首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
Many peptide hormones and neuropeptides are produced from larger, inactive precursors through endoproteolysis at sites usually marked by paired basic residues (primarily Lys-Arg and Arg-Arg), or occasionally by a monobasic residue (primarily Arg). Based upon data concerning processing of prorenin and its mutants around the native Lys-Arg cleavage site expressed in mouse pituitary AtT-20 cells, we present the following sequence rules that govern mono-arginyl cleavages: (a) a basic residue at the fourth (position -4) or the sixth (position -6) residue upstream of the cleavage site is required, (b) at position -4, Arg is more favorable than Lys, and (c) at position 1, a hydrophobic aliphatic residue is not suitable. These rules are compatible with those proposed by comparison of precursor sequences around mono-arginyl cleavage sites. We also provide evidence that precursor cleavages at mono-arginyl and dibasic sites can be catalyzed by the same Kex2-like processing endoprotease, PC1/PC3.  相似文献   

2.
Production of active enkephalin peptides requires proteolytic processing of proenkephalin at dibasic Lys-Arg, Arg-Arg, and Lys-Lys sites, as well as cleavage at a monobasic arginine site. A novel “prohormone thiol protease” (PTP) has been demonstrated to be involved in enkephalin precursor processing. To find if PTP is capable of cleaving all the putative cleavage sites needed for proenkephalin processing, its ability to cleave the dibasic and the monobasic sites within the enkephalin-containing peptides, peptide E and BAM-22P (bovine adrenal medulla docosapeptide), was examined in this study. Cleavage products were separated by HPLC and subjected to microsequencing to determine their identity. PTP cleaved BAM-22P at the Lys-Arg site between the two basic residues. The Arg-Arg site of both peptide E and BAM-22P was cleaved at the NH2-terminal side of the paired basic residues to generate [Met]-enkephalin. Furthermore, the monobasic arginine site was cleaved at its NH2-terminal side by PTP. These findings, together with previous results showing PTP cleavage at the Lys-Lys site of peptide F, demonstrate that PTP possesses the necessary specificity for all the dibasic and monobasic cleavage sites required for proenkephalin processing. In addition, the unique specificity of PTP for cleavage at the NH2-terminal side of arginine at dibasic or monobasic sites distinguishes it from many other putative prohormone processing enzymes, providing further evidence that PTP appears to be a novel prohormone processing enzyme.  相似文献   

3.
We cloned and sequenced a cDNA from a library of mouse pituitary AtT-20 cells which are known to cleave an endogenous and various foreign prohormones at dibasic sites. This cDNA encodes a novel 753-residue protein, named PC3, which is structurally related to the yeast Kex2 protease involved in precursor cleavage at dibasic sites and to recently identified mammalian Kex2-like proteins, furin and PC2. Among examined cell lines and tissues, PC3 mRNA was only detected in AtT-20 cells. The substrate specificity of PC3 expressed in mammalian cells was similar to that observed in AtT-20 cells. We conclude that PC3 is a resident prohormone processing endoprotease in AtT-20 cells.  相似文献   

4.
The parathyroid hormone-related protein (PTHrP) precursor requires proteolytic processing to generate PTHrP-related peptide products that possess regulatory functions in the control of PTH-like (parathyroid-like) actions and cell growth, calcium transport, and osteoclast activity. Biologically active peptide domains within the PTHrP precursor are typically flanked at their NH2- and COOH-termini by basic residue cleavage sites consisting of multibasic, dibasic, and monobasic residues. These basic residues are predicted to serve as proteolytic cleavage sites for converting the PTHrP precursor into active peptide products. The coexpression of the prohormone processing enzyme PTP ("prohormone thiol protease") in PTHrP-containing lung cancer cells, and the lack of PTP in cell lines that contain little PTHrP, implicate PTP as a candidate processing enzyme for proPTHrP. Therefore, in this study, PTP cleavage of recombinant proPTHrP(1-141) precursor was evaluated by MALDI mass spectrometry to identify peptide products and cleavage sites. PTP cleaved the PTHrP precursor at the predicted basic residue cleavage sites to generate biologically active PTHrP-related peptides that correspond to the NH2-terminal domain (residues 1-37) that possesses PTH-like and growth regulatory activities, the mid-region domain (residues 38-93) that regulates calcium transport, and the COOH-terminal domain (residues 102-141) that modulates osteoclast activity. Lack of cleavage at other types of amino acids demonstrated the specificity of PTP processing at basic residue cleavage sites. Overall, these results demonstrate the ability of PTP to cleave the PTHrP precursor at multibasic, dibasic, and monobasic residue cleavage sites to generate active PTHrP-related peptides. The presence of PTP immunoreactivity in PTHrP-containing lung cancer cells suggests PTP as a candidate processing enzyme for the PTHrP precursor.  相似文献   

