首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The precise control of many T cell functions relies on cytosolic Ca(2+) dynamics that is shaped by the Ca(2+) release from the intracellular store and extracellular Ca(2+) influx. The Ca(2+) influx activated following T cell receptor (TCR)-mediated store depletion is considered to be a major mechanism for sustained elevation in cytosolic Ca(2+) concentration ([Ca(2+)](i)) necessary for T cell activation, whereas the role of intracellular Ca(2+) release channels is believed to be minor. We found, however, that in Jurkat T cells [Ca(2+)](i) elevation observed upon activation of the store-operated Ca(2+) entry (SOCE) by passive store depletion with cyclopiazonic acid, a reversible blocker of sarco-endoplasmic reticulum Ca(2+)-ATPase, inversely correlated with store refilling. This indicated that intracellular Ca(2+) release channels were activated in parallel with SOCE and contributed to global [Ca(2+)](i) elevation. Pretreating cells with (-)-xestospongin C (10 microM) or ryanodine (400 microM), the antagonists of inositol 1,4,5-trisphosphate receptor (IP3R) or ryanodine receptor (RyR), respectively, facilitated store refilling and significantly reduced [Ca(2+)](i) elevation evoked by the passive store depletion or TCR ligation. Although the Ca(2+) release from the IP3R can be activated by TCR stimulation, the Ca(2+) release from the RyR was not inducible via TCR engagement and was exclusively activated by the SOCE. We also established that inhibition of IP3R or RyR down-regulated T cell proliferation and T-cell growth factor interleukin 2 production. These studies revealed a new aspect of [Ca(2+)](i) signaling in T cells, that is SOCE-dependent Ca(2+) release via IP3R and/or RyR, and identified the IP3R and RyR as potential targets for manipulation of Ca(2+)-dependent functions of T lymphocytes.  相似文献   

2.
3.
Activation of T lymphocytes requires protein kinase C theta (PKC-theta) and an appropriately elevated free intracellular Ca2+ concentration ([Ca2+]i). Here, we show that phorbol 12 myristate 13-acetate (PMA) inhibited Ca2+ influx in wild-type but not PKC-theta-/- T cells, suggesting that PKC-theta plays a role in PMA-mediated inhibition of Ca2+ influx. In contrast, T cell receptor (TCR) crosslinking in the same PKC-theta-/- T cells did result in significantly decreased [Ca2+]i compared to wild-type T cells, suggesting a positive role for PKC-theta in TCR-mediated Ca2+ mobilization. In PKC-theta-/- mice, peripheral mature T cells, but not developing thymocytes, displayed significantly decreased TCR-induced Ca2+ influx and nuclear factor of activated T cells (NFAT) translocation upon sub-optimal TCR crosslinking. The decreased intracellular free Ca2+ was due to changes in Ca2+ influx but not efflux, as observed in extracellular and intracellular Ca2+ mobilization studies. However, these differences in Ca2+ influx and nuclear factor of activated T cells (NFAT) translocation disappeared with increasing intensity of TCR crosslinking. The enhancing effect of PKC-theta on Ca2+ influx is not only dependent on the strength of TCR crosslinking but also on the developmental stage of T cells. The underlying mechanism involved phospholipase Cgamma1 activation and inositol triphosphate production. Furthermore, knockdown of endogenous PKC-theta expression in Jurkat cells resulted in significant inhibition of TCR-induced activation of NFAT, as evidenced from NFAT reporter studies. Forced expression of a constitutively active form of calcineurin in PKC-theta-/- Jurkat cells could readily overcome the above inhibition. Thus, PKC-theta can both positively and negatively regulate the Ca2+ influx that is critical for NFAT activity.  相似文献   

4.
5.
Previous investigations have demonstrated molecular and functional expression, at early phases of development of skeletal muscle cells in primary culture, of cardiac isoforms of proteins involved in calcium transport and regulation, like the L-type calcium channel. Here the expression of the cardiac isoform of the Na(+)/Ca(2+) exchanger (NCX1) was studied in skeletal muscle cells developing in vitro, by using biochemical, immunological, and electrophysiological techniques. Northern and Western blot experiments revealed the presence of this cardiac exchanger and its increasing expression during the early phases of development. Confocal imaging of myotubes showed an NCX1 distribution that was predominantly sarcolemmal. The whole-cell patch-clamp technique allowed us to record ionic currents, the direction and the amplitude of which depended on extracellular sodium and calcium concentrations. The developmental changes of this functional expression could be correlated with the molecular NCX1 expression changes. Taken together these data demonstrate the presence of the NCX1 isoform of the Na(+)/Ca(2+) exchanger during in vitro myogenesis and reinforce the theory that significant levels of cardiac-type proteins are transiently expressed during the early phases of the skeletal muscle cell development.  相似文献   

