首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
ARS301 and ARS302 are inactive replication origins located at the left end of budding yeast (Saccharomyces cerevisiae) chromosome III, where they are associated with the HML-E and -I silencers of the HML mating type cassette. Although they function as replication origins in plasmids, they do not serve as origins in their normal chromosomal locations, because they are programmed to fire so late in S phase that they are passively replicated by the replication fork from neighboring early-firing ARS305 before they have a chance to fire on their own. We asked whether the nucleotide sequences required for plasmid origin function of these silencer-associated chromosomally inactive origins differ from the sequences needed for plasmid origin function by nonsilencer-associated chromosomally active origins. We could not detect consistent differences in sequence requirements for the two types of origins. Next, we asked whether sequences within or flanking these origins are responsible for their chromosomal inactivity. Our results demonstrate that both flanking and internal sequences contribute to chromosomal inactivity, presumably by programming these origins to fire late in S phase. In ARS301, the function of the internal sequences determining chromosomal inactivity is dependent on the checkpoint proteins Mec1p and Rad53p.  相似文献   

3.
4.
In the quest to define autonomously replicating sequences (ARSs) in eukaryotic cells, an ARS consensus sequence (ACS) has emerged for budding yeast. This ACS is recognized by the replication initiator, the origin recognition complex (ORC). However, not every match to the ACS constitutes a replication origin. Here, we investigated the requirements for ORC binding to origins that carry multiple, redundant ACSs, such as ARS603. Previous studies raised the possibility that these ACSs function as individual ORC binding sites. Detailed mutational analysis of the two ACSs in ARS603 revealed that they function in concert and give rise to an initiation pattern compatible with a single bipartite ORC binding site. Consistent with this notion, deletion of one base pair between the ACS matches abolished ORC binding at ARS603. Importantly, loss of ORC binding in vitro correlated with the loss of ARS activity in vivo. Our results argue that replication origins in yeast are in general comprised of bipartite ORC binding sites that cannot function in random alignment but must conform to a configuration that permits ORC binding. These requirements help to explain why only a limited number of ACS matches in the yeast genome qualify as ORC binding sites.  相似文献   

5.
Replication initiation and replication fork movement in the subtelomeric and telomeric DNA of native Y' telomeres of yeast were analyzed using two-dimensional gel electrophoresis techniques. Replication origins (ARSs) at internal Y' elements were found to fire in early-mid-S phase, while ARSs at the terminal Y' elements were confirmed to fire late. An unfired Y' ARS, an inserted foreign (bacterial) sequence, and, as previously reported, telomeric DNA each were shown to impose a replication fork pause, and pausing is relieved by the Rrm3p helicase. The pause at telomeric sequence TG(1-3) repeats was stronger at the terminal tract than at the internal TG(1-3) sequences located between tandem Y' elements. We show that the telomeric replication fork pause associated with the terminal TG(1-3) tracts begins approximately 100 bp upstream of the telomeric repeat tract sequence. Telomeric pause strength was dependent upon telomere length per se and did not require the presence of a variety of factors implicated in telomere metabolism and/or known to cause telomere shortening. The telomeric replication fork pause was specific to yeast telomeric sequence and was independent of the Sir and Rif proteins, major known components of yeast telomeric heterochromatin.  相似文献   

6.
Time of replication of ARS elements along yeast chromosome III.   总被引:33,自引:16,他引:17       下载免费PDF全文
The replication of putative replication origins (ARS elements) was examined for 200 kilobases of chromosome III of Saccharomyces cerevisiae. By using synchronous cultures and transfers from dense to light isotope medium, the temporal pattern of mitotic DNA replication of eight fragments that contain ARSs was determined. ARS elements near the telomeres replicated late in S phase, while internal ARS elements replicated in the first half of S phase. The results suggest that some ARS elements in the chromosome may be inactive as replication origins. The actively expressed mating type locus, MAT, replicated early in S phase, while the silent cassettes, HML and HMR, replicated late. Unexpectedly, chromosome III sequences were found to replicate late in G1 at the arrest induced by the temperature-sensitive cdc7 allele.  相似文献   

7.
Eukaryotic origin recognition complexes (ORCs) play pivotal roles in the initiation of chromosomal DNA replication. ORC from the yeast, Saccharomyces cerevisiae, recognizes and binds replication origins in the late G1 phase and the binding has profound implications in the progression of the cell cycle to the S-phase. Therefore, we have quantitatively analyzed the mechanism of recognition and interaction of the yeast ORC with various elements of a yeast origin of DNA replication, the autonomously replicating sequence 1 (ARS1). ORC bound all four individual A and B elements of ARS1 with reasonably high affinities. However, the highest affinity binding was observed with a DNA sequence containing both the A and B1 elements. In addition, ATP and ADP significantly modulated the binding of ORC to the combined elements as well as modulating the binding of ORC to the element A alone or in combination with the B1 element. However, binding of ORC to individual B1, B2, and B3 elements was not responsive to nucleotides. Thus, the consensus ARS sequence in element A appeared to play a pivotal role in the ATP-dependent binding of ORC to ARS1 and likely in other ARSs or origins of DNA replication.  相似文献   

