首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary production studies in two linked but contrasting Welsh lakes   总被引:1,自引:0,他引:1  
SUMMARY. Llyn Padarn and Llyn Peris have distinct phytoplankton populations. During 1975–76, the standing crop measured as chlorophyll- a was 5.5 times greater in Padarn than in Peris and the production rate, determined by the 14CO2 method, was faster by 3.4 times. These differences were attributed to the higher concentrations of phosphorus in the lower lake caused by treated sewage effluent. Incident light intensity, which was slightly lower in Peris due to mountain shading, and temperature, which was 1–4°C higher in Padarn, made little significant contribution to these differences during the summer. The reduced transparency of Padarn water, compared with that of Peris, resulted from denser phytopiankton crops in Padarn. During the summer, Padarn exhibited carbon dioxide depletion which correlated with the chlorophyll concentration. Light inhibition at the surfaces of both lakes correlated with solar radiation intensity. However, the relationship between pigment content and maximum photosynthetic rate was poor. Extracellular products accounted for about 16% of the total production in the lakes. Uptake of 14C-labelled acetate was low compared with that of 14CO2 uptake.  相似文献   

2.
The effect of carbon dioxide (100%), nitrogen (100%), carbon dioxide/oxygen (20% : 80%) or vacuum pack at 3 and 10°C was studied on the microbial flora, in skinless poultry breast fillets or thigh meat. Lactic acid bacteria and Brochothrix thermosphacta were the predominant organisms in samples stored in vacuum packs, carbon dioxide and nitrogen. Pseudomonads grew only in oxygen/carbon dioxide packaging systems. The concentration of lactate diminished in both thigh and breast meat during storage at 3 and 10°C. This decrease was more pronounced in thigh meat stored under 20% : 80% carbon dioxide/oxygen. Acetate increased to varying degrees in all samples regardless of the storage conditions.  相似文献   

3.
SUMMARY. Respiration of Asellus aquaticus was determined on tiine occasions throughout the year using a Gilson differential respirometer. On each occasion the determination was made at the lake temperature, which ranged from 2 to 18°C, Linear regressions were derived for log oxygen uptake against log dry weight. There was a significant difference between mean rates of oxygen uptake at the various temperatures but the slopes of the regression lines, which varied from 0,62 to O.85 with a mean of 0,76, were not significantly different.
The temperature of the lake was monitored throughout the year. Using the relationship of oxygen uptake against temperature, and estimates of population density obtained previously, the total annual respiration of the population was calculated as 4571 ml O2 m-2, equivalent to an energy loss of 92.3 kj m-2 year-1 from a mean biomassof 752 mg m-2.
Consumption of decayed Alnus glutinosa leaves and faecal production rates, and thus assimilation efficiency, were determined by gravimetric methods in the laboratory at 10°C, close to the mean temperature of the lake (10.rC), In the four size classes investigated, larger animals consumed more food per individual, but less on a weight specific basis. However, it was shown that consumption was greater if the leaf material was more highly decomposed, Assimiliation efficiency was calculated as 23%.
Using data for respiration, population density and the assimilation efficiency, the annual population energy budget was estimated as (kJ m-2year-1): consumption, 568.9 (100%); production, 38.5 (6.8%); respiration, 92.3 (16.2%); faeces, 438.1 (77%). The significance of these energy values, and the ecological efficiencies calculated from them, are discussed in relation to other published work.  相似文献   