5.
The processing of the common precursor for pancreatic polypeptide and pancreatic icosapeptide was studied in primary cultures of endocrine cells isolated from the duodenal part of the canine pancreas. Biosynthetically labeled peptides were characterized by enzymatic digestion and radiosequencing and compared to a COOH-terminally extended form of the icosapeptide which was isolated from canine pancreas and also sequenced. It was substantiated that, in these cell cultures, processing can be studied at a classical dibasic site between the pancreatic polypeptide and the icosapeptide, and at a monobasic processing site between the icosapeptide and its COOH-terminal extension. Pulse-chase experiments showed that the monobasic cleavage occurs later than the dibasic one in the biosynthetic process; the monobasic site was apparently not cleaved before the prohormone had been processed at the dibasic site. The monobasic processing could also be distinguished from the dibasic cleavage mechanism as, in time, the cells gradually lost the ability to cleave at the monobasic site while the dibasic processing was unaffected. It is concluded that monobasic conversion, which is important in the activation of a series of hormones, neuropeptides, and growth factors, is a distinct cellular processing mechanism.  相似文献   

6.
The cleavage specificity of a monobasic processing dynorphin converting endoprotease is examined with a series of quench fluorescent peptide substrates and compared with the cleavage specificity of prohormone convertases. A dynorphin B-29-derived peptide, Abz-Arg-Arg-Gln-Phe-Lys-Val-Val-Thr-Arg-Ser-Glneddnp (where Abz is o-aminobenzoyl and eddnp is ethylenediamine 2,4-dinitrophenyl), that contains both dibasic and monobasic cleavage sites is efficiently cleaved by the dynorphin converting enzyme and not cleaved by two propeptide processing enzymes, furin and prohormone convertase 1. A shorter prorenin-related peptide, Dnp-Arg-Met-Ala-Arg-Leu-Thr-Leu-eddnp, that contains a monobasic cleavage site is cleaved by the dynorphin converting enzyme and prohormone convertase 1 and not by furin. Substitution of the P1' position by Ala moderately affects cleavage by the dynorphin-processing enzyme and prohormone convertase 1. It is interesting that this substitution results in efficient cleavage by furin. The site of cleavage, as determined by matrix-assisted laser desorption/ionization time of flight mass spectrometry, is N-terminal to the Arg at the P1 position for the dynorphin converting enzyme and C-terminal to the Arg at the P1 position for furin and prohormone convertase 1. Peptides with additional basic residues at the P2 and at P4 positions also serve as substrates for the dynorphin converting enzyme. This enzyme cleaves shorter peptide substrates with significantly lower efficiency as compared with the longer peptide substrates, suggesting that the dynorphin converting enzyme prefers longer peptides that contain monobasic processing sites as substrates. Taken together, these results suggest that the cleavage specificity of the dynorphin converting enzyme is distinct but related to the cleavage specificity of the prohormone convertases and that multiple enzymes could be involved in the processing of peptide hormones and neuropeptides at monobasic and dibasic sites.  相似文献   

