首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of glucagon and of adrenaline to affect the concentration of fructose 2,6-bisphosphate in isolated hepatocytes was re-investigated because of important discrepancies existing in the literature. We were unable to detect a significant difference in the sensitivity of the hepatocytes with regard to the effect of glucagon to initiate the interconversion of phosphorylase, pyruvate kinase, 6-phosphofructo-2-kinase and fructose 2,6-bisphosphatase, and also to cause the disappearance of fructose 2,6-bisphosphate. In contrast, we have observed differences in the time-course of these various changes, since the interconversions of phosphorylase and of pyruvate kinase were at least twice as fast as those of 6-phosphofructo-2-kinase and of fructose 2,6-bisphosphatase. When measured in a cell-free system in the presence of MgATP, the cyclic AMP-dependent interconversion of pyruvate kinase was 5-10-fold more rapid than those of 6-phosphofructo-2-kinase and of fructose 2,6-bisphosphatase. These data indicate that 6-phosphofructo-2-kinase and fructose 2,6-bisphosphatase are relatively poor substrates for cyclic AMP-dependent protein kinase; they also support the hypothesis that the two catalytic activities belong to a single protein. Adrenaline had only a slight effect on the several parameters under investigation, except for the activation of phosphorylase. In the absence of Ca2+ ions from the incubation medium, however, adrenaline had an effect similar to that of glucagon.  相似文献   

2.
Regulation of fructose 2,6-bisphosphate concentration in spinach leaves   总被引:8,自引:0,他引:8  
Fructose-6-phosphate 2-kinase and fructose-2,6-bisphosphatase have been partially purified from spinach leaves and their regulatory properties studied. Fructose-6-phosphate 2-kinase was activated by phosphate and fructose 6-phosphate, and inhibited by 3-phosphoglycerate and dihydroxyacetone phosphate. Fructose-2,6-bisphosphatase was inhibited by fructose 6-phosphate and phosphate. The interaction between these effectors was studied when they were varied, alone or in combination, over a range of concentrations representative of those in the cytosol of spinach leaf cells. In conditions when dihydroxyacetone phosphate or 3-phosphoglycerate rise, as is typical during photosynthesis, the fructose 2,6-bisphosphate level will decrease, which will favour sucrose synthesis. In conditions when fructose 6-phosphate accumulates, fructose 2,6-bisphosphate should rise, which will favour a restriction of sucrose synthesis and promotion of starch synthesis.  相似文献   

3.
Injection of insulin to fed rats diminished the concentration of fructose 2,6-bisphosphate in white adipose tissue. Incubation of epididymal fat-pads or adipocytes with insulin stimulated lactate release and sugar detritiation and also decreased fructose 2,6-bisphosphate concentration. Such a decrease was, however, not observed in fat-pads from starved or alloxan-diabetic rats. Incubation of adipocytes from fed rats with various concentrations of glucose or fructose led to a dose-dependent rise in fructose 2,6-bisphosphate which correlated with lactate output and detritiation of 3-3H-labelled sugar. In adipocytes from fed rats, palmitate stimulated the detritiation of [3-3H]glucose without affecting lactate production and fructose 2,6-bisphosphate concentration. Incubation of epididymal fat-pads from fed rats in the presence of antimycin stimulated lactate output but decreased fructose 2,6-bisphosphate concentration. Changes in lipolytic rates brought about by noradrenaline, insulin, adenosine and corticotropin in adipocytes from fed rats were not related to changes in fructose 2,6-bisphosphate or to rates of lactate output. In fed rats, the activity of 6-phosphofructo-2-kinase was not changed after treatment of adipocytes with insulin, noradrenaline or adenosine. It is suggested that the decrease in fructose 2,6-bisphosphate concentration observed after insulin treatment can be explained by the increase in sn-glycerol 3-phosphate, an inhibitor of 6-phosphofructo-2-kinase.  相似文献   

4.
5.
Levels of glucose 1,6-P2 but not fructose 2,6-P2 were found decreased in skeletal muscle of alloxan-diabetic ketotic rats. Administration of both insulin and vanadate restored the altered values without affecting fructose 2,6-P2 concentrations. In normal rats, insulin increased muscle levels of both sugars, and vanadate decreased glucose 1,6-P2 without changing fructose 2,6-P2 levels. Enzymatic activities involved in glucose 1,6-P2 and fructose 2,6-P2 metabolism were not affected under any experimental condition.  相似文献   