4.
Oxygen uptake rates and yolk-inclusive dry weiGhts were measured during the egg and yolk-sac larval stages of milkfish, Chanos chanos (Forsskal). Oxygen uptake by eggs and yolk-sac larvae was measured to assess the effects of four salinities (20,25,30,35 ppt) at 28°C. The effects of three temperatures (23,28,33°C) on oxygen uptake by yolk-sac larvae were determined at a salinity of 35 ppt. Dry weights were measured throughout embryonic development at 28°C and the yolk-sac stage at 23.28 and 33°C.
Oxygen uptake rates of eggs increased more than fivefold during embryogenesis (0.07±0.03 to 0.40 ± 03 μl O2 egg −1 h −1;blastula to prehatch stage). Larval oxygen uptake did not change with age but was affected by rearing temperature (0.33 ± 0.08, 0.44 ± 0.07 and 0.63 ± 0.13 μl O2 larva −1 h−1 at 23, 28 and 33°C, respectively; Q10= 1.93). Acute temperature changes from 28 to 33°C caused significant increases in oxygen uptake by embryos (Q 10= 1.69–3.58) and yolk-sac larvae (Q 10=2.55). Salinity did not affect metabolic rates.
Dry weight of eggs incubated at 28°C decreased 13% from fertilization to hatching. Incubation temperatures from 23–33°C did not affect dry weights at hatching. Rearing temperatures significantly affected the rate of larval yolk absorption (Q 10= 2.25).  相似文献   

5.
The timing of spawning of perch was examined in four acidified lakes (pH 4.4–4.8) and in one circum-neutral lake (pH 6.3) in southern Finland in spring 1987. In three of the lakes, perch started to spawn soon after the ice melt (4–14 degree days > 5° C) and had spawned by the end of May at about 100 degree days > 5° C. In the two most acidified lakes, fish started to spawn later, at 35 and 60 degree days > 5° C, and had spawned in early June, at about 200 degree days > 5° C. The maturing of gonad products was delayed in both males and females.  相似文献   

6.
Holocene carbon burial by lakes in SW Greenland   总被引:3,自引:0,他引:3  
The role of the Arctic in future global change processes is predicted to be important because of the large carbon (C) stocks contained in frozen soils and peatlands. Lakes are an important component of arctic landscapes although their role in storing C is not well prescribed. The area around Kangerlussuaq, SW Greenland (66–68°N, 49–54°W) has extremely high lake density, with ∼20 000 lakes that cover about 14% of the land area. C accumulation rates and standing stock (kg C m−2), representing late- to mid-Holocene C burial, were calculated from AMS 14C-dated sediment cores from 11 lakes. Lake ages range from ∼10 000 cal yr  bp to ∼5400 cal yr  bp , and reflect the withdrawal of the ice sheet from west to east. Total standing stock of C accumulated in the studied lakes for the last ∼8000 years ranged from 28 to 71 kg C m−2, (mean: ∼42 kg C m−2). These standing stock determinations yield organic C accumulation rates of 3.5–11.5 g C m−2 yr−1 (mean: ∼6 g C m−2 yr−1) for the last 4500 years. Mean C accumulation rates are not different for the periods 8–4.5 and 4.5–0 ka, despite cooling trends associated with the neoglacial period after 4.5 ka. We used the mean C standing stock to estimate the total C pool in small lakes (<100 ha) of the Kangerlussuaq region to be ∼4.9 × 1013 g C. This C stock is about half of that estimated for the soil pool in this region (but in 5% of the land area) and indicates the importance of incorporating lakes into models of regional C balance at high latitudes.  相似文献   

7.
We tested the hypotheses that relative activity of the less efficient alternative oxidase (AOX) path changes with diurnal temperature changes, and thus changes carbon use efficiency with temperature. The activities of the alternative and cytochrome oxidase (COX) paths in plant tissues of three species were determined by measuring 18O/16O discrimination and total respiration from 17 to 36 °C. A new, more accurate method for calculating oxygen uptake rate from the mass spectrometry data was developed. Total carbon use efficiency was calculated from the ratio of respiratory heat and CO2 rates measured from 10 to 35 °C. Oxygen isotope discrimination (22.9 ± 0.4‰) and AOX participation were invariant with temperature in leaf tissue of Cucurbita pepo , Nicotiana sativa and Vicia faba , thus falsifying the first part of the hypothesis. Stress responses of respiration at the temperature extremes limited the range for which carbon use efficiency could be accurately measured to 15–30 °C in N. sativa , to 10–25 °C in C. pepo and to 20–30 °C in V. faba . Carbon-use efficiency was invariant at these temperatures in these species, demonstrating that changes in other pathways that would vary carbon-use efficiency were also invariant with temperature.  相似文献   