7.
Limited proteolysis of the dynorphin precursor (prodynorphin) at dibasic and monobasic processing sites results in the generation of bioactive dynorphins. In the brain and neurointermediate lobe of the pituitary, prodynorphin is processed to produce alpha and beta neo endorphins, dynorphins (Dyn) A-17 and Dyn A-8, Dyn B-13, and leucine-enkephalin. The formation of Dyn A-8 from Dyn A-17 requires a monobasic cleavage between Ile and Arg. We have identified an enzymatic activity capable of processing at this monobasic site in the rat brain and neurointermediate lobe of the bovine pituitary; this enzyme is designated "dynorphin A-17 processing enzyme." In the rat brain and neurointermediate lobe, a majority of the Dyn A processing enzyme activity is membrane-associated and can be released by treatment with 1% Triton X-100. This enzyme has been purified to apparent homogeneity from the membrane extract of the neurointermediate lobe using preparative iso-electrofocussing in a granulated gel pH 3.5 to 10, FPLC using anion exchange chromatography, and non-denaturing electrophoresis. The Dyn A processing enzyme exhibits a pI of about 5.8 and a molecular mass of about 65 kDa under reducing conditions. The Dyn A processing enzyme is a metalloprotease and has a neutral pH optimum. It exhibits substantial sensitivity to metal chelating agents and thiol agents suggesting that this enzyme is a thiol-sensitive metalloprotease. Specific inhibitors of other metallopeptidases such as enkephalinase [EC 3.4.24.11], the enkephalin generating neutral endopeptidase [EC 3.4.24.15], or NRD convertase do not inhibit the Dyn A processing enzyme activity. In contrast, specific inhibitors of angiotensin converting enzyme inhibit the activity. The purified enzyme is able to process a number of neuropeptides at both monobasic and dibasic sites. These characteristics are consistent with a role for the Dyn A processing enzyme in the processing of Dyn A-17 and other neuropeptides in the brain.  相似文献   

8.
Posttranslational processing of many proteins is essential to the synthesis of fully functional molecules. The ELH (egg-laying hormone) prohormone is cleaved by endoproteases in a specific order at a variety of basic residue processing sites to produce mature peptides. The prohormone is first cleaved at a unique tetrabasic site liberating two intermediates (amino and carboxy) which are sorted to different classes of dense core vesicles in the bag cell neurons of Aplysia. When expressed in AtT-20 cells, the ELH prohormone is also first cleaved at the tetrabasic site. The amino-terminal intermediate is then sorted to the constitutive pathway, and a portion of the carboxy-terminal intermediate is sorted to the regulated pathway. Here, we use mutant constructs of the ELH prohormone expressed in AtT-20 cells to examine the relationship between prohormone processing and consequent sorting. Prohormone which has a dibasic site in place of the tetrabasic site is processed and sorted similarly to wild type. Furthermore, mutant prohormone which lacks the tetrabasic site is processed at an alternative site comprising three basic residues. In these mutant prohormones, mature ELH is still produced and stored in dense core vesicles while amino-terminal products are constitutively secreted. However, deletion of the tetrabasic and tribasic sites results in the rerouting of the amino-terminal intermediate products from the constitutive pathway to the regulated secretory pathway. Thus, in the ELH prohormone, the location of the proteolytic processing events within the secretory pathway and the order of cleavages regulate the sorting of peptide products.  相似文献   

9.
Atrial natriuretic factor (ANF) is stored within atrial myocyte secretory granules as pro-ANF (ANF-(1-126] and is proteolytically processed co-secretionally C-terminal to a single basic amino acid to form ANF-(1-98) and the bioactive product ANF-(99-126). Pro-ANF is also expressed in certain non-cardiac neuroendocrine cell types (e.g. brain, adrenal). Although the relatively low levels of the peptide in these cell types have precluded detailed processing and secretion studies using cultured cells, some work with tissue extracts suggests that pro-ANF is pre-secretionally processed between or C-terminal to Arg101-Arg102 in such cells. In order to assess whether cultured non-cardiac endocrine cells process pro-ANF pre- or co-secretionally, and to establish whether both paired and single basic amino acids can serve as cleavage sites, transfection studies were carried out using the adrenocorticotropic hormone (ACTH)-producing pituitary tumor cell line AtT-20/D-16v. These cells normally cleave pro-ACTH/endorphin pre-secretionally at selected, but not all, pairs of basic amino acids to a variety of product peptides. A prepro-ANF expression plasmid was constructed and transfected into the AtT-20 cells. The resulting ANF/AtT-20 cell clone selected for this study expressed ACTH at levels similar to the untransfected wild type cells and secreted immunoreactive ANF-related material at a rate of approximately 1 fmol/min/10(5) cells, which was about 10% the rate of ACTH secretion. The rates of secretion of both ANF and ACTH could be increased 3-5-fold with a variety of known AtT-20 cell secretagogues including phorbol esters and the beta-adrenergic agonist, isoproterenol, thus indicating that both peptides were routed through regulated secretory pathways. Utilizing a combination of specific antisera directed against various regions of pro-ANF, size exclusion and reversed phase high performance liquid chromatography, and peptide mapping, it was shown that the ANF/AtT-20 cells contained and secreted the bioactive peptide ANF-(103-126) and -(1-97). These results indicate that the ANF/AtT-20 cells specifically cleave pro-ANF pre-secretionally at the same single basic site used by cardiac tissue; this single basic cleavage is apparently followed by removal of Arg98 by carboxypeptidase H. It is also apparent that the cells can cleave at the sole paired basic site in pro-ANF, which is the probable cleavage site used by neurons and some other endocrine cells that express low levels of the prohormone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Previously, we reported the purification and characterization of a myofibril-bound serine proteinase (MBP) from carp muscle (Osatomi K, Sasai H, Cao M-J, Hara K, Ishihara T. Comp Biochem Physiol 1997;116B:159–66). In the present study, the N-terminal amino acid sequence of the enzyme was determined, which showed high identity with those of other trypsin-like serine proteases. The cleavage specificity of MBP for dibasic and monobasic residues was investigated using various fluorogenic substrates and peptides. Analyses of the cleaved peptide products showed that the enzyme hydrolyzed peptides both at monobasic and dibasic amino acid residues. Monobasic amino acid residues were hydrolyzed at the carboxyl side; dibasic residues were cleaved either at the carboxyl side of the pair or between the two basic residues and the enzyme showed a cleavage preference for the Arg-Arg pair. Unexpectedly, MBP hydrolyzed lysyl-bradykinin and methionyl–lysyl–bradykinin at the carboxyl side of Gly fairly specifically and efficiently displaying a unique cleavage. Because MBP also degraded protein substrates such as casein and myofibrillar proteins, the substrate specificity of MBP appeared not to be strictly specific.  相似文献   

