONCLUSIONS: The transformation of phenolic compounds tested by LAB could not explain the concentrations of vanillin observed during LAB growth in contact with wood. SIGNIFICANCE AND IMPACT OF THE STUDY: Important details of the role of LAB in the conversion of phenolic compounds to vanillin have been elucidated. These findings contribute to the understanding of malolactic fermentation in the production of aroma compounds.  相似文献   

11.
Thirty-four thermophilic Bacillus sp. strains were isolated from decayed wood bark and a hot spring water sample based on their ability to degrade vanillic acid under thermophilic conditions. It was found that these bacteria were able to degrade a wide range of aromatic acids such as cinnamic, 4-coumaric, 3-phenylpropionic, 3-(p-hydroxyphenyl)propionic, ferulic, benzoic, and 4-hydroxybenzoic acids. The metabolic pathways for the degradation of these aromatic acids at 60 degrees C were examined by using one of the isolates, strain B1. Benzoic and 4-hydroxybenzoic acids were detected as breakdown products from cinnamic and 4-coumaric acids, respectively. The beta-oxidative mechanism was proposed to be responsible for these conversions. The degradation of benzoic and 4-hydroxybenzoic acids was determined to proceed through catechol and gentisic acid, respectively, for their ring fission. It is likely that a non-beta-oxidative mechanism is the case in the ferulic acid catabolism, which involved 4-hydroxy-3-methoxyphenyl-beta-hydroxypropionic acid, vanillin, and vanillic acid as the intermediates. Other strains examined, which are V0, D1, E1, G2, ZI3, and H4, were found to have the same pathways as those of strain B1, except that strains V0, D1, and H4 had the ability to transform 3-hydroxybenzoic acid to gentisic acid, which strain B1 could not do.  相似文献   

12.
Abstract Biodegradation of aromatic acids (ferulic, vanillic and sipapinic acids) by the soil bacterium Pseudomonas mira was studied by high-pressure liquid chromatography. The presence of glucose in the culture medium slowed down the degradation process but did not affect its mechanism. In addition to vanillic acid and hydroquinone, the products of degradation were found to include acetophenone derivatives. Probably, a mechanism capable of shortening the side chain by spontaneous decarboxylation of unstable 3- keto -3-phenylpropionic acid was present, in addition to the elimination of acetic acid via degradation of the cinnamic acid-type compounds.  相似文献   

13.
在25 L发酵罐中黑曲霉Aspergillus niger CGMCC0774转化阿魏酸可生成香草酸2.24 g/L,摩尔转化率64.6%;朱红密孔菌Pycnoporus cinnabarinus CGMCC1115转化提取的香草酸可生成香草醛1.45 g/L,摩尔转化率为79.9%。将两步微生物转化有机串联,即用黑曲霉转化液加预先培养的朱红密孔菌Pycnoporus cinnabarinus CGMCC1115菌丝体继续转化,可产香草醛1.06 g/L,对原料阿魏酸的摩尔转化率34.0%。用米糠提取的天然阿魏酸做原料,两步串联微生物转化制备的生物香兰素经13C同位素的分析,符合生物香草素的等同要求。  相似文献   

14.
The white-rot fungus Pycnoporous cinnabarinus (DMS-1184) was submerged cultured for 22 days under controlled conditions in a bioreactor. After 6, 9, and 15 days of culture the growth medium was supplemented with [5-2H]-labelled ferulic acid (I). The major phenolic compounds identified labelled were four lignans, the methyl esters of ferulic (I) and vanillic acid (VIII), (E)-coniferyl aldehyde (II), (E)-coniferyl alcohol (III), vanillic acid (VIII), vanillin (IX) and vanillyl alcohol (X). The detection of considerable amounts of labelled 4-hydroxy-3-methoxyacetophenone (VII) in the late growth phase suggested the increasing formation and decarboxylation of free 4-hydroxy-3-methoxybenzoylacetic acid (VI) and, thus, a beta-oxidation-like degradation of ferulic acid (I) or its methyl ester to vanillic acid (VIII). 4-Hydroxy-3-methoxybenzoylacetic acid methyl ester (VI) and 3-hydroxy-(4-hydroxy-3-methoxyphenyl)-propanoic acid methyl ester (V) were synthesised and then identified as metabolites in the culture medium. The fungal degradation of the phenyl propenoic side chain of ferulic acid (I), a principal key step of lignin decomposition, appeared to proceed analogous to fatty acids.  相似文献   

15.
Pseudomonas fluorescens BF13 is especially capable of promoting the formation of vanillic acid during ferulic acid degradation. We studied the possibility of enhancing the formation of this intermediary metabolite by using suspensions of cells at high density. The bioconversion of ferulic into vanillic acid was affected by several parameters, such as the concentration of the biomass, the amount of ferulic acid that was treated, the carbon source on which the biomass was grown. The optimal yield of vanillic acid was obtained with 6 mg/ml cells pre-grown on p-coumaric acid and 2 mg/ml ferulic acid. Under these conditions the bioconversion rate was 95% in 5 h. Therefore BF13 strain represents a valid biocatalyst for the preparative synthesis of vanillic acid. Received: 1 July 1997 / Received revision: 28 October 1997 / Accepted: 16 November 1997  相似文献   