6.
The presence of adenosine (25-250 microM) or of 2-chloroadenosine (2.5-100 microM) in the incubation medium caused a marked decrease in the concentration of fructose 2,6-bisphosphate in isolated hepatocytes. This effect was accompanied by an increase in the concentration of cyclic AMP, an activation of phosphorylase and of fructose 2,6-bisphosphatase, and an inactivation of pyruvate kinase and of 6-phosphofructo-2-kinase. As a rule, the changes in the fructose 2,6-bisphosphate-modifying system were slower but more persistent than those in the activities of phosphorylase and pyruvate kinase. The effect of the nucleoside to decrease the concentration of fructose 2,6-bisphosphate was not affected by an inhibitor of adenosine transport and could not be obtained in a liver high-speed supernatant. These data indicate that the effect of adenosine to decrease the concentration of fructose 2,6-bisphosphate is mediated by the stimulation of adenylate cyclase, secondary to the binding of adenosine to membranous receptors. Like glucagon, 2-chloroadenosine stimulated gluconeogenesis in isolated hepatocytes, whereas adenosine had an opposite effect.  相似文献   

7.
The effect of insulin and glucose on fructose-2,6-P2 in hepatocytes   总被引:2,自引:0,他引:2  
When rats were kept on a riboflavin-deficient diet, NADPH-cytochrome c and NADPH-ferricyanide reductase activities of the liver microsomes (deficient microsomes) decreased to 27% and 40% of the corresponding controls. To elucidate the unbalanced decrease of these activities in deficient microsomes, enzymological and immunochemical properties of the NADPH-cytochrome P-450 reductase in the liver microsomes of riboflavin-deficient rats were compared with those of control rats. Judging from quantitative immunoprecipitation, the amount of the reductase protein in the deficient microsomes was 67% of control, whereas the FAD and FMN contents in the immunoprecipitates were 110% and 59% of control, respectively. When the reductase was purified from the deficient microsomes, it contained 18.0 and 10.9 nmoles of FAD and FMN, respectively, per mg of protein, while the control enzyme contained 14.5 and 14.3 nmoles of the flavins, respectively. These and other lines of evidence suggest the existence of an abnormal NADPH-cytochrome P-450 reductase, having unbalanced contents of FAD and FMN, in deficient microsomes.  相似文献   

8.
1. Incubation of hepatocytes from fed or starved rats with increasing glucose concentrations caused a stimulation of lactate production, which was further increased under anaerobic conditions. 2. When glycolysis was stimulated by anoxia, [fructose 2,6-bis-phosphate] was decreased, indicating that this ester could not be responsible for the onset of anaerobic glycolysis. In addition, the effect of glucose in increasing [fructose 2,6-bisphosphate] under aerobic conditions was greatly impaired in anoxic hepatocytes. [Fructose 2,6-bisphosphate] was also diminished in ischaemic liver, skeletal muscle and heart. 3. The following changes in metabolite concentration were observed in anaerobic hepatocytes: AMP, ADP, lactate and L-glycerol 3-phosphate were increased; ATP, citrate and pyruvate were decreased: phosphoenolpyruvate and hexose 6-phosphates were little affected. Concentrations of adenine nucleotides were, however, little changed by anoxia when hepatocytes from fed rats were incubated with 50 mM-glucose. 4. The activity of ATP:fructose 6-phosphate 2-phosphotransferase was not affected by anoxia but decreased by cyclic AMP. 5. The role of fructose 2,6-bisphosphate in the regulation of glycolysis is discussed.  相似文献   

9.
Regulation of rat liver fructose 2,6-bisphosphatase   总被引:17,自引:0,他引:17  
An enzyme activity that catalyzes the hydrolysis of phosphate from the C-2 position of fructose 2,6-bisphosphate has been detected in rat liver cytoplasm. The S0.5 for fructose 2,6-bisphosphate was about 15 microM and the enzyme was inhibited by fructose 6-phosphate (Ki 40 microM) and activated by Pi (KA 1 mM). Fructose 2,6-bisphosphatase activity was purified to homogeneity by specific elution from phosphocellulose with fructose by specific elution from phosphocellulose with fructose 6-phosphate and had an apparent molecular weight of about 100,000, 6-phosphofructo 2-kinase activity copurified with fructose 2,6-bisphosphatase activity at each step of the purification scheme. Incubation of the purified protein with [gamma-32P]ATP and the catalytic subunit of the cAMP-dependent protein kinase resulted in the incorporation of 1 mol of 32P/mol of enzyme subunit (Mr = 50,000). Concomitant with this phosphorylation was an activation of the fructose 2,6-bisphosphatase and an inhibition of the 6-phosphofructo 2-kinase activity. Glucagon addition to isolated hepatocytes also resulted in an inhibition of 6-phosphofructo 2-kinase and activation of fructose 2,6-bisphosphatase measured in cell extracts, suggesting that the hormone regulates the level of fructose 2,6-bisphosphate by affecting both synthesis and degradation of the compound. These findings suggest that this enzyme has both phosphohydrolase and phosphotransferase activities i.e. that it is bifunctional, and that both activities can be regulated by cAMP-dependent phosphorylation.  相似文献   

