首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the Cucurbitaceae family display a range of sexual phenotypes including various combinations of male, female, or bisexual flowers. Ethylene appears to be a key hormone regulating the sex determination process. Application of ethylene, or inhibition of ethylene action, increases or decreases the number of pistil-bearing buds, respectively. Elevated levels of ethylene production and expression of genes for ethylene biosynthesis, have been correlated with pistillate flower production. In this study, we sought to determine the effect of modified endogenous ethylene production on sex expression by constitutively expressing ACS (1-aminocyclopropane-1-carboxylate synthase), the first committed enzyme for ethylene biosynthesis, in transgenic melons (Cucumis melo L.). Most melon genotypes are andromonoecious, where an initial phase of male flowers is followed by a mixture of bisexual and male flowers. ACS melon plants showed increased ethylene production by leaves and flower buds, and increased femaleness as measured by earlier and increased number of bisexual buds. ACS melons also had earlier and increased number of bisexual buds that matured to anthesis, suggesting that ethylene is important not only for sex determination, but also for development of the bisexual bud to maturity. Field studies showed that ACS melons had earlier mature bisexual flowers, earlier fruit set, and increased number of fruit set on closely spaced nodes on the main stem. These results provide a direct demonstration of the importance of endogenous ethylene production for female reproductive processes in melon.  相似文献   

2.
Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon   总被引:14,自引:0,他引:14  
Three different types of molecular markers, RAPD, AFLP and RFLP were used to measure genetic diversity among six genotypes of Cucumis melo L. Each line represented a different melon genotype: Piel de Sapo, Ogen, PI161375, PI414723, Agrestis and C105. A number of polymorphic RAPD, AFLP and RFLP bands were scored on all materials and the genetic similarity measured. Clustering analysis performed with the three types of markers separated the genotypes into two main groups: (1) the sweet type, cultivated melons and (2) the exotic type, not cultivated melons. While the data obtained suggest that all three types of markers are equally informative, AFLPs showed the highest efficiency in detecting polymorphism. Received: 30 December 1999 / Accepted: 24 January 2000  相似文献   

3.
Among Cucurbitaceae, Cucumis melo is one of the most important cultivated cucurbits. They are grown primarily for their fruit, which generally have a sweet aromatic flavor, with great diversity and size (50 g to 15 kg), flesh color (orange, green, white, and pink), rind color (green, yellow, white, orange, red, and gray), form (round, flat, and elongated), and dimension (4 to 200 cm). C. melo can be broken down into seven distinct types based on the previously discussed variations in the species. The melon fruits can be either climacteric or nonclimacteric, and as such, fruit can adhere to the stem or have an abscission layer where they will fall from the plant naturally at maturity. Traditional plant breeding of melons has been done for 100 years wherein plants were primarily developed as open-pollinated cultivars. More recently, in the past 30 years, melon improvement has been done by more traditional hybridization techniques. An improvement in germplasm is relatively slow and is limited by a restricted gene pool. Strong sexual incompatibility at the interspecific and intergeneric levels has restricted rapid development of new cultivars with high levels of disease resistance, insect resistance, flavor, and sweetness. In order to increase the rate and diversity of new traits in melon it would be advantageous to introduce new genes needed to enhance both melon productivity and melon fruit quality. This requires plant tissue and plant transformation techniques to introduce new or foreign genes into C. melo germplasm. In order to achieve a successful commercial application from biotechnology, a competent plant regeneration system of in vitro cultures for melon is required. More than 40 in vitro melon regeneration programs have been reported; however, regeneration of the various melon types has been highly variable and in some cases impossible. The reasons for this are still unknown, but this plays a heavy negative role on trying to use plant transformation technology to improve melon germplasm. In vitro manipulation of melon is difficult; genotypic responses to the culture method (i.e., organogenesis, somatic embryogenesis, etc.) as well as conditions for environmental and hormonal requirements for plant growth and regeneration continue to be poorly understood for developing simple in vitro procedures to culture and transform all C. melo genotypes. In many cases, this has to be done on an individual line basis. The present paper describes the various research findings related to successful approaches to plant regeneration and transgenic transformation of C. melo. It also describes potential improvement of melon to improve fruit quality characteristics and postharvest handling. Despite more than 140 transgenic melon field trials in the United States in 1996, there are still no commercial transgenic melon cultivars on the market. This may be a combination of technical or performance factors, intellectual property rights concerns, and, most likely, a lack of public acceptance. Regardless, the future for improvement of melon germplasm is bright when considering the knowledge base for both techniques and gene pools potentially useable for melon improvement.  相似文献   