8.
SUMMARY. Mature larvae of Ecdyonurus dispar were collected from Ennerdale Water and Windermere (English Lake District) and reared to adult males and females in the laboratory. The females were then fertilized artificially and their progeny were kept at constant temperatures (range 4.2–20.2°C). Larvae collected directly from the two lakes were also reared under the same conditions.
The maximum number of instars from egg to subimago was 25, the average body length increment (mm) per moult was proportionately constant at c . 15% and Dyar's rule was applicable. The interval between moults decreased with increasing temperature and the relationship between the two variables within the temperature range 4.2–19.8°C was described by a power law. Larval growth was exponential and variations in mean specific growth rate (range 0.23–5.23% length day−1) were related to mean temperature which was the major factor affecting growth in the laboratory. A few experiments were also performed in the lake to test the adequacy of the estimated values for larval growth at different temperatures in the laboratory. There was agreement between the estimates and the actual growth rates in the lake. Therefore, the regression equations obtained from the laboratory experiments are probably applicable to larval growth in the field.
Values for daily production in the laboratory ranged from 0.53 to 9.33 mg dry wt day−1 m−2. The lowest value was obtained at 8.9°C and the highest at 20°C.
Information on different life cycles of E. dispar is briefly reviewed and it is concluded that E. dispar from the lakes can only achieve one generation per year.  相似文献   

9.
Seasonal measurements of the oxygen and nitrate uptake by a reed swamp sediment were carried out in a shallow, eutrophic Danish lake, Arreskov Sø. The oxidation of organic carbon in the sediment by aerobic and nitrate respiration was 290 and 188 g C m−2 yr−1 respectively. During winter, nitrate respiration amounted to 94% of the total carbon oxidation, whereas it was zero during summer. On an annual basis nitrate respiration constituted 39% of total respiration. Sediment nitrate uptake was correlated to nitrate concentration. In consequence of this the nitrate uptake rates varied during the year from zero in summer to 55 mg N m−2 d−1 in spring.
Oxygen uptake rates varied from 30 to 250 mg O2 m−2 h−1 during the year, with a maximum uptake in August. The oxygen uptake per year was calculated to 860 g O2 m−2. The oxygen uptake rate was correlated to lake temperature and Kjeldahl nitrogen content of the sediment. The oxygen uptake rate, however, showed no correlation with loss on ignition of the sediment. A Q10-value of 2.2 was found for lake measurements in the temperature interval of 5–15°C. The corresponding O10-value in the laboratory was 2.6. A high microbial biomass indicated by the maximum content of Kjeldahl nitrogen and the lowest ratio of loss on ignition on Kjeldahl nitrogen appeared in late August, when the maximum oxygen uptake occurred. The oxygen uptake rate increased during the time interval from sampling to the start of the experiments.  相似文献   

10.
11.
SUMMARY. 1. Heterotrophic bacterioplankton growth and production rates were estimated in a tropical lake by various methods. Mean growth rates, determined by tritiated thymidine incoporation into DNA, frequency of dividing cells and increase in cell density varied between 0.013 and 0.014 (with a range of 0.006–0.026) h−1 corresponding to bacterial production of 1.16–1.22 (0.34–3.63) mg C m−3 h−1.
2. Heterotrophic bacterial production estimated from oxygen and inorganic carbon consumption in the dark were compared with these values. The oxygen method gave similar results, while values from dark carbon uptake were as much as 2.5 times higher.
3. Although the different estimates of rates of bacterial production showed different patterns, the existence of spatial (vertical) and temporal (diel and seasonal) variation was demonstrated. Bacterial production was 13–41% of the net primary production and 10–30% of gross primary production.
4. Bacterial grazing mortality rate was estimated from size-fractionation and metablic inhibitor experiments. Average grazing rates were between 0.34 and 3.77 mg C m−3 h−1 corresponding to 76–120% of the mean bacterial production rate. Organisms 1–12 μm in size, possibly mainly ciliates. were implicated as important bacterial grazers.  相似文献   

