首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In 16 patients with metastatic testicular cancer and 10 age matched male control subjects growth hormone (GH) responses to growth hormone releasing hormone (GHRH; 1 microgram/kg body weight iv.) and thyrotropin releasing hormone (TRH; 200 micrograms iv.) were measured. Basal GH levels and GH levels following stimulation with GHRH or TRH were significantly increased in cancer patients compared to control subjects. 9 patients with testicular cancer were studied both in the stage of metastatic disease and after they had reached a complete remission. In complete remission GH responses to GHRH tended to decrease but the differences did not reach statistical significance. Our data suggest an alteration of hypothalamic and/or pituitary regulation of GH secretion in patients with metastatic testicular cancer.  相似文献   

2.
Thyrotropin-releasing hormone (TRH) blunts growth hormone (GH) response to various stimuli in normal subjects. We were interested if similar inhibitory effect of TRH could be demonstrated in diabetes mellitus where GH is abnormally regulated. In this study we compared the effect of TRH on GH response to L-dopa in normal and diabetic subjects. TRH 0.2 mg iv blunted GH response to L-dopa 0.5 g p.o. in normal subjects with peak GH values 13.1 and 7.3 micrograms/l, p < 0.05. In the diabetics no inhibitory effect of TRH was demonstrated and GH was even paradoxically increased after TRH: 14.9 and 21.9 micrograms/l, p = NS. Lack of inhibitory effect of TRH was more pronounced in patients with proliferative retinopathy. It is concluded that TRH has no inhibitory effect on L-dopa-induced GH response in diabetic subjects. This finding provides further evidence for disturbed GH regulation in diabetes mellitus.  相似文献   

3.
Synthetic thyrotropin releasing hormone (TRH) and human pancreatic growth hormone releasing factor (hpGRF) stimulated growth hormone (GH) secretion in 6- to 9-week-old turkeys in a dose-related manner. TRH and hpGRF (1 and 10 micrograms/kg, respectively) each produced a sixfold increase in circulating GH levels 10 min after iv injection. Neither TRH nor hpGRF caused a substantial change in prolactin (PRL) secretion in unrestrained turkeys sampled through intraatrial cannulas. However, some significant increases in PRL levels, possibly related to stress, were noted.  相似文献   

4.
GH(4)C(1) cells are a clonal strain of rat pituitary cells that synthesize and secrete prolactin and growth hormone. Chronic treatment (longer than 24 h) of GH(4)C(1) cells with epidermal growth factor (EGF) (10(-8) M) decreased by 30-40 percent both the rate of cell proliferation and the plateau density reached by cultures. Inhibition of cell proliferation was accompanied by a change in cellular morphology from a spherical appearance to an elongated flattened shape and by a 40-60 percent increase in cell volume. These actions of EGF were qualitatively similar to those of the hypothalamic tripeptide thyrotropin-releasing hormone (TRH) (10(-7) M) which decreased the rate of cell proliferation by 10-20 percent and caused a 15 percent increase in cell volume. The presence of supramaximal concentrations of both EGF (10(-8)M) and TRH (10(-7)M) resulted in greater effects on cell volume and cell multiplication than either peptide alone. EGF also altered hormone production by GH(4)C(1) cells in the same manner as TRH. Treatment of cultures with 10(-8) M EGF for 2-6 d increased prolactin synthesis five- to ninefold compared to a two- to threefold stimulation by 10(-7) M TRH. Growth hormone production by the same cultures was inhibited 40 percent by EGF and 15 percent by TRH. The half- maximal effect of EGF to increase prolactin synthesis, decrease growth hormone production, and inhibit cell proliferation occurred at a concentration of 5 x 10 (-11) M. Insulin and multiplication stimulating activity, two other growth factors tested, did not alter cell proliferation, cell morphology, or hormone production by GH(4)C(1) cells, indicating the specificity of the EGF effect. Fibroblast growth factor, however, had effects similar to those of EGF and TRH. Of five pituitary cell strains tested, all but one responded to chronic EGF treatment with specifically altered hormone production. Acute chronic EGF treatment with specifically altered hormone production. Acute treatment (30 min) of GH(4)C(1) cells with 10(-8) M EGF caused a 30 percent enhancement of prolactin release compared to a greater than twofold increase caused by 10(-7) M TRH. Therefore, although EGF and TRH have qualitatively similar effects on GH(4)C(1) cells, their powers to affect hormone release acutely or hormone synthesis and cell proliferation chronically are distinct.  相似文献   

