首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From several surveys of environmental sites, the virulent human pathogen, Naegleria fowleri, was isolated from a pond in Georgia, a sewage treatment plant in Missouri, and from the Potomac and Anacostia rivers near and in Washington, D.C. Widely scattered, sparse populations seemed only a potential threat to human health at the time of sampling. The data support an estimate that the sites sampled contain 10,000 typical, low temperature, bactivorous amoebae for each heat tolerant amoeba able to grow at 45° C. Heat tolerant competitors were much more common than N. fowleri. Naegleria lovaniensis, which is heat tolerant but nonpathogenic, was isolated from and downstream from an open air thermal pollution temperature gradient. Hot piles of composting sewage sludge yielded no amoeboflagellates, many heat tolerant (45–49° C) amoebae, and one thermophilic (52° C) Acanthamoeba. Features of the methods used include two-stage incubation to increase isolation of sparse organisms and distinction of N. fowleri from almost all other amoebae on agar plates. The flagellate-empty habitat hypothesis postulates a general model in which human intervention and/ or natural events remove usual competitors and the ability to transform to a motile flagellate confers an advantage in recolonizing.  相似文献   

2.
Pathogenic Naegleria fowleri is the causative agent of fatal human amoebic meningoencephalitis. The protozoan is ubiquitous in nature, and its presence is enhanced by thermal additions. In this investigation, water and sediments from a newly created cooling lake were quantitatively analyzed for the presence of thermophilic amoebae, thermophilic Naegleria spp., and the pathogen Naegleria fowleri. During periods of thermal additions, the concentrations of thermophilic amoebae and thermophilic Naegleria spp. increased as much as 5 orders of magnitude, and the concentration of the pathogen N. fowleri increased as much as 2 orders of magnitude. Concentrations of amoebae returned to prior thermal perturbation levels within 30 to 60 days after cessation of thermal additions. Increases in the thermophilic amoeba concentrations were noted in Savannah River oxbows downriver from the Savannah River plant discharge streams as compared with oxbows upriver from the discharges. Concentrations of thermophilic amoebae and thermophilic Naegleria spp. correlated significantly with temperature and conductivity. Air samples taken proximal to the lake during periods of thermal addition showed no evidence of thermophilic Naegleria spp. Isoenzyme patterns of the N. fowleri isolated from the cooling lake were identical to patterns of N. fowleri isolated from other sites in the United States and Belgium.  相似文献   

3.
Pathogenic Naegleria fowleri is the causative agent of fatal human amoebic meningoencephalitis. The protozoan is ubiquitous in nature, and its presence is enhanced by thermal additions. In this investigation, water and sediments from a newly created cooling lake were quantitatively analyzed for the presence of thermophilic amoebae, thermophilic Naegleria spp., and the pathogen Naegleria fowleri. During periods of thermal additions, the concentrations of thermophilic amoebae and thermophilic Naegleria spp. increased as much as 5 orders of magnitude, and the concentration of the pathogen N. fowleri increased as much as 2 orders of magnitude. Concentrations of amoebae returned to prior thermal perturbation levels within 30 to 60 days after cessation of thermal additions. Increases in the thermophilic amoeba concentrations were noted in Savannah River oxbows downriver from the Savannah River plant discharge streams as compared with oxbows upriver from the discharges. Concentrations of thermophilic amoebae and thermophilic Naegleria spp. correlated significantly with temperature and conductivity. Air samples taken proximal to the lake during periods of thermal addition showed no evidence of thermophilic Naegleria spp. Isoenzyme patterns of the N. fowleri isolated from the cooling lake were identical to patterns of N. fowleri isolated from other sites in the United States and Belgium.  相似文献   

4.
Cytopathogenicity of Naegleria fowleri for cultured rat neuroblastoma cells   总被引:3,自引:0,他引:3  
The cytopathogenicity of Naegleria fowleri strain LEE (ATCC-30894) for cultured rat neuroblastoma cells (B-103) has been investigated. Both live N. fowleri amoebae and Naegleria lysates added to 51Cr-labeled B-103 cells caused release of radiolabel, which was dependent upon the ratio of amoebae to target cells or to the lysate concentration. Lysates of N. fowleri strains LEE, NF-66, NF-69, and HB-4 were equally injurious to B-103 target cells whereas lysates of strains 6088 and KUL were less cytotoxic. Highly pathogenic mouse-passaged strain LEE were less cytotoxic than axenically grown amoebae. Maximum cytotoxicity was observed in lysates from amoebae in late exponential or early stationary phase of growth. Cytopathogenicity of lysates was reduced after heating at 44 degrees C for 60 min or at 60 degrees C for 30 min. Cytotoxicity was stable during storage at 4 degrees C or at -20 degrees C for 26 h. Neither live amoebae nor lysates injured B-103 target cells at 4 degrees C. Live amoebae and lysates injured B-103 by a time, temperature, and concentration dependent process.  相似文献   