10.
Both wild type and cr-1 mutant (adenylate cyclase and cyclic AMP-deficient) strains of Neurospora crassa contain fructose 2,6-biphosphate at levels of 2t nmol/g dry tissue weight. This level decreases by about 50% in both strains upon depriving the cells of carbon or nitrogen sources for 3 h. An increase in cyclic AMP levels produced by addition of lysine to nitrogen-starved cells produced no increase in fructose 2,6-biphosphate levels. Both strains respond to short-term addition of salicylate, acetate, or 2,4-dinitrophenol with an increase in fructose 2,6-biphosphate. Thus, the above-described regulation of fructose 2,6-biphosphate levels is cyclic AMP-independent. A suspension of the wild type produces a transient increase of fructose 2,6-biphosphate in response to administration of glucose, whereas the mutant strain does not respond unless it is fed exogenous cyclic AMP. Substitution of acetate for sucrose as a sole carbon source for growth leads to a differential decrease in fructose 2,6-biphosphate levels between the two strains: the wild type strain has 63% and the cr-1 mutant strain has 37% of the levels of fructose 2,6-biphosphate on acetate as compared to sucrose-grown controls. This may be the basis for an advantage of cr-1 over wild type in growth on acetate. Thus, although most regulation of fructose 2,6-biphosphate is cyclic AMP-independent, the levels can be regulated by a combination of carbon source and cyclic AMP levels.  相似文献   

11.
Both wild type and cr-1 mutant (adenylate cyclase and cyclic AMP-deficient) strains of Neurospora crassa contain fructose 2,6-bisphosphate at levels of 27 nmol/g dry tissue weight. This level decreases by about 50% in both strains upon depriving the cells of carbon or nitrogen sources for 3 h. An increase in cyclic AMP levels produced by addition of lysine to nitrogen-starved cells produced no increase in fructose 2,6-bisphosphate levels. Both strains respond to short-term addition of salicylate, acetate, or 2,4-dinitrophenol with an increase in fructose 2,6-bisphosphate. Thus, the above-described regulation of fructose 2,6-bisphosphate levels is cyclic AMP-independent. A suspension of the wild type produces a transient increase of fructose 2,6-bisphosphate in response to administration of glucose, whereas the mutant strain does not respond unless it is fed exogenous cyclic AMP. Substitution of acetate for sucrose as a sole carbon source for growth leads to a differential decrease in fructose 2,6-bisphosphate levels between the two strains: the wild type strain has 63% and the cr-1 mutant strain has 37% of the levels of fructose 2,6-bisphosphate on acetate as compared to sucrose-grown controls. This may be the basis for an advantage of cr-1 over wild type in growth on acetate. Thus, although most regulation of fructose 2,6-bisphosphate is cyclic AMP-independent, the levels can be regulated by a combination of carbon source and cyclic AMP levels.  相似文献   

12.
In the present work, the mechanism involved in the regulation of fructose 2,6-bisphosphate (fructose-2,6-P2) metabolism in human fibroblasts has been studied. Various agents like serum, insulin and adrenaline known to affect glycolysis have been investigated for their ability to influence fructose 2,6-P2 metabolism in confluent human fibroblasts. Serum appears to be the most potent activator of fructose-2,6-P2 levels and capable of inducing a marked increase in 6-phosphofructo-2-kinase (ATP: d-fructose-6-phosphate-2-phosphotransferase), EC 2.7.1. 105). To a lesser extent insulin has the same effects. The increase in enzyme activity elicited by serum and insulin does not require de novo protein synthesis since the process is insensitive to cycloheximide. Incubation of fibroblasts in the presence of adrenaline is responsible for a significant rise in fructose-2,6-P2 levels without affecting 6-phosphofructo-2-kinase. Similar experiments performed on glucose-starved or cytochalasin B-treated cells show that the effects elicited by all the agents are strictly dependent on glucose availability.  相似文献   