4.
Fusarium wilt, caused by Fusarium oxysporum Schlecht f. sp. melonis Snyder & Hans, is a worldwide soil-borne disease of melon (Cucumis melo L.). Resistance to races 0 and 1 of Fusarium wilt is conditioned by the dominant gene Fom-2. To facilitate marker-assisted backcrossing with selection for Fusarium wilt resistance, we developed cleaved amplified polymorphic sequences (CAPS) and restriction fragment length polymorphisms (RFLP) markers by converting RAPD markers E07 (a 1.25-kb band) and G17 (a 1.05-kb band), respectively. The RAPD-PCR polymorphic fragments from the susceptible line ’Vedrantais’ were cloned and sequenced in order to construct primers that would amplify only the target fragment. The derived primers, E07SCAR-1/E07SCAR-2 from E07 and G17SCAR-1/G17SCAR-2 from G17, yielded a single 1.25-kb fragment (designated SCE07) and a 1.05-kb fragment (designated SCG17) (the same as RAPD markers E07 and G17), respectively, from both resistant and susceptible melon lines, thus demonstrating locus-specific associated primers. Potential CAPS markers were first revealed by comparing sequence data between fragments amplified from resistant (PI 161375) and susceptible (’Vedrantais’) lines and were then confirmed by electrophoresis of restriction endonuclease digestion products. Twelve restriction endonucleases were evaluated for their potential use as CAPS markers within the SCE07 fragment. Three (BclI, MspI, and BssSI) yielded ideal CAPS markers and were subsequently subjected to extensive testing using an additional 88 diverse melon cultigens, 93 and 119 F2 individuals from crosses of ’Vedrantais’ x PI 161375 and ’Ananas Yokneam’×MR-1 respectively, and 17 families from a backcross BC1S1 population derived from the breeding line ’MD8654’ as a resistance source. BclI- and MspI-CAPS are susceptible-linked markers, whereas the BssSI-CAPS is a resistant-linked marker. The CAPS markers that resulted from double digestion by BclI and BssSI are co-dominant. Results from BclI- and MspI-CAPS showed over 90% accuracy in the melon cultigens, and nearly 100% accuracy in the F2 individuals and BC1S1 families tested. This is the first report of PCR-based CAPS markers linked to resistance/susceptibility for Fusarium wilt in melon. The RFLP markers resulting from probing with a clone-derived 1.05-kb SCG17 PCR fragment showed 85% correct matches to the disease phenotype. Both the CAPS and RFLP markers were co-dominant, easier to score, and more accurate and consistent in predicting the melon phenotype than the RAPD markers from which they were derived. Received: 28 July 1998 / Accepted: 7 December 1998  相似文献   

5.
Buffered solutions are used commonly to introduce chemical inhibitors and promoters of ethylene synthesis into plant tissues. Vacuum infiltration of preclimacteric muskmelon (Cucumis melo L.) fruit tissue with a buffer (50 mM MES, pH 6.1) immediately after excision inhibited the wound-induced increase in ethylene production, but it did not suppress the accumulation of 1-aminocyclopropane-l-carboxylic acid (ACC) during the 48 h following injury. The inhibition of ethylene production by infiltration was not reversed by treatment with ACC. If the injured tissue was allowed to age for 3 h before treatment, wound-induced ethylene production in tissue samples was not inhibited by vacuum infiltration with aqueous buffer. The results indicate that infiltration of melon fruit tissue with a liquid medium does not block the development of wound-induced ethylene production by either limiting ACC or inhibiting the ongoing conversion of ACC to ethylene. Liquid infiltration of the tissue appears to interfere with the initiation of physiological events during the first 3 h after wounding that are critical for the subsequent conversion of ACC to ethylene.  相似文献   

