首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Abstract

We describe a variety of the computational techniques which we use in the drug discovery and design process. Some of these computational methods are designed to support the new experimental technologies of high-throughput screening and combinatorial chemistry. We also consider some new approaches to problems of long-standing interest such as protein-ligand docking and the prediction of free energies of binding.  相似文献   

3.
Multifaceted roles of vascular endothelial growth factor (VEGF)-neuropilin-1 (NRP1) interaction have been implicated in cancer, but reports on small-molecule inhibitors of VEGF-NRP1 interaction are scarce. Herein, we describe the identification of 1, a novel nonpeptide small-molecule NRP1 antagonist with moderate activity via structure-based virtual screening. Ensemble docking and molecular dynamics (MD) simulations of 1 were carried out and an interesting binding model was obtained. We found that the “aromatic box” enclosed by Tyr297, Trp301 and Tyr353 of NRP1 is critical for NRP1-1 binding. Further structure modification of 1 based on the binding model derived from MD simulations resulted in the identification of 12a with significantly improved activity.  相似文献   

4.
Abstract

The endonuclease from Serratia marcescens is a non-specific enzyme that cleaves single and double stranded RNA and DNA. It accepts a phosphorylated pentanucleotide as a minimal substrate which is cleaved in the presence of Mg2+ at the second phosphodiester linkage. The present study is aimed at understanding the role of electrostatic and hydrogen bond interactions in phosphodiester hydrolysis. Towards this objective, six pentadeoxyadenylates with single stereoregular methylphosphonate substitution within this minimal substrate (2a-4b) were synthesized following a protocol described here. These modified oligonucleotides were used as substrates for the Serratia nuclease. The enzyme interaction studies revealed that the enzyme failed to hydrolyze any of the methylphosphonate analogues suggesting the importance of negative charge and/or hydrogen bond acceptors in binding and cleavage of its substrate. Based on these results and available site-directed mutagenesis as well as structural data, a model for nucleic acid binding by Serratia nuclease is proposed.  相似文献   

5.
We have shown previously that the translation of Melon necrotic spot virus (MNSV, family Tombusviridae, genus Carmovirus) RNAs is controlled by a 3′‐cap‐independent translation enhancer (CITE), which is genetically and functionally dependent on the eukaryotic translation initiation factor (eIF) 4E. Here, we describe structural and functional analyses of the MNSV‐Mα5 3′‐CITE and its translation initiation factor partner. We first mapped the minimal 3′‐CITE (Ma5TE) to a 45‐nucleotide sequence, which consists of a stem‐loop structure with two internal loops, similar to other I‐shaped 3′‐CITEs. UV crosslinking, followed by gel retardation assays, indicated that Ma5TE interacts in vitro with the complex formed by eIF4E + eIF4G980–1159 (eIF4Fp20), but not with each subunit alone or with eIF4E + eIF4G1003–1092, suggesting binding either through interaction with eIF4E following a conformational change induced by its binding to eIF4G980–1159, or through a double interaction with eIF4E and eIF4G980–1159. Critical residues for this interaction reside in an internal bulge of Ma5TE, so that their mutation abolished binding to eIF4E + eIF4G1003–1092 and cap‐independent translation. We also developed an in vivo system to test the effect of mutations in eIF4E in Ma5TE‐driven cap‐independent translation, showing that conserved amino acids in a positively charged RNA‐binding motif around amino acid position 228, implicated in eIF4E–eIF4G binding or belonging to the cap‐recognition pocket, are essential for cap‐independent translation controlled by Ma5TE, and thus for the multiplication of MNSV.  相似文献   

6.
《Biomarkers》2013,18(4):353-357
Background: The aim of this study was to describe a method to measure ischaemia-induced alterations of the binding capacity of serum albumin to exogenous nickel.

Methods: We measured the levels of cardiac troponin I (cTnI), serum albumin, ischaemia-modified albumin (IMA) measured by a cobalt–albumin binding assay (CABA), and a nickel–albumin binding assay (NABA) in the following groups: myocardial infarction (n?=?32) and non-ischaemic chest pain (n?=?64).

Results: IMA, cTnI and NABA levels were higher in the myocardial infarction group. NABA presented a higher ability to discriminate myocardial ischaemia than CABA.