13.
Fructose 2,6-bisphosphate in isolated foetal hepatocytes   总被引:3,自引:0,他引:3  
Fru 2,6-P2 was present in isolated foetal hepatocytes at a concentration of 1.6 nmol per g cells. When foetal hepatocytes were exposed to glucagon no changes were observed either in the concentration of Fru 2,6-P2 and lactate release or in the activities of 6-phosphofructo-2-kinase and pyruvate kinase. Incubation of purified 6-phosphofructo-2-kinase with the catalytic subunit of protein kinase did not change the enzyme activity. The inhibition by sn-glycerol 3-phosphate was much lower for the foetal than for adult enzyme. These results suggest that an isoenzyme of 6-phosphofructo-2-kinase in foetal hepatocytes different from that of adult hepatocytes may be present.  相似文献   

14.
Nitrofurantoin is a widely utilized urinary antimicrobial drug which has been associated with pulmonary fibrosis, neuropathy, and hepatitis as well as hemolytic anemia in glucose-6-phosphate dehydrogenase-deficient individuals. Incubation of freshly isolated rat hepatocytes with nitrofurantoin caused oxygen activation as a result of futile redox cycling. Glutathione disulfide (GSSG) was formed and rapidly exported from the cell resulting in complete glutathione (GSH) depletion followed by cell death. However, fructose prevented the export of GSSG from the cell and GSH levels recovered rapidly without cytotoxicity occurring. Fructose did not affect nitrofurantoin metabolism but rapidly depleted cellular ATP levels by approximately 80% which remained depressed during the incubation period. Fructose, however, did not protect hepatocytes from nitrofurantoin-induced cytotoxicity if GSH was depleted beforehand. Protection by fructose only occurred at concentrations which caused ATP depletion. These results suggest that fructose prevents nitrofurantoin-induced toxicity by depleting ATP and thereby preventing the ATP-dependent GSSG efflux. GSSG is retained enabling NADPH and glutathione-reductase to reduce the GSSG back to GSH, thereby protecting the cell from nitrofurantoin-induced oxidative stress.  相似文献   

15.
Hepatocytes from overnight-starved rats were incubated with 1-20 mM-fructose, -dihydroxyacetone, -glycerol, -alanine or -lactate and -pyruvate with or without 0.1 microM-glucagon. The production of glucose and lactate was measured, as was the content of fructose 2,6-bisphosphate. The concentrations of fructose (below 5 mM) and dihydroxyacetone (above 1 mM) that gave rise to an increase in fructose 2,6-bisphosphate were those at which a glucagon effect on the production of glucose and lactate could be observed. Glycerol had no effect on fructose 2,6-bisphosphate content or on production of lactate, and glucagon did not stimulate the production of glucose from this precursor. With alanine or lactate/pyruvate as substrates, glucagon stimulated glucose production whether the concentration of fructose 2,6-bisphosphate was increased or not. The extent of inactivation of pyruvate kinase by glucagon was not affected by the presence of the various gluconeogenic precursors. The role of fructose 2,6-bisphosphate in the effect of glucagon on gluconeogenesis from precursors entering the pathway at the level of triose phosphates or pyruvate is discussed.  相似文献   

16.
1. Hepatocytes from starved rats were incubated with 5mm-glucose, labelled uniformly with (14)C and specifically with (3)H at positions 1, 2, 3 or 6, and with fructose at concentrations of 2.5, 7.5 or 25mm. 2. In the absence of other substrates only 1% of the radioactivity initially present in [U-(14)C]glucose appeared in the metabolic products, CO(2), lactate, pyruvate, amino acids and glycogen. 3. Fructose at 2.5mm caused a 30% increase in the glucose concentration and a 4-fold increase in the apparent oxidation of [U-(14)C]-glucose. 4. The formation of (3)H(2)O from [1-(3)H]-, [2-(3)H]-, [3-(3)H]- or [6-(3)H]-glucose was 2.4, 4.3, 2.15 or 1.6% respectively in the control incubations and 4.1, 10.4, 7.7 or 5.1% with 2.5mm-fructose. 5. Fructose at 7.5 and 25mm decreased the (3)H(2)O yields to less than the control values, but had no apparent effect on the amount of [U-(14)C]glucose metabolized. 6. In the incubations with 5mm-glucose and 25mm-fructose there were significant decreases in heat production, O(2) consumption and in the ratio of O(2) uptake to heat output. 7. Fructose at 2.5mm caused a 64% increase in heat output, but only a 43% increase in O(2) uptake. 8. The radioisotopic and calorimetric data demonstrate that physiological concentrations of fructose greatly increase metabolism in hepatocytes from starved rats. These data also indicate increased cycling at glucose/glucose 6-phosphate and at fructose 6-phosphate/fructose 1,6-bisphosphate in the presence of 2.5mm-fructose, although the rates of cycling were actually decreased relative to the amount of glucose catabolized. 9. At concentrations of 2.5, 7.5 and 25mm, fructose depressed hepatocyte ATP concentrations by 20, 65 and 80% respectively. Although fructose at 7.5 and 25mm increased glucose and lactate release, O(2) consumption, production of heat and formation of(3)H(2)O from [1-(3)H]-, [2-(3)H]-, [3-(3)H]- or [6-(3)H]-glucose were lowered to values equal to, or less than, controls. These effects probably reflect a severe derangement of hepatic metabolism due to excess phosphorylation of fructose when present at high concentrations.  相似文献   