12.
The influence of constant temperatures on the growth, maturation and reproduction of field-collected and F, generation Helobdella stagnalis, Glossiphonia complanata and Erpobdella octoculata was investigated. Leech material from a lowland, productive lake and from an upland, unproductive lake was cultured at each of the temperatures: l·5,5·5,8, 10·5, 13,16, 19 and 23°C. Field-collected and F1 generation H. stagnalis and E. octoculata matured and produced eggs and young over the range 10·5–23°C, whereas the range for egg production was 8–23°C for field-collected G. complanata, F, generation leeches failing to mature at any temperature due to an additional limiting factor being involved.
Optimal temperatures for cocoon/egg production were observed for E. octoculata, but egg production was similar at all temperatures for G. complanata and H. stagnalis. In contrast, the viability of eggs was greater at certain temperatures for the last two species but was similar at all temperatures for E. octoculata. Differences in egg production between field-collected and F, generation leeches are discussed. Rising temperatures accelerated rates of egg hatching, and of growth and maturation of leeches. The observed differences in survival of leeches at the various temperatures are discussed. Ecotypic adaptation to temperature within the small geographical area of Britain may not occur. It is concluded that though temperature may be a contributory factor determining distribution and abundance in British lakes, other causative factors, such as the occurrence and abundance of food organisms, are more likely to be implicated.  相似文献   

13.
L. Arvola 《Ecography》1984,7(4):390-398
Vertical distribution of primary production and phytoplankton was studied in a polyhumic brownwater lake and in an oligo-mesohumic lake. During summer both lakes were thermally, chemically and biologically stratified. In the brownwater lake primary production was restricted to the uppermost layer of 1–1.5 m of epilimnion. In the oligo-mesohumic lake noticeable primary production was detected down to depths of 2–3 m. The ice-free period primary production was about 20% higher in the oligo-mesohumic lake, though occasionally the surface production was 2–3 times higher in the brownwater lake. Epilimnetic total phosphorus and total nitrogen concentrations were higher in the brownwater lake, while nitrate-nitrite, ammonium and phosphate concentrations were very low in both lakes.
Phytoplankton was confined to the uppermost productive layer in the brownwater lake. In the oligo-mesohumic lake phytoplankton was distributed more evenly, though the mean maximum biomass was at the depth of 3–4 m. Below the oxic water layer biomass decreased abruptly in both lakes. In the oligo-mesohumic lake chlorophyll concentration was extremely high (max. 320 mg chl a m−3) in the anoxic hypolimnion, due to green sulphus bacteria.
Flagellated chlorophytes and thrysophytes dominated in the brownwater lake; in spring Chlamydomonas species, followed by Mallomonas caudata . In the oligo-mesohumic lake small coccal green algae, such as Oocystis, Scenedesmus and Westella -like species, dominated in mid-summer, and chrysophytes and cryptomonads in autumn.  相似文献   

14.
The effect of different gaseous atmospheres on the development of the bacterial flora on lamb chops stored at –1°C was examined. The atmospheres were air, nitrogen, hydrogen, and mixtures of air + carbon dioxide, oxygen + nitrogen, oxygen + carbon dioxide, nitrogen + carbon dioxide and hydrogen + carbon dioxide (gas ratio = 80:20, v/v). Storage life of chops ranged from two weeks in air to eight weeks in oxygen-free atmospheres. At the end of storage life Microbacterium thermosphactum was present as a major constituent of the bacterial flora in all atmospheres. In oxygen + carbon dioxide it was the predominant organism. In all other oxygen containing atmospheres, Pseudomonas spp. made up a large proportion of the flora. Strains of Enterobacteriaceae occurred in low-oxygen and oxygen-free atmospheres, and Lactobacillus spp. occurred in oxygen-free atmospheres.  相似文献   