Conclusions: Patients with myocardial infarction have reduced nickel binding to human serum albumin, and NABA may have an important role as an early marker of myocardial ischaemia.  相似文献   

7.
Abstract

By having knowledge about the characteristics of protein interaction interfaces, we will be able to manipulate protein complexes for therapies. Dimer state is considered as the primary alphabet of the most proteins’ quaternary structure. The properties of binding interface between subunits and of noninterface region define the specificity and stability of the intended protein complex. Considering some topological properties and amino acids’ affinity for binding in interfaces of protein dimers, we construct the interface-specific recurrence plots. The data obtained from recurrence quantitative analysis, and accessibility-related metrics help us to classify the protein dimers into four distinct classes. Some mechanical properties of binding interfaces are computed for each predefined class of the dimers. The computed mechanical characteristics of binding patch region are compared with those of nonbinding region of proteins. Our observations indicate that the mechanical properties of protein binding sites have a decisive impact on determining the dimer stability. We introduce a new concept in analyzing protein structure by considering mechanical properties of protein structure. We conclude that the interface region between subunits of stable dimers is usually mechanically softer than the interface of unstable protein dimers. Abbreviations AAB average affinity for binding

ANM anisotropic network model

APC affinity propagation clustering

ASA accessible surface area

CCD inter residues distance

CSC complex stability code

DM distance matrix

ΔGdiss PISA-computed dissociation free energy

GNM Gaussian normal mode analysis

NMA normal mode analysis

PBP protein binding patch

PISA proteins, interfaces, structures and assemblies

rASA relative accessible area in respect to unfolded state of residues

RM recurrence matrix

rP relative protrusion

RP recurrence plot

RQA recurrence quantitative analysis

SEM standard error of mean

Communicated by Ramaswamy H. Sarma  相似文献   

8.
《Autophagy》2013,9(5):720-722
Beclin 1, an essential autophagic protein, is a BH3-only protein that binds Bcl-2 anti-apoptotic family members. The dissociation of Beclin 1 from the Bcl-2

inhibitors is essential for its autophagic activity, and therefore is tightly controlled. We recently revealed a novel phosphorylation-based mechanism by which Death

Associated Protein Kinase (DAPk) regulates this process. We found that DAPk phosphorylates Beclin 1 on T119, a critical residue within its BH3 domain, and thus

promotes Beclin 1 dissociation from Bcl-XL and autophagy induction.1 Here we report that T119 phosphorylation also reduces the interaction between Beclin 1 and Bcl-2, in

line with the high degree of structural homology between the BH3 binding pockets of Bcl-2 and Bcl-XL proteins. Our results reveal a new phosphorylation-based

mechanism that reduces the interaction of Beclin 1 with its inhibitors to activate the autophagic machinery.  相似文献   

9.
10.
Abstract

The semi-empirical thermodynamic model reported in an earlier paper (Hall et al., 1991) is further developed to describe the zeta potential behaviour of an intravenous fat emulsion in the presence of magnesium and zinc cations. The effect of interfacial protonation is also explored. We have now established that a previously reported formation constant for the calcium interaction is actually a conditional value and together with the new data for zinc and magnesium, overall formation constants are calculated.  相似文献   

11.
Objectives

To elucidate the molecular mechanisms involved in the substrate interaction of the bile salt hydrolase of Lactobacillus reuteri CRL 1098 (LrBSH) with bile acids (BAs) and to evaluate potential enzyme inhibitors based on computer and in vitro modeling assays.

Results

Asp19, Asn79, and Asn171 participated in the LrBSH interaction with all BAs tested while Leu56 and Glu 222 played an important role in the interaction with glyco- and tauro-conjugated BAs, respectively. A great percentage of hydrophobic and polar interactions were responsible for the binding of LrBSH with glyco- and tauro-conjugated BAs, respectively. Remarkably, the four binding pocket loops participated in the substrate binding site of LrBSH unlike most of the reported BSHs. Inhibition assays showed that ascorbic acid, citric acid, penicillin G, and ciprofloxacin decreased LrBSH activity by 47.1%, 40.14%, 28.8%, and 9%, respectively. Docking analysis revealed that tetracycline and caffeic acid phenethyl ester had the low binding energy (?7.32 and ?7.19 kcal/mol, respectively) and resembled the interaction pattern of GDCA (?6.88 kcal/mol) while penicillin (?6.25 kcal/mol) and ascorbic acid (?5.98 kcal/mol) interacted at a longer distance.

Conclusion

This study helps to delve into the molecular mechanisms involved in the recognition of substrates and potential inhibitors of LrBSH.

  相似文献   

12.
Context: Although oral infectious diseases have been attributed to bacteria, drug treatments remain ineffective because bacteria and their products exist as biofilms. Cationic liposomes have been suggested to electrostatically interact with the negative charge on the bacterial surface, thereby improving the effects of conventional drug therapies. However, the electrostatic interaction between oral bacteria and cationic liposomes has not yet been examined in detail.