5.
The effect of thyrotrophin releasing hormone (TRH) or human pancreatic growth hormone releasing factor (hpGRF) on growth hormone (GH) release was studied in both dwarf and normal Rhode Island Red chickens with a similar genotype except for a sex-linked dw gene. Both TRH (10 micrograms/kg) and hpGRF (20 micrograms/kg) injections stimulated plasma GH release within 15 min in young and adult chickens. The increase in GH release was higher in young cockerels than that in adult chickens. The age-related decline in the response to TRH stimulation was observed in both strains, while hpGRF was a still potent GH-releaser in adult chickens. The maximal and long acting response was observed in young dwarf chickens, suggesting differences in GH pools releasable by TRH and GRF in the anterior pituitary gland. The pituitary gland was stimulated directly by perifusion with hpGRF (1 microgram/ml and 10 micrograms/ml) or TRH (1 microgram/ml). Repeated perifusion of GRF at 40 min intervals blunted further increase in GH release, but successive perifusion with TRH stimulated GH release. The results suggest the possibility that desensitization to the effects of hpGRF occurs in vitro and that the extent of response depends on the number of receptors for hpGRF or TRH and/or the amount of GH stored in the pituitary gland.  相似文献   

6.
Growth hormone (GH) and prolactin (PRL) responses after TRH administration were studied in 31 women presenting with the clinical, biochemical and ultrasonographic characteristics of the polycystic ovarian (PCO) syndrome; their results were compared with those of 20 normally menstruating women investigated during the early follicular phase of the cycle. Based on the GH responses two PCO subgroups were observed: (a) nonresponders (n = 16) who showed delta max GH responses (0.7 +/- 0.27 ng/ml, x +/- SE) similar to those of the normals (0.97 +/- 0.20 ng/ml), and (b) responders (n = 15), 48.4% of the PCO patients who showed a paradoxical increase in GH levels (delta max GH, 18.0 +/- 1.96 ng/ml) following thyrotropin-releasing hormone (TRH) administration significantly higher than those observed either in nonresponder PCO patients or in normals. Furthermore, basal GH levels were found to be significantly higher in the responder PCO subgroup (5.65 +/- 0.75 ng/ml) compared to either nonresponders (1.58 +/- 0.21 ng/ml) or normals (1.8 +/- 0.18 ng/ml). However, no correlation was found between basal GH levels and delta max GH responses observed. Additionally, basal PRL and delta max PRL levels following TRH administration did not differ either between the two PCO subgroups or those observed in normal controls. delta 4A, T and E2 levels were similar between the two PCO subgroups. No correlation was found between the delta max GH responses to delta max PRL or the post-luteinizing hormone-releasing hormone stimulation test delta max luteinizing hormone:follicle-stimulating hormone ratio observed or to steroid levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Administration of 50, 250, and 1,250 ng/kg iv of recombinant bovine tumor necrosis factor-alpha (RBTNF) did not affect basal plasma concentrations of growth hormone (GH) or thyroid-stimulating hormone in male calves. However, when administered 30 min before challenge with 1 microgram/kg iv of thyrotropin-releasing hormone (TRH), 250 ng/kg of RBTNF increased the subsequent incremental GH response. At 1,250 ng/kg of RBTNF, GH response to TRH was significantly blunted. For each dose of RBTNF administered, the incremental change in plasma thyroid-stimulating hormone following TRH was not significantly different from control. To examine direct effects of RBTNF on pituitary function, fresh bovine pituitaries were sliced into 1-mm cubes and incubated with 0 or 10(-8), 10(-9), or 10(-10) M RBTNF. Additional cultures were treated with 10(-8) or 10(-9) M GH-releasing factor or 10(-8) M TRH and 0 or 10(-8) M RBTNF. Media GH increased in cultures with 10(-10) M RBTNF and declined linearly as RBTNF concentration increased. RBTNF blocked GH release from GH-releasing factor- and TRH-challenged pituitary slices. Membranes prepared from homogenized bovine pituitaries had specific saturable binding characteristics for monomeric 125I-RBTNF. Membranes treated with 4 M MgCl2 for 10 min and washed free of Mg2+ produced Scatchard plots fit to a two-site model (high affinity site Kd = 6.6 nM), while Scatchards of non-Mg(2+)-treated membranes fit a single site (Kd = 8.9 nM). Polyacrylamide gel electrophoresis separation of 125I-RBTNF cross-linked pituitary membranes showed specific binding of monomeric 125I-RBTNF to protein components ranging in molecular weight from 19,000 to 77,000. The data suggest that RBTNF has modulatory effects on the regulation of GH secretion acting directly at the pituitary through specific receptors.  相似文献   