6.
There are three types of ethylene production and respiration during the postharvest storage of melon fruits: 1. with climacteric rise in both respiration and ethylene production; 2 with climacteric rise in ethylene production but respiration declined gradually; 3 with no appreciable change in both respiration and ethylene production. The last one has good storage quality.  相似文献   

7.
The effect of salinity (100 mM NaCl) on ethylene metabolism in the early phase of vegetative development of several plant species has been investigated. The effects of saline treatment on shoot and root growth, ranged in sensitivity with respect to species: pepper (Capsicum annum L. cv Pairal) > tomato (Lycopersicon esculentum Mill. cv Malpica) > broccoli (Brassica oleraceae L. var. Italica Plenk. cv Marathon F1) ≅ lettuce (Lactuca sativa var. longifolia Lam. cv Inverna) ≅ melon (Cucumis melo L. cv Ruano F1, Roche type) > bean (Phaseolus vulgaris L. cv. Gator Green 15) ≅ spinach (Spinacia oleracea L. cv Boeing) > beetroot (Beta vulgaris L. var. crassa (Alef.) J. Helm. cv Detroit). After saline treatment, ethylene production increased 4.2-fold in pepper shoots. Significant increases were also found in shoots of tomato, broccoli and bean. In contrast, salinity decreased shoot ethylene production rate in melon, spinach, and beetroot. In roots, the general effect of salinity was a decrease in ethylene production, especially in broccoli and bean, except in tomato root, in which a sharp increase in ethylene production occurred. In general, saline treatment increased total ACC concentration in both shoot and root in most of the plant species examined, which was related to plant sensitivity to salinity. For example, pepper shoot was the most sensitive to saline treatment, showing the highest fresh weight inhibition and the highest increase in total ACC concentration (8.5-fold), while, beetroot was less affected by salinity and showed no effect on total ACC concentration in response to saline treatment.  相似文献   

8.
In melon, the Fom-1 gene confers monogenic resistance against the soil-borne fungus Fusarium oxysporum f. sp. melonis, races 0 and 2, while the closely linked Prv gene specifies resistance against the papaya ring spot virus. Markers linked to these resistance (R) genes were identified using two recombinant inbred line populations, derived from crosses between Cucumis melo Védrantais and C. melo PI 161375, and between C. melo Védrantais and C. melo PI 414723, respectively. Using bulked segregant analysis, as well as systematic scoring of the mapping populations, we developed two amplified fragment length polymorphism markers, two random amplified polymorphic DNA markers and five restriction fragment length polymorphism (RFLP) markers linked to this locus. Four of the RFLP sequences bear homology to nucleotide-binding site–leucine-rich repeat R genes, indicating the presence of a significant R-gene cluster in this locus. Our study provides the most closely linked markers published so far for these important traits. It also improves the resolution of the whole linkage group IX, which was difficult to order in our previous studies. Two of the markers were converted to cleaved amplified polymorphic sequence markers to facilitate their application in marker-assisted selection. Testing these two markers in several melon lines revealed different marker haplotypes in the melon germplasm and supported multiple, independent origin of the Fusarium races 0 and 2 resistance trait.  相似文献   

9.
The present study investigated the potential of benzo-thiadiazole-7-carbothioic acid S -methyl ester (BTH) to protect postharvest melons var. 'Orange Flesh' from the fruit rot caused by Fusarium pallidoroseum . It was noticed that melon fruits immersed in BTH and postinoculated with the fungus presented the same pattern of disease incidence/severity and activity of the defence-related enzymes superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, phenylalanine ammonia-lyase, and β-1,3-glucanase of controls, indicating that BTH was ineffective in protecting melons from the fruit rot disease. However, the preflowering application of BTH in melon seedlings induced stunted growth, probably related to enhanced lignification which is related to the plant cell wall reinforcement and increase of resistance against invading pathogens, and alterations of the activity of the studied defence-related enzymes in comparison with controls, suggesting that this strategy could probably be effective for the control of the postharvest rot of melon fruits through activation of systemic resistance.  相似文献   

10.