11.
Preprocortistatin (PPCST) has been recently identified as a novel somatostatin (SST)-related gene expressed only in brain. PPCST shares 11 of 14 residues with SST-14 at its C-terminal segment, where it features Lys-Lys and Lys-Arg basic sites for cleavage to putative cortistatin (CST)-14 and CST-29 peptides, respectively. Although synthetic replicates of the two putative CST peptides interact with SST receptors, they also display novel effects suggesting independent biological functions. Nothing is currently known about the naturally occurring mature cleavage products of PPCST posttranslational processing. Here we have cloned rat PPCST cDNA, stably expressed it in AtT-20 pituitary cells, and characterized the cellular and releasable products of PPCST processing by HPLC and radioimmunoassay using a SST-14 antibody that recognizes synthetic CST-14 and CST-29. Transfected cells released 120 +/- 21 pg of total CST-LI per plate basally, with an increase to 204 +/- 33 pg per plate with forskolin stimulation (p < 0.05). HPLC chromatograms of cell extracts revealed three peaks corresponding to CST-14, CST-29, and unprocessed PPCST (ratio, 41:55:4.5). CST was released preferentially as CST-14 (63-70%) compared with CST-29 (30-37%) under basal and forskolin-stimulated conditions. These studies demonstrate efficient processing of PPCST to both CST-14 and CST-29 through putative cleavage at both C-terminal dibasic sites of PPCST. Although the two peptides are synthesized approximately equally, CST-14 is released preferentially via the regulated secretory pathway.  相似文献   

12.
Peptide neurotransmitters and hormones are synthesized as protein precursors that require proteolytic processing to generate smaller, biologically active peptides that are secreted to mediate neurotransmission and hormone actions. Neuropeptides within their precursors are typically flanked by pairs of basic residues, as well as by monobasic residues. In this review, evidence for secretory vesicle cathepsin L and Arg/Lys aminopeptidase as a distinct proteolytic pathway for processing the prohormone proenkephalin is presented. Cleavage of prohormone processing sites by secretory vesicle cathepsin L occurs at the NH2-terminal side of dibasic residues, as well as between the dibasic residues, resulting in peptide intermediates with Arg or Lys extensions at their NH2-termini. A subsequent Arg/Lys aminopeptidase step is then required to remove NH2-terminal basic residues to generate the final enkephalin neuropeptide. The cathepsin L and Arg/Lys aminopeptidase prohormone processing pathway is distinct from the proteolytic pathway mediated by the subtilisin-like prohormone convertases 1/3 and 2 (PC1/3 and PC2) with carboxypeptidase E/H. Differences in specific cleavage sites at paired basic residue sites distinguish these two pathways. These two proteolytic pathways demonstrate the increasing complexity of regulatory mechanisms for the production of peptide neurotransmitters and hormones.  相似文献   