6.
7.
Persistent tumour necrosis factor alpha (TNF-alpha) exposure uncouples proximal T-cell receptor (TCR)-signalling events. Here, we demonstrate that chronic TNF-alpha exposure also attenuates signalling distal to the TCR, by specifically inhibiting Ca2+ influx evoked by thapsigargin in CD4+ T-cells. Mitogen-induced Ca2+ responses were impaired in a dose dependent manner, and TCR-induced Ca2+ responses were also significantly reduced. The impairment of Ca2+ influx strongly correlated with poor function as proliferative responses to both mitogen and anti-CD3/CD28 stimulation were suppressed. Our findings show that persistent TNF-alpha exposure of T-cells specifically inhibits store operated Ca2+ influx. This may affect gene activation and contribute to the poor T-cell function in chronic inflammatory disease.  相似文献   

8.
In skeletal muscle, Mg(2+) exerts a dual inhibitory effect on RyR1, by competing with Ca(2+) at the activation site and binding to a low affinity Ca(2+)/Mg(2+) inhibitory site. Pharmacological activators of RyR1 must overcome the inhibitory action of Mg(2+) before Ca(2+) efflux can occur. In normal muscle, where the free [Mg(2+)](i) is approximately 1mM, even prolonged exposure to millimolar levels of volatile anesthetics does not initiate SR Ca(2+) release. However, when the cytosolic [Mg(2+)] is reduced below the physiological range, low levels of volatile anesthetic within the clinically relevant range (1mM) can initiate SR Ca(2+) release, in the form of a propagating Ca(2+) wave. In human muscle fibers from malignant hyperthermia susceptible patients, such Ca(2+) waves occur when 1mM halothane is applied at physiological [Mg(2+)](i). There is increasing evidence to suggest that defective Mg(2+) regulation of RyR1 confers susceptibility to malignant hyperthermia. At the molecular level, interactions between critical RyR1 subdomains may explain the clustering of RyR1 mutations and associated effects on Mg(2+) regulation.  相似文献   

9.
10.
11.
12.
Allogeneic bone marrow transplantation (BMT) has become a therapy of choice for the treatment of certain malignancies and hematopoietic disorders. However, immunodeficiencies following BMT continue to cause significant morbidity and mortality. We have compared the T cell receptor (TCR) repertoire of BMT patients and healthy control individuals by staining peripheral blood mononuclear cells with fluorochrome-labeled TCR-specific antibodies. Several patients exhibited a biased pattern of TCR expression atypical of the healthy controls, yet no particular TCR bias characterized all patients. For example, we found that 2%–8% of T cell from healthy individuals expressed the V19 TCR. One BMT patient exhibited V19 expression on more than 60% of peripheral T cells, while additional patients expressed V19 on less than 1% of T cells. The patients with the most extreme skewing of TCR types suffered from graft-versus-host disease. The causes of skewed TCR V expression patterns in BMT patients are not fully understood, yet some researchers have suggested that an oligoclonal expansion of CD8+ T cell populations may be largely responsible. To test this hypothesis, we examined the TCR V repertoire of CD4+ and CD8+ T cell populations. We found that biased V expression characterized both CD4+ and CD8+ T cell populations, sometimes within a single individual. Thus, therapies directed toward CD8+ T cells alone may not fully correct repertoire abnormalities following BMT.  相似文献   

13.
14.
In order to investigate the currently unknown cellular signaling pathways of T-type Ca(2+) channels, we decided to construct a new cell line which would stably express alpha(1G) and Kir2.1 subunits in HEK293 cells (HEK293/alpha(1G)/Kir2.1). Compared to cells which only expressed alpha(1G) (HEK293/alpha(1G)), HEK293/alpha(1G)/Kir2.1 cells produced an enormous inward rectifying current which was blocked by external Ba(2+) and Cs(+) in a concentration-dependent manner. The expression of Kir2.1 channels contributed significantly to the shift of membrane potential from -12.2+/-2.8 to -57.3+/-3.7mV. However, biophysical and pharmacological properties of alpha(1G)-mediated Ca(2+) channels remained unaffected by the expression of Kir2.1 subunits, except for the enlarging of the window current region. Biochemical activation of alpha(1G) channels using 150mM KCl brought about an increase in [Ca(2+)](i), which was blocked by mibefradil, the T-type Ca(2+) channel blocker. These data suggest that the HEK293/alpha(1G)/Kir2.1 cell line would have potential uses in the study of T-type Ca(2)(+) channel-mediated signaling pathways and possibly useful in the development of new therapeutic drugs associated with T-type Ca(2)(+) channels.  相似文献   