8.
The effects of synthetic somatostatin (SRIF) on serum growth hormone (GH) concentrations stimulated by exogenous administration of synthetic thyrotropin-releasing hormone (TRH) and/or human pancreatic GH-releasing factor (hpGRF) were investigated in 4-week-old cockerels. In addition, the additive effects of TRH and hpGRF on serum GH were examined. TRH and hpGRF, when given in combination intravenously, produced an additive effect on serum GH concentration that peaked 10 min after the injection. The somatostatin did not significantly affect basal GH concentrations when given alone, but did significantly decrease the magnitude of the GH response to hpGRF. In contrast, SRIF did not significantly decrease the stimulatory effects of TRH on GH release. These results suggest that TRH and hpGRF are potent GH releasers in vivo and that their stimulating effects on GH release are additive, suggesting different mechanisms for their stimulation. The results obtained from the combination studies suggest that the main site of the stimulatory action of hpGRF is at the pituitary, and that SRIF significantly inhibited the rise in serum GH induced by a synthetic hpGRF, but not that induced by TRH.  相似文献   

9.
Synthetic human pancreatic Growth Hormone-Releasing Factor (hpGRF) elevated the plasma concentration of growth hormone (GH) in young and adult domestic fowl. This in vivo effect of hpGRF appeared to be largely similar for both the 32 amino-acid (hpGRF 1-32) or 40 amino-acid (hpGRF 1-40) polypeptide, although the effect of hpGRF 1-32 was more prolonged than that of hpGRF 1-40 in adult domestic fowl. The increase in plasma GH concentrations following hpGRF administration (10 micrograms/kg) was somewhat greater in young than adult chickens (the increase in plasma concentration of GH being 230 ng/ml at 1 week old, 282 ng/ml at 6 week old, 241 ng/ml at 10 weeks and 150 ng/ml in adults). In the adult domestic fowl hpGRF stimulated a greater increase in the plasma concentration of GH than did thyrotropin-releasing hormone (TRH). However in the young chicks TRH was more active. The in vitro release of GH from dispersed chicken pituitary cells was elevated by hpGRF (1-32) and hpGRF (1-40).  相似文献   