13.
Although cleavage of peptides at sites marked by paired basic amino acids is a common feature of prohormone processing, little is known about the properties of endoprotease(s) responsible for cleavage of the precursor. To examine the cleavage specificity of a processing endoprotease, we have altered the Lys-Arg cleavage site of human prorenin to Arg-Arg, Lys-Lys and Arg-Lys by site-directed mutagenesis, and expressed the native and mutated precursors in mouse pituitary AtT-20 cells which are known to process foreign prohormones, including prorenin, at paired basic sites during the regulated secretory process. All native and mutated human prorenins were sorted into the regulated secretory pathway. The mutated precursor with Arg-Arg instead of the Lys-Arg native pair was processed at about half the efficiency of the native one, while the Lys-Lys and Arg-Lys mutants were not processed. Rat prorenin, which naturally has a Lys-Lys pair, was not processed in the cells. In addition, mouse Ren2 prorenin, which has a Ser residue next to the Lys-Arg pair, but not mouse Ren1 prorenin, which has a Pro residue next to the pair, was processed. These results suggest that the Arg residue at the COOH side of the basic pair is essential for cleavage of prorenins by a processing enzyme during the regulated secretory process in AtT-20 cells, although the NH2-side Lys residue also plays a role. The results also demonstrate that the processing enzyme cannot cleave the Arg-Pro peptide bond.  相似文献   

14.
The primary structures of three peptides from extracts from the pancreatic islets of the daddy sculpin (Cottus scorpius) and three analogous peptides from the islets of the flounder (Platichthys flesus), two species of teleostean fish, have been determined by automated Edman degradation. The structures of the flounder peptides were confirmed by fast-atom bombardment mass spectrometry. The peptides show strong homology to residues (49-60), (63-96) and (98-125) of the predicted sequence of preprosomatostatin II from the anglerfish (Lophius americanus). The amino acid sequences of the peptides suggest that, in the sculpin, prosomatostatin II is cleaved at a dibasic amino acid residue processing site (corresponding to Lys61-Arg62 in anglerfish preprosomatostatin II). The resulting fragments are further cleaved at monobasic residue processing sites (corresponding to Arg48 and Arg97 in anglerfish preprosomatostatin II). In the flounder the same dibasic residue processing site is utilised but cleavage at different monobasic sites takes place (corresponding to Arg50 and Arg97 in anglerfish preprosomatostatin II). A peptide identical to mammalian somatostatin-14 was also isolated from the islets of both species and is presumed to represent a cleavage product of prosomatostatin I.  相似文献   

15.
Lakshmi Devi 《FEBS letters》1991,280(2):189-194
Many regulatory peptide precursors undergo post-translational processing at mono- and/or dibasic residues. Comparison of amino acids around the monobasic cleavage sites suggests that these cleavages follow certain sequence motifs and can be described as the rules that govern monobasic cleavages: (i) a basic amino acid it present at either 3, 5, or 7 amino acids N-terminal to the cleavage site, (ii) hydrophobic aliphatic amino acids (leucine, isoleucine, valine, or methionine) are never present in the position C-terminal to the monobasic amino acid at the cleavage site, (iii) a cysteine is never present in the vicinity of the cleavage site, and (iv) an aromatic amino acid is never present at the position N-terminal to the monobasic amino acid at the cleavage site. In addition to these rules, the monobasic cleavages follow certain tendencies: (i) the amino acid at the cleavage site tends to be predominantly arginine, (ii) the amino acid at the position C-terminal to the cleavage site tends to be serine, alanine or glycine in more than 60% of the cases, (iii) the amino acid at either 3, 5, or 7 position N-terminal to the cleavage site tends to be arginine, (iv) aromatic amino acids are rare at the position C-terminal to the monobasic amino acid at the cleavage site, and (v) aliphatic amino acids tend to be in the two positions N-terminal to and the two positions C-terminal to the cleavage site, except as noted above. When compared with a large number of sequence containing single basic amino acids, these rules and tendencies are capable of not only correctly predicting the processing sites, but also are capable of excluding most of the single basic sequences that are known to be uncleaved. Many or these rules can also be applied to correctly predict the dibasic and multibasic cleavage sites suggesting that the rules and tendencies could govern endoproteolytic processing at the monobasic, dibasic and multibasic sites.  相似文献   