8.
A yeast autonomously replicating sequence, ARS305, shares essential components with a chromosome III replicator, ORI305. Known components include an ARS consensus sequence (ACS) element, presumed to bind the origin recognition complex (ORC), and a broad 3'-flanking sequence which contains a DNA unwinding element. Here linker substitution mutagenesis of ARS305 and analysis of plasmid mitotic stability identified three short sequence elements within the broad 3'-flanking sequence. The major functional element resides directly 3' of the ACS and the two remaining elements reside further downstream, all within non-conserved ARS sequences. To determine the contribution of the elements to replication origin function in the chromosome, selected linker mutations were transplaced into the ORI305 locus and two-dimensional gel electrophoresis was used to analyze replication bubble formation and fork directions. Mutation of the major functional element identified in the plasmid mitotic stability assay inactivated replication origin function in the chromosome. Mutation of each of the two remaining elements diminished both plasmid ARS and chromosomal origin activities to similar levels. Thus multiple DNA elements identified in the plasmid ARS are determinants of replication origin function in the natural context of the chromosome. Comparison with two other genetically defined chromosomal replicators reveals a conservation of functional elements known to bind ORC, but no two replicators are identical in the arrangement of elements downstream of ORC binding elements or in the extent of functional sequences adjacent to the ACS.  相似文献   

9.
10.
Silencers, silencing, and heritable transcriptional states.   总被引:46,自引:1,他引:45       下载免费PDF全文
  相似文献   

11.
T Tanaka  K Nasmyth 《The EMBO journal》1998,17(17):5182-5191
Eukaryotic cells use multiple replication origins to replicate their large genomes. Some origins fire early during S phase whereas others fire late. In Saccharomyces cerevisiae, initiator sequences (ARSs) are bound by the origin recognition complex (ORC). Cdc6p synthesized at the end of mitosis joins ORC and facilitates recruitment of Mcm proteins, which renders origins competent to fire. However, origins fire only upon the subsequent activation of S phase cyclin-dependent kinases (S-CDKs) and Dbf4/Cdc7 at the G1/S boundary. We have used a chromatin immunoprecipitation assay to measure the association with ARS sequences of DNA primase and the single-stranded DNA binding replication protein A (RPA) when fork movement is inhibited by hydroxyurea (HU). RPA's association with origins requires S-CDKs, Dbf4/Cdc7 kinase and an Mcm protein. The recruitment of DNA primase depends on RPA. Furthermore, early- and late-firing origins differ not in the timing of their recruitment of an Mcm protein, but in the timing of RPA's recruitment. RPA is recruited to early but not to late origins in HU. We also show that Rad53 kinase is required to prevent RPA association with a late origin in HU. Our data suggest that the origin unwinding accompanied by RPA association is a key step, regulated by S-CDKs, Dbf4/Cdc7 and Rad53p. Thus, in the presence of active S-CDKs and Dbf4/Cdc7, Mcms may open origins and thereby facilitate the loading of RPA.  相似文献   

12.
Minichromosome maintenance protein 1 (Mcm1) is required for efficient replication of autonomously replicating sequence (ARS)-containing plasmids in yeast cells. Reduced DNA binding activity in the Mcm1-1 mutant protein (P97L) results in selective initiation of a subset of replication origins and causes instability of ARS-containing plasmids. This plasmid instability in the mcm1-1 mutant can be overcome for a subset of ARSs by the inclusion of flanking sequences. Previous work showed that Mcm1 binds sequences flanking the minimal functional domains of ARSs. Here, we dissected two conserved telomeric X ARSs, ARS120 (XARS6L) and ARS131a (XARS7R), that replicate with different efficiencies in the mcm1-1 mutant. We found that additional Mcm1 binding sites in the C domain of ARS120 that are missing in ARS131a are responsible for efficient replication of ARS120 in the mcm1-1 mutant. Mutating a conserved Mcm1 binding site in the C domain diminished replication efficiency in ARS120 in wild-type cells, and increasing the number of Mcm1 binding sites stimulated replication efficiency. Our results suggest that threshold occupancy of Mcm1 in the C domain of telomeric ARSs is required for efficient initiation. We propose that origin usage in Saccharomyces cerevisiae may be regulated by the occupancy of Mcm1 at replication origins.  相似文献   