Purpose of work  

Melons have short shelf-lives due to fruit ripening caused by ethylene production. The 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene is essential for ethylene biosynthesis. As fruit ripening in other fruit crops can be deterred by down-regulation of ACC oxidase expression, we have carried out similar work to improve fruit quality and shelf-life of the melon Cucumis melo.  相似文献   

11.
Alcohol dehydrogenases (ADH) participate in the biosynthetic pathway of aroma volatiles in fruit by interconverting aldehydes to alcohols and providing substrates for the formation of esters. Two highly divergent ADH genes (15% identity at the amino acid level) of Cantaloupe Charentais melon (Cucumis melo var. Cantalupensis) have been isolated. Cm-ADH1 belongs to the medium-chain zinc-binding type of ADHs and is highly similar to all ADH genes expressed in fruit isolated so far. Cm-ADH2 belongs to the short-chain type of ADHs. The two encoded proteins are enzymatically active upon expression in yeast. Cm-ADH1 has strong preference for NAPDH as a co-factor, whereas Cm-ADH2 preferentially uses NADH. Both Cm-ADH proteins are much more active as reductases with K ms 10–20 times lower for the conversion of aldehydes to alcohols than for the dehydrogenation of alcohols to aldehydes. They both show strong preference for aliphatic aldehydes but Cm-ADH1 is capable of reducing branched aldehydes such as 3-methylbutyraldehyde, whereas Cm-ADH2 cannot. Both Cm-ADH genes are expressed specifically in fruit and up-regulated during ripening. Gene expression as well as total ADH activity are strongly inhibited in antisense ACC oxidase melons and in melon fruit treated with the ethylene antagonist 1-methylcyclopropene (1-MCP), indicating a positive regulation by ethylene. These data suggest that each of the Cm-ADH protein plays a specific role in the regulation of aroma biosynthesis in melon fruit. Daniel Manríquez and Islam El-Sharkawy contributed equally to the work. Accession numbers for Cm-ADH1 (ABC02081), and Cm-ADH2 (ABC02082).  相似文献   

12.
In most plants, sucrose is the primary product of photosynthesis, the transport form of assimilated carbon, and also one of the main factors determining sweetness in fresh fruits. Traditional methods for sugar quantification (mainly sucrose, glucose and fructose) require obtaining crude plant extracts, which sometimes involve substantial sample manipulation, making the process time-consuming and increasing the risk of sample degradation. Here, we describe and validate a fast method to determine sugar content in intact plant tissue by using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR). The HR-MAS NMR method was used for quantifying sucrose, glucose and fructose in mesocarp tissues from melon fruits (Cucumis melo var. reticulatus and Cucumis melo var. cantalupensis). The resulting sugar content varied among individual melons, ranging from 1.4 to 7.3 g of sucrose, 0.4–2.5 g of glucose; and 0.73–2.83 g of fructose (values per 100 g fw). These values were in agreement with those described in the literature for melon fruit tissue, and no significant differences were found when comparing them with those obtained using the traditional, enzymatic procedure, on melon tissue extracts. The HR-MAS NMR method offers a fast (usually <30 min) and sensitive method for sugar quantification in intact plant tissues, it requires a small amount of tissue (typically 50 mg fw) and avoids the interferences and risks associated with obtaining plant extracts. Furthermore, this method might also allow the quantification of additional metabolites detectable in the plant tissue NMR spectrum.  相似文献   

13.
Medieval History of the Duda’im Melon ( Cucumis melo , Cucurbitaceae). Melons, Cucumis melo, are a highly polymorphic species for fruit characteristics. The melons that are the most valued are the ones that turn sweet when ripe, including the muskmelons, cantaloupes, and casabas. Others, including the elongate adzhur, conomon, and snake melons, are consumed when immature, like cucumbers. The duda’im melons, Cucumis melo Duda’im Group, are special, as their small, spherical, thin-fleshed, insipid but beautifully maroon, dark-orange, or brown-and-yellow striped ripe fruits are valued for ornament and especially for their lush fragrance. The distinctive properties of duda’im melons are matched with special names given to them in several languages and geographical areas, which have made possible tracing of the history of these melons to mid-9th century Persia. From that region, duda’im melons diffused westward, likely facilitated by Islamic conquests, reaching North Africa and Andalusia in the 10th century.  相似文献   

14.