15.
1. The specific respiration rate of 13 chironomid taxa and Chaoborus were measured to test the hypothesis of the relation between a species' ability to regulate their oxygen uptake and their distributional patterns among nine study lakes in British Columbia, Canada.
2. Respiration patterns of individual taxa were modelled using piecewise linear regression with break point and simple hyperbolic functions. Three types of respiration curves were identified: (i) classical oxy-conformers (e.g. littoral Cricotopus ) which cannot sustain a sufficient oxygen uptake with decreasing oxygen availability; (ii) oxy-regulators (e.g. profundal Chironomus ) which can regulate and maintain a constant respiration until a certain critical point and (iii) oxy-stressors ( Micropsectra ) which increase their respiration rate with decreasing oxygen availability until a critical point.
3. Respiration was measured at two different temperatures (10 and 20 °C), and over the range of oxygen saturation conditions studied here (0–90%) mean Q 10 values varied from 1.3 to 2.5.
4. The results show that different chironomid taxa have varying sensitivity to low oxygen concentrations and different respiratory responses to increased temperature. The critical point increased to higher oxygen saturation for six taxa, decreased for one taxon and was unchanged for two taxa.
5. The results illustrate one of the possible biological mechanisms behind the use of chironomids as temperature and climate indicators in palaeoecological studies by exploring the link between temperature and respiration physiology.  相似文献   

16.
N. Fukuda    M. Kuroki    A. Shinoda    Y. Yamada    A. Okamura    J. Aoyama    K. Tsukamoto 《Journal of fish biology》2009,74(9):1915-1933
The influences of water temperature and feeding regime on otolith growth in Anguilla japonica glass eels and elvers were investigated using individuals reared at 5, 10, 15, 20, 25 and 30° C and in fed or unfed conditions at salinity 32 after their otoliths were marked with alizarin complexone (ALC). To eliminate the difficulty of observing the edges of otoliths with optical (OM) or scanning electron (SEM) microscopes, three to 10 individuals were sampled from each tank at 10, 20 and 30 days during the experiment and reared for an additional 10 days at 25° C after their otoliths were marked a second time. Otolith growth and the number of increments were measured using both OM and SEM. Most A. japonica commenced feeding after 10 days at 20–30° C or after 20 days at 15° C, but no feeding occurred at 5 and 10° C. No otolith growth occurred at 5 and 10° C except in two individuals with minimal increment deposition at 10° C. Otolith growth was proportional to water temperature within 15–25° C and not different between 25 and 30° C. At 15, 25 and 30° C, the mean otolith growth rate in fed conditions was higher than in unfed conditions. The number of increments per day was significantly different among water temperatures (0·00–0·01 day−1 at 5 and 10° C, 0·43–0·48 day−1 at 15° C and 0·94–1·07 day−1 at 20–30° C). These results indicated that otolith growth in A. japonica glass eels and elvers was affected by temperature and ceased at ≤10° C under experimental conditions. Hence, future studies analysing the otoliths of wild-caught A. japonica glass eels and elvers need to carefully consider the water temperatures potentially experienced by the juveniles in the wild.  相似文献   