13.
14.
We have analyzed various autonomously replicating sequences (ARSs) in yeast nuclear extract with ARS-specific synthetic oligonucleotides. The EI oligonucleotide sequence, which is derived from HMRE-ARS, and the F1 oligonucleotide sequence, which is derived from telomeric ARS120, appeared to bind to the same cellular factor with high specificity. In addition, each of these oligonucleotides was a competitive inhibitor of the binding of the other. Binding of the ARS binding factor (ABF) to either of these oligonucleotides was inhibited strongly by plasmids containing ARS1 and telomeric TF1-ARS. DNase I footprinting analyses with yeast nuclear extract showed that EI and F1 oligonucleotides eliminated protection of the binding site of ARS binding factor I (ABFI) in domain B of ARS1. Sequence analyses of various telomeric (ARS120 and TF1-ARS) and nontelomeric ARSs (ARS1 and HMRE-ARS) showed the presence of consensus ABFI binding sites in the protein binding domains of all of these ARSs. Consequently, the ABFI and ABFI-like factors bind to these domain B-like sequences in a wide spectrum of ARSs, both telomeric and nontelomeric.  相似文献   

15.
We have developed a genomic footprinting protocol which allows us to examine protein-DNA interactions at single copy chromosomal origins of DNA replication in the budding yeast Saccharomyces cerevisiae. We show that active replication origins oscillate between two chromatin states during the cell cycle: an origin recognition complex (ORC)-dependent post-replicative state and a Cdc6p-dependent pre-replicative state. Furthermore, we show that both post- and pre-replicative complexes can form efficiently on closely apposed replicators. Surprisingly, ARS301 which is active as an origin on plasmids but not in its normal chromosomal location, forms ORC- and Cdc6p-dependent complexes in both its active and inactive contexts. Thus, although ORC and Cdc6p are essential for initiation, their binding is not sufficient to dictate origin use.  相似文献   

16.
Silencing at the cryptic mating-type loci HML and HMR of Saccharomyces cerevisiae requires regulatory sites called silencers. Mutations in the Rap1 and Abf1 binding sites of the HMR-E silencer (HMRa-e**) cause the silencer to be nonfunctional, and hence, cause derepression of HMR. Here, we have isolated and characterized mutations in SAS2 as second-site suppressors of the silencing defect of HMRa-e**. Silencing conferred by the removal of SAS2 (sas2Δ) depended upon the integrity of the ARS consensus sequence of the HMR-E silencer, thus arguing for an involvement of the origin recognition complex (ORC). Restoration of silencing by sas2Δ required ORC2 and ORC5, but not SIR1 or RAP1. Furthermore, sas2Δ suppressed the temperature sensitivity, but not the silencing defect of orc2-1 and orc5-1. Moreover, sas2Δ had opposing effects on silencing of HML and HMR. The putative Sas2 protein bears similarities to known protein acetyltransferases. Several models for the role of Sas2 in silencing are discussed.  相似文献   

17.
Replication origins in Saccharomyces cerevisiae are spaced at intervals of approximately 40 kb. However, both measurements of replication fork rate and studies of hypomorphic alleles of genes encoding replication initiation proteins suggest the question of whether replication origins are more closely spaced than should be required. We approached this question by systematically deleting replicators from chromosome III. The first significant increase in loss rate detected for the 315-kb full-length chromosome occurred only after all five efficient chromosomal replicators in the left two-thirds of the chromosome (ARS305, ARS306, ARS307, ARS309, and ARS310) had been deleted. The removal of the inefficient replicator ARS308 from this originless region caused little or no additional increase in loss rate. Chromosome fragmentations that removed the normally inactive replicators on the left end of the chromosome or the replicators distal to ARS310 on the right arm showed that both groups of replicators contribute significantly to the maintenance of the originless chromosome. Surprisingly, a 142-kb derivative of chromosome III, lacking all sequences that function as autonomously replicating sequence elements in plasmids, replicated and segregated properly 97% of the time. Both the replication initiation protein ORC and telomeres or a linear topology were required for the maintenance of chromosome fragments lacking replicators.  相似文献   

18.
In many organisms, the replication of DNA requires the binding of a protein called the initiator to DNA sites referred to as origins of replication. Analyses of multiple initiator proteins bound to their cognate origins have provided important insights into the mechanism by which DNA replication is initiated. To extend this level of analysis to the study of eukaryotic chromosomal replication, we have investigated the architecture of the Saccharomyces cerevisiae origin recognition complex (ORC) bound to yeast origins of replication. Determination of DNA residues important for ORC-origin association indicated that ORC interacts preferentially with one strand of the ARS1 origin of replication. DNA binding assays using ORC complexes lacking one of the six subunits demonstrated that the DNA binding domain of ORC requires the coordinate action of five of the six ORC subunits. Protein-DNA cross-linking studies suggested that recognition of origin sequences is mediated primarily by two different groups of ORC subunits that make sequence-specific contacts with two distinct regions of the DNA. Implications of these findings for ORC function and the mechanism of initiation of eukaryotic DNA replication are discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号