5.
Samples from therapeutic swimming pools and mud basins were cultured for free-living amoebae. Seven strains of pathogenic Naegleria species were isolated. Although some of the strains were as virulent as Naegleria fowleri, the etiological agent of primary amoebic meningoencephalitis, they were identified as Naegleria australiensis with the indirect fluorescent-antibody technique. The virulence of the isolates for mice corresponded with the cytopathic effect for Vero cells. The N. australiensis strains were isolated from swimming pools with water temperatures ranging from 32 to 35 degrees C and from mud with temperatures from 25 to 43 degrees C. The presence of pathogenic N. australiensis in the swimming pools did not correlate with bacterial indicators.  相似文献   

6.
Samples from therapeutic swimming pools and mud basins were cultured for free-living amoebae. Seven strains of pathogenic Naegleria species were isolated. Although some of the strains were as virulent as Naegleria fowleri, the etiological agent of primary amoebic meningoencephalitis, they were identified as Naegleria australiensis with the indirect fluorescent-antibody technique. The virulence of the isolates for mice corresponded with the cytopathic effect for Vero cells. The N. australiensis strains were isolated from swimming pools with water temperatures ranging from 32 to 35 degrees C and from mud with temperatures from 25 to 43 degrees C. The presence of pathogenic N. australiensis in the swimming pools did not correlate with bacterial indicators.  相似文献   

7.
A quantitative study of the seasonal distribution of thermotolerant (37 degrees C and 45 degrees C), small free-living amoebae (FLA) was conducted in Lake Issaqueena, a warm, monomictic lake with steep, sloping banks and a maximum basin depth of 10 m in the Piedmont region of South Carolina. Naegleria and Vahlkampfia were the most frequently encountered FLA in littoral sediment and surface water samples whereas Acanthamoeba was most commonly isolated from profundal sediment, especially during late summer. In the water column, FLA populations were highest in a persistent detrital layer; however, few amoebae were isolated from a massive (approximately 1.5 m thick) layer of Oscillatoria. The only N. fowleri isolated in this study was from the detrital layer. Discussion of the influence of differences in watershed and basin morphology on variations in the size and generic composition of FLA populations for the aquatic ecosystems of Lake Issaqueena and Willard's Pond is included.  相似文献   

8.
9.
The pathogenic, free-living amoeba Naegleria fowleri is the causative agent of human primary amebic meningoencephalitis. N. fowleri has been isolated from thermally elevated aquatic environments worldwide, but temperature factors associated with occurrence of the amoeba remain undefined. In this study, a newly created cooling reservoir (Clinton Lake, Illinois) was surveyed for Naegleria spp. before and after thermal additions from a nuclear power plant. Water and sediment samples were collected from heated and unheated arms of the reservoir and analyzed for the presence of thermophilic Naegleria spp. and pathogenic N. fowleri. Amoebae were identified by morphology, in vitro cultivation, temperature tolerance, mouse pathogenicity assay, and DNA restriction fragment length analysis. N. fowleri was isolated from the thermally elevated arm but not from the ambient-temperature arm of the reservoir. The probability of isolating thermophilic Naegleria and pathogenic N. fowleri increased significantly with temperature. Repetitive DNA restriction fragment profiles of the N. fowleri Clinton Lake isolates and a known N. fowleri strain of human origin were homogeneous.  相似文献   

10.
The indirect fluorescent-antibody technique was used to assess a rapid method for identification of amoebae belonging to the genus Naegleria. Thirty-eight Naegleria and eight other limax amoeba strains were examined by using one N. gruberi and two N. fowleri antisera. All pathogenic Naegleriae, most of which originated from fatal cases of primary amoebic meningo-encephalitis, were identified as belonging to the fowleri species. Most of the N. gruberi strains showed irregular fluorescence. Other limax amoebae, such as Vahlkampfia, Acanthamoeba, Hartmannella, and Schizopyrenus sp. gave negative responses with the prepared antisera. The indirect fluorescent-antibody technique allows the identification of N. fowleri in a mixed culture of both N. fowleri and N. gruberi strains. Twenty-two Naegleria isolated from a suspected stream, other surface waters, and muddy soil could be excluded from the fowleri species with the indirect fluorescent-antibody technique. The results obtained demonstrate that this immunological technique is a valid method for the rapid identification of N. fowleri trophozoites.  相似文献   