Background and Aims

Thousands of floor mosaics were produced in lands across the Roman and Byzantine empires. Some mosaics contain depictions of agricultural produce, potentially providing useful information concerning the contemporary presence and popularity of crop plants in a particular geographical region. Hundreds of floor mosaics produced in Israel during the Byzantine period have survived. The objective of the present work was to search these mosaics for Cucurbitaceae in order to obtain a more complete picture of cucurbit crop history in the eastern Mediterranean region.

Results and Conclusions

Twenty-three mosaics dating from 350–600 ce were found that had images positively identifiable as cucurbits. The morphological diversity of the cucurbit fruits in the mosaics of Israel is greater than that appearing in mosaics from any other Roman or Byzantine provincial area. The depicted fruits vary in shape from oblate to extremely long, and some are furrowed, others are striped and others lack definite markings. The cucurbit taxa depicted in the mosaics are Cucumis melo (melon), Citrullus lanatus (watermelon), Luffa aegyptiaca (sponge gourd) and Lagenaria siceraria (bottle gourd). Cucumis melo is the most frequently found taxon in the mosaics and is represented by round dessert melons and long snake melons. Fruits of at least two cultivars of snake melons and of watermelons are represented. To our knowledge, images of sponge gourds have not been found in Roman and Byzantine mosaics elsewhere. Indeed, the mosaics of Israel contain what are probably the oldest depictions of Luffa aegyptiaca in Mediterranean lands. Sponge gourds are depicted often, in 11 of the mosaics at eight localities, and the images include both mature fruits, which are useful for cleaning and washing, and immature fruits, which are edible. Only one mosaic has images positively identifiable as of bottle gourds, and these were round–pyriform and probably used as vessels.  相似文献   

15.
The production of ethylene by melon (Cucumis melo cv Cantaloup charentais) tissues is stimulated during incubation in the presence of fungal glycopeptides extracted from Colletotrichum lagenarium, a pathogen of melon. These glycopeptides, called elicitors of ethylene, are found in the mycelium, the cell wall, and the culture filtrate. Elicitation of ethylene is a relatively early phenomenon and lasts for several hours. Upon purification of the crude elicitor extract by gel filtration and ion exchange chromatography, three elicitors were isolated. The three elicitors contained amino acid, sugar, and phosphate residues, and they have a decreased activity after partial chemical degradation of their sugar moiety.

Elicitation of ethylene is not fungal species specific. Elicitors of phytoalexins, obtained from three Phytophtora species, enhanced ethylene biosynthesis in melon tissues.

  相似文献   

16.
Zucchini yellow mosaic virus (ZYMV) routinely causes significant losses in cucumber (Cucumis sativus L.) and melon (Cucumis melo L.). ZYMV resistances from the cucumber population TMG1 and the melon plant introduction (PI) 414723 show different modes of inheritance and their genetic relationships are unknown. We used molecular markers tightly linked to ZYMV resistances from cucumber and melon for comparative mapping. A 5-kb genomic region (YCZ-5) cosegregating with the zym locus of cucumber was cloned and sequenced to reveal single nucleotide polymorphisms and indels distinguishing alleles from ZYMV-resistant (TMG1) and susceptible (Straight 8) cucumbers. A low-copy region of the YCZ-5 clone was hybridized to bacterial artificial chromosome (BAC) clones of melon and a 180-kb contig assembled. One end of this melon contig was mapped in cucumber and cosegregated with ZYMV resistance, demonstrating that physically linked regions in melon show genetic linkage in cucumber. However the YCZ-5 region segregated independently of ZYMV resistance loci in two melon families. These results establish that these sources of ZYMV resistances from cucumber TMG1 and melon PI414723 are likely non-syntenic.  相似文献   