10.
In a significant proportion of patients with acromegaly, a non-specific increase in plasma growth hormone (GH) has been recognized following administration of thyrotropin-releasing hormone (TRH) or luteinizing hormone-releasing hormone (LH-RH), probably due to the lack of the specificity of the receptor in their tumor cells. In this study, the effects of corticotropin-releasing factor (CRF), a newly isolated hypothalamic hormone, in addition to TRH and LH-RH, on plasma levels of GH and the other anterior pituitary hormones were evaluated in 6 patients with acromegaly. Synthetic ovine CRF (1.0 microgram/kg), TRH (500 micrograms) or LH-RH (100 micrograms) was given as an iv bolus injection, in the morning after an overnight fast. Blood specimens were taken before and after injection at intervals up to 120 min, and plasma GH, adrenocorticotropin (ACTH), thyrotropin, prolactin, luteinizing hormone, follicle-stimulating hormone and cortisol were assayed by radioimmunoassays. A non-specific rise in plasma GH was demonstrated following injection of TRH and LH-RH, in 5 of 6 and 2 of 5 patients, respectively. In all subjects, rapid rises were observed in both plasma ACTH (34.3 +/- 6.2 pg/ml at 0 min to 79.5 +/- 9.5 pg/ml at 30 min, mean +/- SEM) and cortisol level (9.1 +/- 1.3 micrograms/dl at 0 min to 23.4 +/- 1.2 micrograms/dl at 90 min). However, plasma levels of GH and the other anterior pituitary hormones did not change significantly after CRF injection. These results indicate that CRF specifically stimulates ACTH secretion and any non-specific response of GH to CRF appears to be an infrequent phenomenon in this disorder.  相似文献   

11.
The aim of this study was to evaluate plasma thyrotropin (TSH), prolactin (PRL) and growth hormone (GH) responses to the TSH-releasing hormone (TRH) test and to a combined arginine-TRH test (ATT-TRH) in 10 normal subjects and in 15 acromegalic patients. In controls, TSH responsiveness to TRH was enhanced by ATT (p less than 0.001). When considering the 15 acromegalic patients as a whole, no significant difference in TSH responses was detected during the two tests. However, patients without suppression of plasma GH levels after oral glucose load showed an increased TSH responsiveness to the ATT-TRH test if compared to TRH alone (p less than 0.025), while patients with partial suppression of plasma GH levels after glucose ingestion showed a decreased TSH responsiveness to ATT-TRH (p less than 0.05). No difference was recorded in PRL and GH responses, evaluated as area under the curve, during TRH or ATT-TRH tests in controls and in acromegalics. In conclusion, (1) normal subjects have an enhanced TSH response to the ATT-TRH test and (2) acromegalic patients without suppression of GH levels after oral glucose load show a TSH responsiveness to the ATT-TRH test similar to that of controls, while acromegalics with partial GH suppression after oral glucose load have a decreased TSH responsiveness to the ATT-TRH test. These data suggest that acromegaly is a heterogeneous disease as far as the somatostatinergic tone is concerned.  相似文献   

12.
In 27 hypothyroid subjects studied over 20 to 120 minutes, the concentration of serum growth hormone (GH) was variable with the amplitude and frequency of the secretory patterns similar to those reported by others for normal individuals. Serum GH, after the administration of thyrotropin releasing hormone (TRH) did not differ from values observed as spontaneous surges, in contrast to a consistent increase in thyrotropin and prolactin. Episodic secretion of GH persisted in thyroidectomized rats and did not differ significantly from that present in intact controls. It is concluded that episodic GH secretion is not abolished in primary hypothyroidism and that TRH is not a constant GH secretagogue in human subjects with hypothyroidism.  相似文献   

13.
1. Basal circulating growth hormone (GH) concentrations in sex-linked-dwarf (SLD) chickens were unaffected by the intracerebroventricular (icv) injection of 10, 50 or 100 micrograms somatostatin (SRIF). 2. The GH response to systemic thyrotropin-releasing hormone (TRH; 10 micrograms/kg, iv) was, however, 'paradoxically' enhanced 20 min after icv SRIF administration. 3. A lower dose (1.0 micrograms) of SRIF had no effect on basal or TRH-induced GH release. 4. High-titre SRIF antisera (4 microliters) also had no acute effect on basal plasma GH concentrations, but augmented the GH response to TRH challenge. 5. SRIF would appear to act at central sites to modulate stimulated GH secretion in SLD chickens.  相似文献   

