首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
A high-density genetic map, an essential tool for comparative genomic studies and quantitative trait locus fine mapping, can also facilitate genome sequence assembly. The sequence-based marker technology known as restriction site-associated DNA (RAD) enables synchronous, single nucleotide polymorphism marker discovery, and genotyping using massively parallel sequencing. We constructed a high-density linkage map for carnation (Dianthus caryophyllus L.) based on simple sequence repeat (SSR) markers in combination with RAD markers developed by double-digest RAD sequencing (ddRAD-seq). A total of 2404 (285 SSR and 2119 RAD) markers could be assigned to 15 linkage groups spanning 971.5 cM, with an average marker interval of 0.4 cM. The total length of scaffolds with identified map positions was 95.6 Mb, which is equivalent to 15.4 % of the estimated genome size. The generated map is the first SSR and RAD marker-based high-density linkage map reported for carnation. The ddRAD-seq pipeline developed in this study should also help accelerate genetic and genomics analyses and molecular breeding of carnation and other non-model crops.  相似文献   

2.
Because of its popularity as an ornamental plant in East Asia, mei (Prunus mume Sieb. et Zucc.) has received increasing attention in genetic and genomic research with the recent shotgun sequencing of its genome. Here, we performed the genome-wide characterization of simple sequence repeats (SSRs) in the mei genome and detected a total of 188,149 SSRs occurring at a frequency of 794 SSR/Mb. Mononucleotide repeats were the most common type of SSR in genomic regions, followed by di- and tetranucleotide repeats. Most of the SSRs in coding sequences (CDS) were composed of tri- or hexanucleotide repeat motifs, but mononucleotide repeats were always the most common in intergenic regions. Genome-wide comparison of SSR patterns among the mei, strawberry (Fragaria vesca), and apple (Malus×domestica) genomes showed mei to have the highest density of SSRs, slightly higher than that of strawberry (608 SSR/Mb) and almost twice as high as that of apple (398 SSR/Mb). Mononucleotide repeats were the dominant SSR motifs in the three Rosaceae species. Using 144 SSR markers, we constructed a 670 cM-long linkage map of mei delimited into eight linkage groups (LGs), with an average marker distance of 5 cM. Seventy one scaffolds covering about 27.9% of the assembled mei genome were anchored to the genetic map, depending on which the macro-colinearity between the mei genome and Prunus T×E reference map was identified. The framework map of mei constructed provides a first step into subsequent high-resolution genetic mapping and marker-assisted selection for this ornamental species.  相似文献   

3.

Background

Lotus is a diploid plant with agricultural, medicinal, and ecological significance. Genetic linkage maps are fundamental resources for genome and genetic study, and also provide molecular markers for breeding in agriculturally important species. Genotyping by sequencing revolutionized genetic mapping, the restriction-site associated DNA sequencing (RADseq) allowed rapid discovery of thousands of SNPs markers, and a crucial aspect of the sequence based mapping strategy is the reference sequences used for marker identification.

Results

We assessed the effectiveness of linkage mapping using three types of references for scoring markers: the unmasked genome, repeat masked genome, and gene models. Overall, the repeat masked genome produced the optimal genetic maps. A high-density genetic map of American lotus was constructed using an F1 population derived from a cross between Nelumbo nucifera ‘China Antique’ and N. lutea ‘AL1’. A total of 4,098 RADseq markers were used to construct the American lotus ‘AL1’ genetic map, and 147 markers were used to construct the Chinese lotus ‘China Antique’ genetic map. The American lotus map has 9 linkage groups, and spans 494.3 cM, with an average distance of 0.7 cM between adjacent markers. The American lotus map was used to anchor scaffold sequences in the N. nucifera ‘China Antique’ draft genome. 3,603 RADseq markers anchored 234 individual scaffold sequences into 9 megascaffolds spanning 67% of the 804 Mb draft genome.

Conclusions

Among the unmasked genome, repeat masked genome and gene models, the optimal reference sequences to call RADseq markers for map construction is repeat masked genome. This high density genetic map is a valuable resource for genomic research and crop improvement in lotus.  相似文献   

4.
Ren Y  Zhao H  Kou Q  Jiang J  Guo S  Zhang H  Hou W  Zou X  Sun H  Gong G  Levi A  Xu Y 《PloS one》2012,7(1):e29453
As part of our ongoing efforts to sequence and map the watermelon (Citrullus spp.) genome, we have constructed a high density genetic linkage map. The map positioned 234 watermelon genome sequence scaffolds (an average size of 1.41 Mb) that cover about 330 Mb and account for 93.5% of the 353 Mb of the assembled genomic sequences of the elite Chinese watermelon line 97103 (Citrullus lanatus var. lanatus). The genetic map was constructed using an F(8) population of 103 recombinant inbred lines (RILs). The RILs are derived from a cross between the line 97103 and the United States Plant Introduction (PI) 296341-FR (C. lanatus var. citroides) that contains resistance to fusarium wilt (races 0, 1, and 2). The genetic map consists of eleven linkage groups that include 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel) and 36 structure variation (SV) markers and spans ~800 cM with a mean marker interval of 0.8 cM. Using fluorescent in situ hybridization (FISH) with 11 BACs that produced chromosome-specifc signals, we have depicted watermelon chromosomes that correspond to the eleven linkage groups constructed in this study. The high resolution genetic map developed here should be a useful platform for the assembly of the watermelon genome, for the development of sequence-based markers used in breeding programs, and for the identification of genes associated with important agricultural traits.  相似文献   