15.
The role of cyclic ADP-ribose in the amplification of subcellular and global Ca2+ signaling upon stimulation of P2Y purinergic receptors was studied in 3T3 fibroblasts. Either (1) 3T3 fibroblasts (CD38- cells), (2) 3T3 fibroblasts preloaded by incubation with extracellular cyclic ADP-ribose (cADPR), (3) 3T3 fibroblasts microinjected with ryanodine, or (4) 3T3 fibroblasts transfected to express the ADP-ribosyl cyclase CD38 (CD38+ cells) were used. Both preincubation with cADPR and CD38 expression resulted in comparable intracellular amounts of cyclic ADP-ribose (42.3 +/- 5.2 and 50.5 +/- 8.0 pmol/mg protein). P2Y receptor stimulation of CD38- cells yielded a small increase of intracellular Ca2+ concentration and a much higher Ca2+ signal in CD38-transfected cells, in cADPR-preloaded cells, or in cells microinjected with ryanodine. Confocal Ca2+ imaging revealed that stimulation of ryanodine receptors by cADPR or ryanodine amplified localized pacemaker Ca2+ signals with properties resembling Ca2+ quarks and triggered the propagation of such localized signals from the plasma membrane toward the internal environment, thereby initiating a global Ca2+ wave.  相似文献   

16.
DRAK2 is a serine/threonine kinase highly enriched in lymphocytes that raises the threshold for T cell activation and maintains T cell survival following productive activation. T cells lacking DRAK2 are prone to activation under suboptimal conditions and exhibit enhanced calcium responses to AgR stimulation. Despite this, mice lacking DRAK2 are resistant to organ-specific autoimmune diseases due to defective autoreactive T cell survival. DRAK2 kinase activity is induced by AgR signaling, and in this study we show that the induction of DRAK2 activity requires Ca(2+) influx through the Ca(2+) release-activated Ca(2+) channel formed from Orai1 subunits. Blockade of DRAK2 activity with the protein kinase D (PKD) inhibitor G?6976 or expression of a kinase-dead PKD mutant prevented activation of DRAK2, whereas a constitutively active PKD mutant promoted DRAK2 function. Knockdown of PKD in T cells strongly blocked endogenous DRAK2 activation following TCR ligation, implicating PKD as an essential intermediate in the activation of DRAK2 by Ca(2+) influx. Furthermore, we identify DRAK2 as a novel substrate of PKD, and demonstrate that DRAK2 and PKD physically interact under conditions that activate PKD. Mitochondrial generation of reactive oxygen intermediates was necessary and sufficient for DRAK2 activation in response to Ca(2+) influx. Taken together, DRAK2 and PKD form a novel signaling module that controls calcium homeostasis following T cell activation.  相似文献   

17.
The activation of Ca(2+) entry through store-operated channels by agonists that deplete Ca(2+) from the endoplasmic reticulum (ER) is an ubiquitous signaling mechanism, the molecular basis of which has remained elusive for the past 20 years. In T lymphocytes, store-operated Ca(2+)-release-activated Ca(2+) (CRAC) channels constitute the sole pathway for Ca(2+) entry following antigen-receptor engagement, and their function is essential for driving the program of gene expression that underlies T-cell activation by antigen. The first molecular components of this pathway have recently been identified: stromal interaction molecule 1 (STIM1), the ER Ca(2+) sensor, and Orai1, a pore-forming subunit of the CRAC channel. Recent work shows that CRAC channels are activated in a complex fashion that involves the co-clustering of STIM1 in junctional ER directly opposite Orai1 in the plasma membrane. These studies reveal an abundance of sites where Ca(2+) signaling might be controlled to modulate the activity of T cells during the immune response.  相似文献   