Objective: The aim of the present study was to examine the behavior of cationic liposomes and Streptococcus mutans in planktonic cells and biofilms.

Materials and methods: Liposomes with or without cationic lipid were prepared using a reverse-phase evaporation method. The zeta potentials of conventional liposomes (without cationic lipid) and cationic liposomes were ?13 and 8?mV, respectively, and both had a mean particle size of approximately 180?nm. We first assessed the interaction between liposomes and planktonic bacterial cells with a flow cytometer. We then used a surface plasmon resonance method to examine the binding of liposomes to biofilms. We confirmed the binding behavior of liposomes with biofilms using confocal laser scanning microscopy.

Results: The interactions between cationic liposomes and S. mutans cells and biofilms were stronger than those of conventional liposomes. Microscopic observations revealed that many cationic liposomes interacted with the bacterial mass and penetrated the deep layers of biofilms.

Discussion and conclusion: In this study, we demonstrated that cationic liposomes had higher affinity not only to oral bacterial cells, but also biofilms than conventional liposomes. This electrostatic interaction may be useful as a potential drug delivery system to biofilms.  相似文献   

13.
Abstract

Gallamine and d-tubocurarine inhibited (3H)N-methylscopolamine ((3H)NMS) binding to rat cardiac muscarinic receptors with I50 values of 0.7 μM and 22 μM, respectively. They decreased the association and dissociation rates of the two ligands (3H)NMS and (3H)Oxotremorine M ((3H)Oxo-M).

Gallamine interaction with muscarinic receptors was markedly inhibited by (3H)NMS and (3H)Oxo-M binding to the receptors. We were unable to demonstrate (3H)NMS or (3H)Oxo-M binding to the muscarinic receptor-gallamine complex.

By contrast, d-tubocurarine interaction with rat cardiac muscarinic receptors was facilitated by (3H)Oxo-M binding and only slightly inhibited by (3H)NMS binding to muscarinic binding sites. Furthermore, (3H)NMS and (3H)Oxo-M bound to the receptor-d-tubocurarine complex, indicating that the latter drug interacted with an allosteric site on cardiac muscarinic receptors but did not recognize the muscarinic binding site (at concentrations below 1 mM).  相似文献   

14.
The function(s) and RNA binding properties of vigilin, a ubiquitous protein with 14 KH domains, remain largely obscure. We recently showed that vigilin is the estrogen-inducible protein in polysome extracts which binds specifically to a segment of the 3′ untranslated region (UTR) of estrogen-stabilized vitellogenin mRNA. In order to identify consensus mRNA sequences and structures important in binding of vigilin to RNA, before vigilin was purified, we developed a modified in vitro genetic selection protocol. We subsequently validated our selection procedure, which employed crude polysome extracts, by testing natural and in vitro-selected RNAs with purified recombinant vigilin. Most of the selected up-binding mutants exhibited hypermutation of G residues leading to a largely unstructured, single-stranded region containing multiple conserved (A)nCU and UC(A)n motifs. All eight of the selected down-binding mutants contained a mutation in the sequence (A)nCU. Deletion analysis indicated that approximately 75 nucleotides are required for maximal binding. Using this information, we predicted and subsequently identified a strong vigilin binding site near the 3′ end of human dystrophin mRNA. RNA sequences from the 3′ UTRs of transferrin receptor and estrogen receptor, which lack strong homology to the selected sequences, did not bind vigilin. These studies describe an aproach to identifying long RNA binding sites and describe sequence and structural requirements for interaction of vigilin with RNAs.  相似文献   

15.
Zhang  Hanlin  Dong  Meng  Yuan  Shouli  Jin  Wanzhu 《Biotechnology letters》2022,44(10):1149-1162
Objectives

We constructed a recombinant oral GLP-1 analogue in Lactococcus lactis (L. lactis) and evaluated its physiological functions.

Results

In silico docking suggested the alanine at position 8 substituted with serine (A8SGLP-1) reduced binding of DPP4, which translated to reduced cleavage by DPP4 with minimal changes in stability. This was further confirmed by an in vitro enzymatic assay which showed that A8SGLP-1 significantly increased half-life upon DPP4 treatment. In addition, recombinant L. lactis (LL-A8SGLP-1) demonstrated reduced fat mass with no changes in body weight, significant improvement of random glycemic control and reduced systemic inflammation compared with WT GLP-1 in db/db mice.

Conclusion

LL-A8SGLP-1 adopted in live biotherapeutic products reduce blood glucose in db/db mice without affecting its function.