17.
Bacterial utilization of photosynthetically fixed dissolved organic carbon (PDOC) released from natural phytoplankton assemblages was studied in two small, extremely humic, forest lakes in southern Finland. Bacterial activity (measured as uptake of 14C-glucose) and phytoplankton photosynthesis (measured as light uptake of 14CO2) could be most effectively separated using Nuclepore filters of pore size 1–2 μm. Released PDOC was 10–67% of total phytoplankton carbon fixation during in situ experiments, and represented about 0.1% of total DOC. Net uptake of PDOC by bacteria was found to be about 20% during 24 hour laboratory incubations, although about 40% of PDOC present at the start of an experiment could be utilized by bacteria during a 24 hour period. PDOC does not provide a quantitatively important substrate supply for bacterial respiration in humic forest lakes.  相似文献   

18.
Using a continuous flow respirometer it was shown that young Tilapia rendalli had three distinct phases of oxygen consumption over the temperature range of 17–40° C. In the first phase (17–28° C) the metabolic energy demand followed the normal logarithmic increase with increasing temperature. Between 28 and 37° C the increased oxygen uptake was suppressed and showed a relatively small increase with increasing temperature. This feature was believed to be a significant energy saving function important to the growth of these fish which feed in the warm eulitoral margins of lakes during the day. The final phase shows a return to the original logarithmic increase in oxygen consumption. These results were related to, and compared with, actual changes in biomass at various temperatures and the theoretical and actual biomass changes were found to compare favourably.  相似文献   

19.
Microsclerotium formation by six isolates of Verticillium dahliae was studied at different temperatures both in vitro and in Arabidopsis thaliana . In vitro mycelial growth was optimal at 25°C, but microsclerotium formation was greatest at 20°C (two isolates) or 15–20°C (one isolate). Seedlings of A. thaliana were root-dipped in a conidial suspension, planted, and either placed at 5, 10, 15, or 25°C, or left at 20°C until the onset of senescence, after which some of the plants were placed at 5, 10, 15, or 25°C. The amount of microsclerotia per unit of shoot weight was assessed in relation to isolate and temperature. The optimal temperature for production of microsclerotia was 15–25°C. Two isolates each produced about 10 times more microsclerotia than each of the other four isolates. For these isolates, high R 2adj.-values of 0.77 and 0.66 were obtained, with temperature and its square as highly significant (P   < 0.001) independent variables. R 2adj.-values for the other isolates varied between 0.28 and 0.39. Moving plants to different temperatures at the onset of senescence led to microsclerotial densities that were intermediate between densities on plants that had grown at constantly 20°C and plants grown at other temperatures. This suggests that vascular colonization rate and rate of microsclerotium formation are similarly affected by temperature. The senescence rate of plants appeared unimportant except for plants grown at 25°C, which showed the highest amounts of microsclerotia per unit of plant weight in the most rapidly senescing plants.  相似文献   

20.
SUMMARY 1. Pelagic and epipelic microalgal production were measured over a year in a pre-defined area (depth 0.5 m) in each of two lakes, one turbid and one with clear water. Further estimates of epiphytic production within reed stands were obtained by measuring production of periphyton developed on artificial substrata.
2. Total annual production of phytoplankton and epipelon was 34% greater in the turbid lake (190 g C m−2 year−1) than in the clearwater lake (141 g C m−2 year−1). However, the ratio of total production to mean water column TP concentration was two fold greater in the clearwater lake.
3. Phytoplankton accounted for the majority of the annual production (96%) in the turbid lake, while epipelic microalgal production dominated (77%) in the clear lake. The relative contribution of epipelic algae varied over the year, however, and in the turbid lake was higher in winter (11–25%), when the water was relatively clear, than during summer (0.7–1.7%), when the water was more turbid. In the clearwater lake, the relative contribution of epipelon was high both in winter, when the water was most clear, and in mid-summer, when phytoplankton production was constrained either by nutrients or grazing.
4. Compared with pelagic and epipelic primary production, epiphytic production within a reed stand was low and did not vary significantly between the lakes.
5. The study supports the theory of a competitive and compensatory trade-off between primary producers in lakes with contrasting nutrient concentrations, resulting in relatively small differences in overall production between clear and turbid lakes when integrating over the season and over different habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号