17.
The fungal species Monosporascus cannonballus and M. eutypoides have been described as the causal agents of Monosporascus root rot and vine decline disease (MRRVD), which mainly affects melon and watermelon crops. Resistance to M. cannonballus has been reported in some melon cultivars (ssp. melo). Moreover, melon ssp. agrestis accessions have proven to be better resistance sources. This is the case of the Korean accession ‘Pat 81’, highly resistant under field and artificial inoculation. The objective of the work here presented was the evaluation of the resistance to MRRVD of different accessions representing the variability of Cucumis melo ssp. agrestis, against both, M. cannonballus and M. eutypoides, in a multiyear assay under different infection conditions. In general, M. eutypoides was less aggressive than M. cannonballus in the different environmental conditions. There was a strong influence of temperature on MRRVD, with more severe symptoms with higher temperatures and with variable effect of infection on plant development depending on the fungal species considered. Resistance to MRRVD has been confirmed in ‘Pat 81’ and in its derived F1 with a susceptible Piel de Sapo melon. Among the new germplasm explored, African accessions (both wild agrestis and exotic cultivated acidulus) showed good performance in artificial inoculation assays and in field conditions. These sources do not present compatibility problems with commercial melons, so they can be introduced in backcrossing programs. The accession assayed of the wild relative Cucumis metuliferus, also resistant to Fusarium wilt and to root-knot nematode, was highly resistant to MRRVD. The interest of this accession mainly relies in its advantages as a rootstock for melon.  相似文献   

18.
We investigated the genetics of ethylene biosynthesis and its linkage to the RFLPs of the ACC oxidase and synthase genes in melon ( Cucumis melo L.). The results suggested that the A(0) and B(0) fragments of RFLP-MEL1 of the ACC oxidase gene were two alleles from a single locus, as were the B and C fragments of RFLP-MEACS1 of the ACC synthase gene. The B(0) allele seemed to be partially dominant over the A(0) allele, whereas B and C alleles appeared to map to quantitative trait loci (QTLs), which most likely contributed to ethylene production. Both RFLPs were linked to ethylene production rates, but they were not linked to each other. The interaction effects of the ACC oxidase and synthase genes on ethylene production were revealed by segregation of RFLP-MEL1 and RFLP-MEACS1. The results of single-copy-reconstruction assays suggested that the ACC oxidase gene is a single copy, whereas the ACC synthase gene is a component of a multigene family in the melon genome. The abscission phenotype appeared to be controlled by an independent locus, with the abscission (full-slip) allele dominant over the non-abscission (not full-slip) allele. These results may facilitate efforts toward mapping the quantitative trait loci (QTLs) of ethylene production. The RFLPs may be used in marker-assisted selection in developing melons with a more-desirable low ethylene production rate for enhancing postharvest storage life.  相似文献   

19.
Ripening of climacteric fruit is accompanied by an increasein respiration and autocatalytic ethylene synthesis. In harvestedmelons, there is variation in the magnitude and duration ofthe respiratory climacteric depending on the cultivar. It hasrecently been reported that, while the ripening-associated increasein ethylene production is present, the respiratory climactericis absent in ripening melon fruit attached to the plant, leadingto the suggestion that climacteric respiration is an artifactof harvest. To address the universality of this phenomenon,ripening behaviour in the melon cultivar Charentais (Cucumismelo cv. Reticulatus F1 Alpha), was investigated and the resultsshow that the respiratory climacteric occurs in fruit ripenedboth on and off the plant. Key words: Cucumis melo, ethylene, respiratory climacteric  相似文献   

20.
对中华猕猴桃果实采后进行钙处理,结果表明,适当提高果实钙含量,可以抑制过氧化物酶(POD)活性,降低呼吸率及乙烯生成量,延缓果实衰老。本实验以2%CaCl2处理效果最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号