14.
The effects of intravenous injection of synthetic human pancreatic growth hormone-releasing factor-44-NH2 (hpGRF-44) and synthetic thyrotropin releasing hormone (TRH), or hpGRF-44 in combination with TRH on growth hormone (GH), thyrotropin (TSH), and prolactin (PRL) release in dairy female calves (6- and 12-month-old) were studied. When 0.25 microgram of hpGRF-44 per kg of body weight (bw) was injected in combination with TRH (1.0 microgram per kg of bw), the mean plasma GH concentration of the 12-month-old calves rose to a maximum level of 191.5 ng/ml (P less than 0.001) at 15 min from the value of 6.8 ng/ml before injection at 0 min. The maximum level was 3.1 and 6.1 times as high as the peak values obtained after injection of hpGRF-44 (0.25 microgram per kg of bw) and TRH (1.0 microgram per kg of bw), respectively (P less than 0.001). The area under the GH response curve for the 12-month-old calves for 3 hr after injection of hpGRF-44 in combination with TRH was 2.5 times as large as the sum of the areas obtained by hpGRF-44 and TRH injections. In contrast, the mean plasma GH level was unchanged in saline injected calves. The magnitudes of the first and the second plasma GH responses in the 6-month-old calves to two consecutive injections of hpGRF-44 in combination with TRH at a 3-hr interval were very similar. The peak values of plasma GH in the calves after hpGRF-44 injection were 2-4 times as high as those after TRH injection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Patients with chronic liver diseases were evaluated for: 1) the ability of somatostatin to affect the thyrotropin-releasing hormone (TRH) induced growth hormone (GH) rise; 2) the competence of luteinizing-hormone releasing hormone (LH-RH) to release GH; 3) the non-specific releasing effect of TRH and LH-RH on other anterior pituitary (AP) hormones. In 6 patients, infusion of somatostatin (100 micrograms iv bolus + 375 micrograms i.v. infusion) completely abolished the TRH (400 micrograms i.v.)-induced GH rise; in none of 12 patients, of whom 7 were GH-responders to TRH, did LH-RH (100 micrograms i.v.) cause release of GH; 4) finally, LH-RH (12 patients) did not increase plasma prolactin (PRL) and TRH (7 patients) did not evoke a non-specific release of gonadotropins. It is concluded that: 1) abnormal GH-responsiveness to TRH is the unique alteration in AP responsiveness to hypothalamic hormones present in liver cirrhosis; 2) the mechanism(s) subserving the altered GH response to TRH is different from that underlying the TRH-induced GH rise present in another pathologic state i.e. acromegaly, a condition in which the effect of TRH escapes somatostatin suppression and LH-RH evokes GH and PRL release.  相似文献   

16.
OBJECTIVE: To evaluate the factors influencing the growth hormone (GH) response to GH-releasing hormone (GHRH) test in idiopathic GH deficiency. METHODS: 28 patients aged 4.9 +/- 0.7 years with certain GH deficiency were given GHRH (2 microg/kg). RESULTS: The GH peak after GHRH was correlated negatively with age at evaluation (r = -0.37, p < 0.05) and body mass index (r = -0.44, p = 0.02), and positively with anterior pituitary height (r = 0.47, p = 0.02), GH peak after non-GHRH stimulation (r = 0.78, p < 0.0001) and spontaneous GH peak (r = 0.82, p = 0.007). It was lower in the patients aged >5 years than in the youngest (p = 0.04), but it was similar in the patients with and without features suggesting a hypothalamic origin. CONCLUSION: The GH response to GHRH test cannot be used to differentiate between hypothalamic and pituitary forms of idiopathic GH deficiency, probably because the GH response decreases after the first 5 years of life, whatever the origin of the deficiency.  相似文献   