16.
Cholecystokinin (CCK) is expressed in the central and peripheral nervous systems and functions as a neurotransmitter and neuroendocrine hormone. The in vivo forms of CCK include CCK-83, -58, -39, -33, -22, -12, and -8. Tissues in the periphery produce the larger forms of CCK, such as CCK-58, whereas the brain primarily produces CCK-8. The different biologically active forms of CCK observed in vivo may result from cell-specific differences in endoproteolytic cleavage during post-translational processing. Evidence suggests that cleavages of pro-CCK occur in a specific sequential order. To further delineate the progression of cleavages during pro-CCK maturation, mutagenesis was used to disrupt putative mono- and dibasic cleavage sites. AtT-20 cells transfected with wild-type rat prepro-CCK secret CCK-22 and -8. Mutagenesis of the cleavage sites of pro-CCK had profound effects on the products that were produced. Substitution of basic cleavage sites with nonbasic amino acids inhibits cleavage and leads to the secretion of pathway intermediates such as CCK-83, -33, and -12. These results suggest that CCK-58 is cleaved to both CCK-33 and -22. Furthermore, CCK-8 and -12 are likely derived from cleavage of CCK-33 but not CCK-22. Alanine substitution at the same site completely blocked production of amidated products, whereas serine substitution did not. The cleavages observed at nonbasic residues in this study may represent the activity of enzymes other than PC1 and carboxypeptidase E, such as the enzyme SKI-1. A model for the progression of pro-CCK processing in AtT-20 cells is proposed. The findings in this study further supports the hypothesis that pro-CCK undergoes parallel pathways of proteolytic cleavages.  相似文献   

17.
Nardilysin (N-arginine dibasic convertase, EC 3.4.24.61) was first identified on the basis of its ability to cleave peptides containing an arginine dibasic pair, i.e., Arg-Arg or Arg-Lys. However, it was observed that an aromatic residue adjacent to the dibasic pair (i.e., Phe-Arg-Lys) could alter the cleavage site. In this study we determined whether nardilysin can cleave peptides at a single basic residue. Nardilysin cleaves beta-endorphin at the monobasic site, Phe(17)-Lys(18), with a k(cat)/K(m) of 2 x 10(8) M(-)(1) min(-)(1). This can be compared to a k(cat)/K(m) of 8.5 x 10(8) M(-)(1) min(-)(1) for cleavage between a dibasic pair in dynorphin B-13. Nardilysin also cleaves calcitonin at His-Arg and somatostatin-14 at Cys-Lys. We examined the hydrolysis of fluorogenic peptides based on the beta-endorphin 12-24 sequence, Abz-T-P-L-V-T-L-X(1)-X(2)-N-A-I-I-K-Q-EDDnp. Nardilysin hydrolyzes the peptides when X(1)-X(2) = F-K, F-R, W-K, M-K, Y-K, and L-K. The kinetics of cleavage at F-K and F-R are similar; however, K-F is not hydrolyzed. Nardilysin cleaves at two monobasic sites M-K and F-R of the kallidin model peptide Abz-MISLMKRPPGFSPFRSSRI-NH(2), releasing desArg(10) kallidin (KRPPGFSPF). However, nardilysin does not release desArg(10) kallidin from the physiological precursor low molecular weight kininogen. These studies extend the range of potential substrates for nardilysin and further substantiate that nardilysin is a true peptidase.  相似文献   

18.
The cDNA for porcine preprocholecystokinin (pre-pro-CCK) was engineered for expression in mammalian cells under the control of the Rous sarcoma virus-long terminal repeat promoter. This expression construct was transfected into the murine anterior pituitary cell line, AtT-20. A stable cell line (AtT-20/CCK) was derived that expresses CCK mRNA indistinguishable from the CCK mRNA found in pig brain or gut. The AtT-20/CCK cells carry out proteolytic processing and sulfation reactions to generate authentic sulfated CCK8 from pro-CCK. The cells also store and secrete CCK-immunoreactive peptides. This secretion can be stimulated with corticotropin releasing factor, the natural secretagogue for anterior pituitary cells. In contrast, monkey kidney epithelial cells (COS cells), which are transiently transfected to express CCK, predominantly secrete nonsulfated pro-CCK into the medium. These studies show that a murine neuroendocrine cell line contains the complete processing machinery required to generate authentic porcine CCK8. The processing events include simultaneous proteolytic processing at one and two basic amino acid sites and sulfation of tyrosine residues. The cell line thus duplicates exactly the processing patterns found to occur in pig brain cortex.  相似文献   