18.
The pronephros is the first kidney to develop and is the functional embryonic kidney in lower vertebrates. It has previously been shown that pronephric tubules can be induced to form ex vivo in ectodermal tissue by treatment with activin A and retinoic acid. In this study, we investigated the role of Ca(2+) signaling in the formation of the pronephric tubules both in intact Xenopus embryos and ex vivo. In the ex vivo system, retinoic acid but not activin A stimulated the generation of Ca(2+) transients during tubule formation. Furthermore, tubule differentiation could be induced by agents that increase the concentration of intracellular Ca(2+) in activin A-treated ectoderm. In addition, tubule formation was inhibited by loading the ectodermal tissue with the Ca(2+) chelator, BAPTA-AM prior to activin A/retinoic acid treatment. In intact embryos, Ca(2+) transients were also recorded during tubule formation, and photo-activation of the caged Ca(2+) chelator, diazo-2, localized to the pronephric domain, produced embryos with a shortened and widened tubule phenotype. In addition, the location of the Ca(2+) transients observed, correlated with the expression pattern of the specific pronephric tubule gene, XSMP-30. These data indicate that Ca(2+) might be a necessary signal in the process of tubulogenesis both ex vivo and in intact embryos.  相似文献   

19.
The role of intracellular Ca2+ signaling in starvation-induced autophagy remains unclear. Here, we examined Ca2+ dynamics during starvation-induced autophagy and the underlying molecular mechanisms. Tightly correlating with autophagy stimulation, we observed a remodeling of the Ca2+ signalosome. First, short periods of starvation (1 to 3 h) caused a prominent increase of the ER Ca2+-store content and enhanced agonist-induced Ca2+ release. The mechanism involved the upregulation of intralumenal ER Ca2+-binding proteins, calreticulin and Grp78/BiP, which increased the ER Ca2+-buffering capacity and reduced the ER Ca2+ leak. Second, starvation led to Ins(1,4,5)P3R sensitization. Immunoprecipitation experiments showed that during starvation Beclin 1, released from Bcl-2, first bound with increasing efficiency to Ins(1,4,5)P3Rs; after reaching a maximal binding after 3 h, binding, however, decreased again. The interaction site of Beclin 1 was determined to be present in the N-terminal Ins(1,4,5)P3-binding domain of the Ins(1,4,5)P3R. The starvation-induced Ins(1,4,5)P3R sensitization was abolished in cells treated with BECN1 siRNA, but not with ATG5 siRNA, pointing toward an essential role of Beclin 1 in this process. Moreover, recombinant Beclin 1 sensitized Ins(1,4,5)P3Rs in 45Ca2+-flux assays, indicating a direct regulation of Ins(1,4,5)P3R activity by Beclin 1. Finally, we found that Ins(1,4,5)P3R-mediated Ca2+ signaling was critical for starvation-induced autophagy stimulation, since the Ca2+ chelator BAPTA-AM as well as the Ins(1,4,5)P3R inhibitor xestospongin B abolished the increase in LC3 lipidation and GFP-LC3-puncta formation. Hence, our results indicate a tight and essential interrelation between intracellular Ca2+ signaling and autophagy stimulation as a proximal event in response to starvation.  相似文献   

20.
We investigated signal transduction between receptor-operated Ca(2+) influx (ROCI) and Src-related nonreceptor protein tyrosine kinase (PTK) in rat pancreatic acini. CCK and the Ca(2+) ionophore enhanced the Src-related PTK activity, whereas the high-affinity CCK-A receptor agonists, fibroblast growth factor (FGF), and the protein kinase C (PKC) activator had no or little effect. This increase was abolished by eliminating [Ca(2+)](o), loading of the intracellular Ca(2+) chelator, and administering the PTK inhibitor genistein. While genistein inhibited extracellular Ca(2+) or Mn(2+) entry induced by CCK and carbachol, it did not affect intracellular Ca(2+) release and oscillations. CCK dose-dependently increased the Src phosphotransferase activity, which was abolished by inhibitors of G(q) protein, phospholipase C (PLC), and Src, but not by the calmodulin kinase (CaMK) inhibitor. Intensities of the Src band and amounts of tyrosine phosphorylated Src were enhanced by CCK stimulation. Thus, Src cascades appear to be coupled to the low-affinity CCK-A receptor and utilize G(q)-PLC pathways for their activation, independent of PKC and CaMK cascades. The low-affinity CCK-A receptor regulates ROCI via mediation of Src-related PTK and activates Src pathways to cause [Ca(2+)](o)-dependent pancreatic exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号