17.
There is an increased frequency of dysthyroidism in elderly people. We investigated whether there are differences among healthy young middle-aged and elderly people in the 24 hour secretory profiles of TRH, TSH and free thyroxine. The study was carried out on fifteen healthy young, middle-aged subjects (range 36-55 years, mean age±s.e. 44.1±1.7) and fifteen healthy elderly subjects (range 67-79 years, mean age±s.e. 68.5±1.2). TRH, TSH and free thyroxine serum levels were measured in blood samples collected every four hours for 24 hours. The area under the curve (AUC), the mean of 06:00h-10:00h-14:00h and the mean of 18:00h-22:00h-02:00h hormone serum levels and the presence of circadian rhythmicity were evaluated. A normal circadian rhythmicity was recognizable for TRH and TSH in young, middle-aged subjects and for TSH in elderly subjects. Elderly subjects presented lower TSH levels, whereas there was no statistically significant difference in TRH and free thyroxine serum levels between young, middle-aged and elderly subjects. Aging is associated with an altered TSH secretion.  相似文献   

18.
The aim of the study was to analyze 14 consecutive patients with active acromegaly who had not undergone any therapy, the dose response of growth hormone (GH) to thyrotropin-releasing hormone (TRH), the existence of reproducibility of such response as well as to rule out the possibility of spontaneous fluctuations of GH which would mimic this response. On several nonconsecutive days, we investigated the GH response to saline serum, 100, 200 (twice) and 400 micrograms of TRH administration. We also studied both basal serum prolactin, serum prolactin after TRH administration and thyrotropin values. Our results show an absence of GH response after saline serum infusion, whereas after TRH doses, 36.3 42.8 and 45.4% positive responses were obtained, respectively. All GH responders were concordant to the different doses administered. The mean of GH concentrations of the different doses at different times did not reach significant differences. The response to the administration of the same dose brought about a significative increase, although it was not identical. It demonstrated a progressive increase of the area under the response curve, as did the means of increments after each TRH administration, albeit without reaching statistical significance. Between the GH-responding and GH-nonresponding groups there were no differences in either basal serum prolactin or serum prolactin and thyroid-stimulating hormone levels after TRH stimulation. The present study clearly shows that TRH elicits serum GH release from GH-secreting pituitary tumors. The response was reproducible in qualitative terms rather than quantitative, and no dose-response relationship was found between the TRH concentrations and the amounts of GH secreted.  相似文献   

19.
The effects of somatostatin and thyroliberin (thyrotropin-releasing hormone; TRH) on growth hormone (GH) and prolactin (PRL) secretion were studied in short-term (0.5-3h) or long-term (21-24h) incubations using monolayer cell cultures of somatotropin obtained from surgical material of patients with acromegaly. High sensitivity of both GH and PRL release to inhibitory action of somatostatin (10(-11) M) was established. We could not reveal the unambiguous influence of TRH on somatotropic function in the in vivo and in vitro conditions, as compared to the action of this tripeptide on PRL secretion. The results obtained permit us to propose that cell cultures of pituitary adenomata represent adequate and convenient models for studying the pathogenesis of tumor processes in the pituitary gland and for the development of new procedures of pharmacotherapy.  相似文献   

20.
Growth hormone (GH) and prolactin (PRL) secretion after GH-releasing hormone (GHRH) and domperidone (DOM), an antidopaminergic drug which does not cross the blood-brain barrier (BBB), was evaluated in 8 healthy elderly men (65-91 years) and in 7 young adults (23-40 years). All received in random order at 2-day intervals: GHRH(1-40) (50 micrograms i.v.) bolus, DOM (5 mg/h) infusion, GHRH(1-40) (50 micrograms i.v.) plus DOM (5 mg/h i.v.), saline solution. In elderly men GH increase after GHRH was significantly lower than in young men. DOM alone did not change GH secretion in either of these groups, whereas it increased the GH response to GHRH only in young adults. PRL levels increased in both young and elderly men during both DOM and GHRH plus DOM, but the PRL release was more marked in young than in elderly men. Both integrated secretion of GH after GHRH and of PRL after DOM were inversely correlated to chronological age. Our data show an impairment of GH rise after GHRH and of PRL after DOM in elderly adults. It is also stressed that peripheral blockade of dopamine receptors by DOM is unable to amplify the GH response to GHRH only in elderly men. A reduction in GH release after GHRH might be related to aging, perhaps through a reduction of dopaminergic tonus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号