  相似文献   

16.
This work deals with the commonly studied cyclic oligosaccharide and gains importance as it is entered on a drug delivering carbohydrate and provides insight into the oligosaccharide complex–biomolecular interaction. The binding of a flavone, baicalein, to β-cyclodextrin and calf thymus DNA is studied. The binding of baicalein to calf thymus DNA in the presence of β-cyclodextrin is analysed using the UV–vis absorption and fluorescence spectroscopy. The mode of binding and structure of the baicalein–β-cyclodextrin complex are reported. The role of the structure and the stoichiometry of the inclusion complex of baicalein–β-cyclodextrin in its influence on DNA binding are analysed.

Highlights

? This paper deals with the binding of a flavone, baicalein to β-cyclodextrin and/or DNA.

? The inclusion complexation between baicalein and β-cyclodextrin is analysed.

? The stoichiometry and the binding strength of the inclusion complex is reported.

? The role of β-cyclodextrin in tuning the binding of baicalein to DNA is emphasized.

? Spectroscopic and docking analysis are used to articulate the results.  相似文献   

17.
Abstract

The interaction of histone H5 labelled with fluorescein isothiocyanate (FITC) with DNA has been studied by fluorescence titration, and diffusion-enhanced fluorescence energy transfer (DEFET) measurements with Tb(III) lanthanide chelates as donors.

Analysis of the binding data by the model of Schwarz and Watanabe (J. Mol. Biol. 163, 467-484 (1983)) yielded a mean stoichiometry of 60 nucleotides per H5 molecule, independently of ionic strength, in the range of 3 to 300 mM NaCl, at very low DNA concentration (6 μM in mononucleotide). It ensues an approximate electroneutrality of the saturated complexes. Histone H5 molecules appeared to be clustered along the DNA lattice in clusters containing on average 3 to 4 H5 molecules separated by about 79 base pairs, at mid-saturation of the binding sites. The interaction process was found highly cooperative but the cooperativity parameter was also insensitive to ionic strength in the above range.

DEFET experiments indicated an important decrease of accessibility of the FITC label to the TbHED3A° and TbEDTA? chelates with ionic strength in the 0 to 100 mM NaCl range. In the presence of DNA, H5 appears already folded at low ionic strength so that the FITC probe is also not accessible to the donor chelate. The present study constitutes an indispensable preliminary step to further studies on the localization of histone H5 in condensed chromatin structures.  相似文献   

18.
Breast cancer is the second most common cancer worldwide after lung cancer with the vast majority of early stage breast cancers being hormone-dependent. One of the major therapeutic advances in the clinical treatment of breast cancer has been the introduction of selective estrogen receptor modulators (SERMs). We describe the design and synthesis of novel SERM type ligands based on the 2-arylindole scaffold to selectively target the estrogen receptor in hormone dependent breast cancers. Some of these novel compounds are designed as bisindole type structures, while others are conjugated to a cytotoxic agent based on combretastatin A4 (CA4) which is a potent inhibitor of tubulin polymerisation. The indole compounds synthesised within this project such as 31 and 86 demonstrate estrogen receptor (ER) binding and strong antiproliferative activity in the ER positive MCF-7 breast cancer cell line with IC50 values of 2.71 μM and 1.86 μM respectively. These active compounds induce apoptotic activity in MCF-7 cells with minimal effects on normal peripheral blood cells. Their strong anti-cancer effect is likely mediated by the presence of two ER binding ligands for 31 and an ER binding ligand combined with a cytotoxic agent for 86.  相似文献   

19.
Abstract

The interaction between bacteriophage R17 coat protein and its RNA binding site for translational repression was studied as an example of a sequence-specific RNA-protein interaction. A nitrocellulose filter retention assay is used to demonstrate equimolar binding between the coat protein and a synthetic 21 nucleotide RNA fragment. The Kj at 2°C in a buffer containing 0.19 M salt is about 1 nM. The relatively weak ionic strength dependence of Ka and a ΔH = ?19 kcal/mole indicates that most of the binding free energy is due to non-electrostatic interactions. Since a variety of RN As failed to compete with the 21 nucleotide fragment for coat protein binding, the interaction appears highly sequence specific.

We have synthesized more than 30 different variants of the binding site sequence in order to identify the portions of the RNA molecule which are important for protein binding. Out of the five single stranded residues examined, four were essential for protein binding whereas the fifth could be replaced by any nucleotide. One variant was found to bind better than the wild type sequence. Substitution of nucleotides which disrupted the secondary structure of the binding fragment resulted in very poor binding to the protein. These data indicated that there are several points of contact between the RNA and the protein and the correct hairpin secondary structure of the RNA is essential for protein binding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号