19.
We have extracted, characterized, and partially purified an enzyme from secretory granules from rat small intestinal mucosa which cleaves a synthetic prosomatostatin substrate on the carboxyl side of a single arginine residue. This substrate Leu-Gln-Arg-Ser-Ala-Asn-Ser-NH2 contains the monobasic site at which mammalian prosomatostatin is cleaved in vivo to generate somatostatin-28. This activity was released from the granules by osmotic shock followed by extraction with 500 mM KCl. The enzyme had a molecular weight of about 55,000, a pH optimum of about 7.5, and a Km for the synthetic substrate of 20 microM. It was partially inhibited by diisopropyl fluorophosphate, phenylmethanesulfonyl fluoride, iodoacetate, soybean trypsin inhibitor, and EDTA. It was also very sensitive to aprotinin (complete inhibition at 25 micrograms/ml) but was not inhibited by bestatin, pepstatin, or p-chloromercuribenzoate. This endoprotease was unable to cleave three small trypsin and kallikrein substrates (N alpha-benzoyl-L-arginine ethyl ester, N alpha-benzoyl-DL-arginine p-nitroanilide, and N alpha-benzoyl-L-arginine 7-amido-4-methylcoumarin). It was unable to cleave either the Arg-Asp bond in CCK 12 or the Arg-Glu and Arg-Met bonds of synthetic peptides corresponding to sequences of anglerfish prosomatostatin II situated upstream from the somatostatin-28 domain. These observations together suggest that adjacent amino acids play a role in determining the conformational specificity of the monobasic cleavage. This soluble enzyme was also able to cleave three synthetic substrates containing dibasic residues (Arg-Lys or Lys-Arg) on the carboxyl side of the arginine, although it did so less rapidly than at the monobasic cleavage sites. When incubated with partially purified prosomatostatin from anglerfish pancreas, significant quantities of somatostatin-28 II were produced. All these cleavages were completely blocked by preincubation with aprotinin. Although further work is required to clarify the physiological role of this enzyme, it appears, in view of its catalytic properties, this endoprotease could be involved in the conversion of prosomatostatin to somatostatin-28 in intestine mucosal secretory cells.  相似文献   

20.
Proteolytic processing of somatostatin precursor produces several peptides including somatostatin-14 (S-14), somatostatin-28 (S-28), and somatostatin-28 (1-12) (S-28(1-12)). The subcellular sites at which these cleavages occur were identified by quantitative evaluation of these products in enriched fractions of the biosynthetic secretory apparatus of rat cortical or hypothalamic cells. Each of the major cellular compartments was obtained by discontinuous gradient centrifugation and was characterized both by specific enzyme markers and electron microscopy. The prosomatostatin-derived fragments were measured by radioimmunoassay after chromatographic separation. Two specific antibodies were used, allowing the identification of either S-28(1-12) or S-14 which results from peptide bond hydrolysis at a monobasic (arginine) and a dibasic (Arg-Lys) cleavage site, respectively. These antibodies also revealed prosomatostatin-derived forms containing at their COOH terminus the corresponding dodeca- and tetradecapeptide sequences. Whereas the reticulum-enriched fractions contained the highest levels of prosomatostatin, the proportion of precursor was significantly lower in the Golgi apparatus. In the latter fraction, other processed forms were also present, i.e. S-14 and S-28(1-12) together with the NH2-terminal domain (1-76) of prosomatostatin (pro-S(1-76). Inhibition of the intracellular transport either by monensin or by preincubation at reduced temperature resulted in an increase of prosomatostatin-derived peptides in the Golgi-enriched fractions. Finally, immunogold labeling using antibodies raised against S-28(1-12) and S-14 epitopes revealed the presence of these forms almost exclusively in the Golgi-enriched fraction mainly at the surface of saccules and vesicles. Together these data demonstrate that in rat neural cells, prosomatostatin proteolytic processing at both monobasic and dibasic sites is initiated at the level of the Golgi apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号