17.
The phosphorylation of glucose was measured by the formation of [3H]H2O from [2-3H]glucose in suspensions of freshly isolated rat hepatocytes. Fructose (0.2 mM) stimulated 2-4-fold the rate of phosphorylation of 5 mM glucose although not of 40 mM glucose, thus increasing the apparent affinity of the glucose phosphorylating system. A half-maximal stimulatory effect was observed at about 50 microM fructose. Stimulation was maximal 5 min after addition of the ketose and was stable for at least 40 min, during which period 60% of the fructose was consumed. The effect of fructose was reversible upon removal of the ketose. Sorbitol and tagatose were as potent as fructose in stimulating the phosphorylation of 5 mM glucose. D-Glyceraldehyde also had a stimulatory effect but at tenfold higher concentrations. In contrast, dihydroxyacetone had no significant effect and glycerol inhibited the detritiation of glucose. Oleate did not affect the phosphorylation of glucose, even in the presence of fructose, although it stimulated the formation of ketone bodies severalfold, indicating that it was converted to its acyl-CoA derivative. These results allow the conclusion that fructose stimulates glucokinase in the intact hepatocyte. They also suggest that this effect is mediated through the formation of fructose 1-phosphate, which presumably interacts with a competitive inhibitor of glucokinase other than long-chain acyl-CoAs.  相似文献   

18.
The sensitivity of 6-phosphofructo-2-kinase to glucagon and cyclic AMP was studied during the perinatal period. In liver homogenates from foetal and neonatal rats, incubation with cyclic AMP produced inactivation of 6-phosphofructo-2-kinase 3 h after birth. The maximal effect was obtained 12 h after birth. In primary cultures of hepatocytes from 22-day-old foetuses, glucogon induced an inhibition of 6-phosphofructo-2-kinase that required 45 min to reach the half-maximal effect. Cycloheximide prevented the glucagon-induced changes in this activity from cultured foetal hepatocytes. These results suggest that the adult form of 6-phosphofructo-2-kinase is rapidly induced after birth, probably by the hormonal changes that occur in this period.  相似文献   

19.
Following endotoxin administration to fasted rats, the liver fructose 2,6-bisphosphate level is significantly increased within 1 hr, is elevated 2.3-fold by 3 hrs, and remains elevated 2 to 3-fold for at least 24 hrs. This increase in the potent allosteric activator of phosphofructokinase occurs when there is no change in the liver Glc 6-P, glycogen or cAMP concentrations, or in the activities of phosphoenolpyruvate carboxykinase or pyruvate kinase. The increase in fructose 2,6-bisphosphate concentration accounts for the increased phosphofructokinase activity previously observed in hepatocytes isolated 18 hours following endotoxin administration to rats (1). By stimulating the phosphofructokinase/Fru 1,6-bisphosphate cycle in the direction of glycolysis, fructose 2,6-bisphosphate is likely the factor responsible for decreased gluconeogenesis in endotoxemia.  相似文献   

20.
In rat hepatocytes, vanadate increases fructose 2,6-bisphosphate (Fru-2,6-P2) in a time- and dose-dependent manner, and counteracts the decrease in this metabolite caused by glucagon, forskolin or exogenous cyclic AMP. Vanadate does not directly modify the activity of 6-phosphofructo-2-kinase, even though it can counteract the inactivation of this enzyme caused by glucagon. Furthermore, vanadate raises the yield of 3H2O from [3-3H]glucose, indicating that it increases the flux through 6-phosphofructo-1-kinase. Moreover, vanadate in hepatocytes incubated in the presence of glucose increases the production of both lactate and CO2. Therefore vanadate has insulin-like effects on the glycolytic pathway in rat hepatocytes. These results clearly contrast with our previous observation that vanadate exerts glycogenolytic non-insulin-like effects on glycogen synthase and phosphorylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号