11.
The pathogenic, free-living amoeba Naegleria fowleri is the causative agent of human primary amebic meningoencephalitis. N. fowleri has been isolated from thermally elevated aquatic environments worldwide, but temperature factors associated with occurrence of the amoeba remain undefined. In this study, a newly created cooling reservoir (Clinton Lake, Illinois) was surveyed for Naegleria spp. before and after thermal additions from a nuclear power plant. Water and sediment samples were collected from heated and unheated arms of the reservoir and analyzed for the presence of thermophilic Naegleria spp. and pathogenic N. fowleri. Amoebae were identified by morphology, in vitro cultivation, temperature tolerance, mouse pathogenicity assay, and DNA restriction fragment length analysis. N. fowleri was isolated from the thermally elevated arm but not from the ambient-temperature arm of the reservoir. The probability of isolating thermophilic Naegleria and pathogenic N. fowleri increased significantly with temperature. Repetitive DNA restriction fragment profiles of the N. fowleri Clinton Lake isolates and a known N. fowleri strain of human origin were homogeneous.  相似文献   

12.
Twenty-three freshwater samples with sediment taken from two regions in the Arctic, Spitzbergen and Greenland, and one region in sub-Antarctica, Ile de la Possession, were cultured for amoebae at 37 degrees C and room temperature (RT). Only two samples yielded amoebae at 37 degrees C and the two isolates were identified from their morphological features to belong to the genus Acanthamoeba. Vahlkampfiid amoebae were isolated from 11 samples at RT. Morphological analysis of the cysts identified all 11 isolates as belonging to the genus Naegleria, although only about half of them (45%) transformed into flagellates. Ribosomal DNA sequence analysis demonstrated that these isolates represent novel species and that N. antarctica, N. dobsoni and N. chilensis are their closest relatives. Not surprisingly, these three species also grow at lower temperatures (<37 degrees C) than the majority of described Naegleria spp. Two of the eight new species were found in both Arctic and sub-Antarctic regions, and other new species from the Arctic are closely related to new species from the sub-Antarctic. Therefore, it seems the Naegleria gene pool present in the polar regions is different from that found in temperate and tropical regions.  相似文献   

13.
Biological factors affecting enflagellation of Naegleria fowleri.   总被引:2,自引:0,他引:2       下载免费PDF全文
Naegleria fowleri is a pathogenic amoeboflagellate that can be evoked to transform from amoebae to flagellates by subculture to nonnutrient buffer. More than half of the amoebae of strains KUL, nN68, and Lovell became enflagellated 300 min after subculture to amoeba-saline, whereas no amoebae of strains NF66, NF69, and HB4 did. N. fowleri nN68 enflagellated best when grown at 32 or 37 degrees C and subcultured to amoeba-saline at 37 or 42 degrees C. Amoebae from the stationary phase of growth enflagellated more readily than did actively growing amoebae. Incubation in expended culture medium from stationary-phase cultures enhanced the capability of growing amoebae to enflagellate after subculture to amoebasaline. Enflagellation was more extensive when the population density in amoebasaline did not exceed 2 x 10(5) amoebae per ml. Cycloheximide at 1 microgram/ml and actinomycin D at 25 micrograms/ml inhibited growth of N. fowleri nN68. Cycloheximide at 0.5 microgram/ml and actinomycin D at 25 micrograms/ml completely prevented enflagellation when added at time zero. Cycloheximide at 0.5 microgram/ml, added 120 to 300 min after initiation of enflagellation, prevented further differentiation and caused existing flagellates to revert to amoeboid cells. Similarly, actinomycin D at 25 micrograms/ml, added 90 to 300 min after initiation of enflagellation, retarded differentiation and caused flagellates to revert. Radiolabeled precursors were incorporated into macromolecules during differentiation in nonnutrient buffer. Enflagellation of N. fowleri is a suitable model for studying regulation of a eucaryotic protist.  相似文献   