16.
The potential of two Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol was investigated. Genome sequence data of Rhodococcus sp. I24 suggested a coenzyme A-dependent, non-β-oxidative pathway for ferulic acid bioconversion, which involves feruloyl–CoA synthetase (Fcs), enoyl–CoA hydratase/aldolase (Ech), and vanillin dehydrogenase (Vdh). This pathway was proven for Rhodococcus opacus PD630 by physiological characterization of knockout mutants. However, expression and functional characterization of corresponding structural genes from I24 suggested that degradation of ferulic acid in this strain proceeds via a β-oxidative pathway. The vanillin precursor eugenol facilitated growth of I24 but not of PD630. Coniferyl aldehyde was an intermediate of eugenol degradation by I24. Since the genome sequence of I24 is devoid of eugenol hydroxylase homologous genes (ehyAB), eugenol bioconversion is most probably initiated by a new step in this bacterium. To establish eugenol bioconversion in PD630, the vanillyl alcohol oxidase gene (vaoA) from Penicillium simplicissimum CBS 170.90 was expressed in PD630 together with coniferyl alcohol dehydrogenase (calA) and coniferyl aldehyde dehydrogenase (calB) genes from Pseudomonas sp. HR199. The recombinant strain converted eugenol to ferulic acid. The obtained data suggest that genetically engineered strains of I24 and PD630 are suitable candidates for vanillin production from eugenol.  相似文献   

17.
18.
From a ferulic-acid-degrading Pseudomonas fluorescens strain (BF13), we have isolated a transposon mutant, which retained the ability to bioconvert ferulic acid into vanillic acid but lost the ability to further degrade the latter acid. The mutant, BF13-97, was very stable, and therefore it was suitable to be used as a biocatalyst for the preparative synthesis of vanillic acid from ferulic acid. By use of resting cells we determined the effect on the bioconversion rate of several parameters, such as the addition of nutritional factors, the concentration of the biomass, and the carbon source on which the biomass was grown. The optimal yield of vanillic acid was obtained with cells pregrown on M9 medium containing p-coumaric acid (0.1% [wt/vol]) as a sole carbon source and yeast extract (0.001% [wt/vol]) as a source of nutritional factors. Under these conditions, 1 mg (wet weight) of biomass produced 0.23 mg of vanillic acid per h. The genomic region of BF13-97 flanking the transposon's site of insertion was cloned and sequenced revealing two open reading frames of 1,062 (vanA) and 954 (vanB) bp, respectively. The van genes are organized in a cluster and encode the subunits of the vanillate-O-demethylase, which catalyzes the first step of the vanillate catabolism. Amino acid sequences deduced from vanA and vanB genes were shown to have high identity with known VanAs and VanBs from Pseudomonas and Acinetobacter spp. Highly conserved regions known to exist in class IA oxygenases were also found in the vanillate-O-demethylase components from P. fluorescens BF13. The terminal oxygenase VanA is characterized by a conserved Rieske-type [2Fe-2S](R) ligand center. The reductase VanB contains a plant-type ferredoxin [2Fe-2S](Fd), flavin mononucleotide, and NAD-ribose binding domains which are located in its C-terminal and N-terminal halves, respectively. Transfer of wild-type vanAB genes to BF13-97 complemented this mutant, which recovered its ability to grow on either vanillic or ferulic acid.  相似文献   

19.
Streptomyces sannanensis MTCC 6637 was examined for its potentiality to transform ferulic acid into its corresponding hydroxybenzoate-derivatives. Cultures of S. sannanensis when grown on minimal medium containing ferulic acid as sole carbon source, vanillic acid accumulation was observed in the medium as the major biotransformed product along with transient formation of vanillin. A maximum amount of 400 mg/l vanillic acid accumulation was observed, when cultures were grown on 5 mM ferulic acid at 28°C. This accumulation of vanillic acid was found to be stable in the culture media for a long period of time, thus facilitating its recovery. Purification of vanillic acid was achieved by gel filtration chromatography using Sephadex™ LH-20 matrix. Catabolic route of ferulic acid biotransformation by S. sannanensis has also been demonstrated. The metabolic inhibitor experiment [by supplementation of 3,4 methylenedioxy-cinnamic acid (MDCA), a metabolic inhibitor of phenylpropanoid enzyme 4-hydroxycinnamoyl-CoA ligase (4-CL) along with ferulic acid] suggested that biotransformation of ferulic acid into vanillic acid mainly proceeds via CoA-dependent route. In vitro conversions of ferulic acid to vanillin, vanillic acid and vanillin to vanillic acid were also demonstrated with cell extract of S. sannanensis. Further degradation of vanillic acid to other intermediates such as, protocatechuic acid and guaiacol was not observed, which was also confirmed in vitro with cell extract.  相似文献   

20.
Thirty-four thermophilic Bacillus sp. strains were isolated from decayed wood bark and a hot spring water sample based on their ability to degrade vanillic acid under thermophilic conditions. It was found that these bacteria were able to degrade a wide range of aromatic acids such as cinnamic, 4-coumaric, 3-phenylpropionic, 3-(p-hydroxyphenyl)propionic, ferulic, benzoic, and 4-hydroxybenzoic acids. The metabolic pathways for the degradation of these aromatic acids at 60°C were examined by using one of the isolates, strain B1. Benzoic and 4-hydroxybenzoic acids were detected as breakdown products from cinnamic and 4-coumaric acids, respectively. The β-oxidative mechanism was proposed to be responsible for these conversions. The degradation of benzoic and 4-hydroxybenzoic acids was determined to proceed through catechol and gentisic acid, respectively, for their ring fission. It is likely that a non-β-oxidative mechanism is the case in the ferulic acid catabolism, which involved 4-hydroxy-3-methoxyphenyl-β-hydroxypropionic acid, vanillin, and vanillic acid as the intermediates. Other strains examined, which are V0, D1, E1, G2, ZI3, and H4, were found to have the same pathways as those of strain B1, except that strains V0, D1, and H4 had the ability to transform 3-hydroxybenzoic acid to gentisic acid, which strain B1 could not do.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号