14.
Naegleria fowleri is the etiologic agent of primary amoebic meningoencephalitis (PAM). Proteases have been suggested to be involved in tissue invasion and destruction during infection. We analyzed and compared the complete protease profiles of total crude extract and conditioned medium of both pathogenic N. fowleri and non-pathogenic Naegleria gruberi trophozoites. Using SDS-PAGE, we found differences in the number and molecular weight of proteolytic bands between the two strains. The proteases showed optimal activity at pH 7.0 and 35 degrees C for both strains. Inhibition assays showed that the main proteolytic activity in both strains is due to cysteine proteases although serine proteases were also detected. Both N. fowleri and N. gruberi have a variety of different protease activities at different pH levels and temperatures. These proteases may allow the amoebae to acquire nutrients from different sources, including those from the host. Although, the role of the amoebic proteases in the pathogenesis of PAM is not clearly defined, it seems that proteases and other molecules of the parasite as well as those from the host, could be participating in the damage to the human central nervous system.  相似文献   

15.
Samples from 24 aquaria were incubated at 28, 37, and 45 degrees C for the isolation of Naegleria and Acanthamoeba. Naegleria was the predominant genus (60.9%), whereas Acanthamoeba represented 15.5% of the isolates. No pathogenic N. fowleri was identified, although a high number of strains were closely related to this species. One isolate (Aq/9/1/45D) was compared with an aquarium isolate (PPMFB-6) from Australia. The Belgian isolate was found to be more related to N. fowleri, whereas the Australian isolate was closer to N. gruberi.  相似文献   

16.
Samples from 24 aquaria were incubated at 28, 37, and 45 degrees C for the isolation of Naegleria and Acanthamoeba. Naegleria was the predominant genus (60.9%), whereas Acanthamoeba represented 15.5% of the isolates. No pathogenic N. fowleri was identified, although a high number of strains were closely related to this species. One isolate (Aq/9/1/45D) was compared with an aquarium isolate (PPMFB-6) from Australia. The Belgian isolate was found to be more related to N. fowleri, whereas the Australian isolate was closer to N. gruberi.  相似文献   

17.
Sucker-like structures on the pathogenic amoeba Naegleria fowleri.   总被引:4,自引:1,他引:3       下载免费PDF全文
Using scanning electron microscopy, we observed sucker-like structures on amoebae of 13 human isolates of Naegleria fowleri. The number of suckers per amoeba seemed to vary according to the virulence of the strain. We propose the term amoebastome to describe this unique sucker-like structure of N. fowleri.  相似文献   

18.
Using scanning electron microscopy, we observed sucker-like structures on amoebae of 13 human isolates of Naegleria fowleri. The number of suckers per amoeba seemed to vary according to the virulence of the strain. We propose the term amoebastome to describe this unique sucker-like structure of N. fowleri.  相似文献   

19.
Among the many genera of free-living amoebae that exist in nature, members of only four genera have an association with human disease: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri and Sappinia diploidea. Acanthamoeba spp. and B. mandrillaris are opportunistic pathogens causing infections of the central nervous system, lungs, sinuses and skin, mostly in immunocompromised humans. Balamuthia is also associated with disease in immunocompetent children, and Acanthamoeba spp. cause a sight-threatening infection, Acanthamoeba keratitis, mostly in contact-lens wearers. Of more than 30 species of Naegleria, only one species, N. fowleri, causes an acute and fulminating meningoencephalitis in immunocompetent children and young adults. In addition to human infections, Acanthamoeba, Balamuthia and Naegleria can cause central nervous system infections in animals. Because only one human case of encephalitis caused by Sappinia diploidea is known, generalizations about the organism as an agent of disease are premature. In this review we summarize what is known of these free-living amoebae, focusing on their biology, ecology, types of disease and diagnostic methods. We also discuss the clinical profiles, mechanisms of pathogenesis, pathophysiology, immunology, antimicrobial sensitivity and molecular characteristics of these amoebae.  相似文献   

20.
Differences in the distribution of diverse cell surface coat markers were found between Naegleria fowleri and Naegleria lovaniensis. The presence of carbohydrate-containing components in the cell coat of the two species was detected by selective staining with ruthenium red and alcian blue. Using both markers, N. fowleri presented a thicker deposit than N. lovaniensis. The existence of exposed mannose or glucose residues was revealed by discriminatory agglutination with the plant lectin Concanavalin A. These sugar residues were also visualized at the cell surface of these parasites either by transmission electron microscopy or by fluorescein-tagged Concanavalin A. Using this lectin cap formation was induced only in N. fowleri. The anionic sites on the cell surface detected by means of cationized ferritin were more apparent in N. fowleri. Biotinylation assays confirmed that even though the two amoebae species have some analogous plasma membrane proteins, there is a clear difference in their composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号