5.
6.
Sanetra M  Henning F  Fukamachi S  Meyer A 《Genetics》2009,182(1):387-397
Cichlid fishes compose an astonishingly large number of species and formed species flocks in record-breaking time. To facilitate efficient genome scans and comparisons of cichlid genomes, we constructed a medium-density genetic linkage map of microsatellite markers of Astatotilapia burtoni. The mapping cross was derived from two inbred laboratory lines to obtain F2 progeny by intercrossing. The map revealed 25 linkage groups spanning 1249.3 cM of the genome (size ~950 Mb) with an average marker spacing of 6.12 cM. The seven Hox clusters, ParaHox C1, and two paralogs of Pdgfrβ were mapped to different linkage groups, thus supporting the hypothesis of a teleost-specific genome duplication. The A. burtoni linkage map was compared to the other two available maps for cichlids using shared markers that showed conservation and synteny among East African cichlid genomes. Interesting candidate genes for cichlid speciation were mapped using SNP markers.  相似文献   

7.
As part of a larger project to sequence the Populus genome and generate genomic resources for this emerging model tree, we constructed a physical map of the Populus genome, representing one of the few such maps of an undomesticated, highly heterozygous plant species. The physical map, consisting of 2802 contigs, was constructed from fingerprinted bacterial artificial chromosome (BAC) clones. The map represents approximately 9.4-fold coverage of the Populus genome, which has been estimated from the genome sequence assembly to be 485 ± 10 Mb in size. BAC ends were sequenced to assist long-range assembly of whole-genome shotgun sequence scaffolds and to anchor the physical map to the genome sequence. Simple sequence repeat-based markers were derived from the end sequences and used to initiate integration of the BAC and genetic maps. A total of 2411 physical map contigs, representing 97% of all clones assigned to contigs, were aligned to the sequence assembly (JGI Populus trichocarpa , version 1.0). These alignments represent a total coverage of 384 Mb (79%) of the entire poplar sequence assembly and 295 Mb (96%) of linkage group sequence assemblies. A striking result of the physical map contig alignments to the sequence assembly was the co-localization of multiple contigs across numerous regions of the 19 linkage groups. Targeted sequencing of BAC clones and genetic analysis in a small number of representative regions showed that these co-aligning contigs represent distinct haplotypes in the heterozygous individual sequenced, and revealed the nature of these haplotype sequence differences.  相似文献   

8.

Background

Cultivated peanut, or groundnut (Arachis hypogaea L.), is an important oilseed crop with an allotetraploid genome (AABB, 2n = 4x = 40). In recent years, many efforts have been made to construct linkage maps in cultivated peanut, but almost all of these maps were constructed using low-throughput molecular markers, and most show a low density, directly influencing the value of their applications. With advances in next-generation sequencing (NGS) technology, the construction of high-density genetic maps has become more achievable in a cost-effective and rapid manner. The objective of this study was to establish a high-density single nucleotide polymorphism (SNP)-based genetic map for cultivated peanut by analyzing next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq) reads.

Results

We constructed reduced representation libraries (RRLs) for two A. hypogaea lines and 166 of their recombinant inbred line (RIL) progenies using the ddRADseq technique. Approximately 175 gigabases of data containing 952,679,665 paired-end reads were obtained following Solexa sequencing. Mining this dataset, 53,257 SNPs were detected between the parents, of which 14,663 SNPs were also detected in the population, and 1,765 of the obtained polymorphic markers met the requirements for use in the construction of a genetic map. Among 50 randomly selected in silico SNPs, 47 were able to be successfully validated. One linkage map was constructed, which was comprised of 1,685 marker loci, including 1,621 SNPs and 64 simple sequence repeat (SSR) markers. The map displayed a distribution of the markers into 20 linkage groups (LGs A01–A10 and B01–B10), spanning a distance of 1,446.7 cM. The alignment of the LGs from this map was shown in comparison with a previously integrated consensus map from peanut.

Conclusions

This study showed that the ddRAD library combined with NGS allowed the rapid discovery of a large number of SNPs in the cultivated peanut. The first high density SNP-based linkage map for A. hypogaea was generated that can serve as a reference map for cultivated Arachis species and will be useful in genetic mapping. Our results contribute to the available molecular marker resources and to the assembly of a reference genome sequence for the peanut.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-351) contains supplementary material, which is available to authorized users.  相似文献   

9.

Background

Cassava, Manihot esculenta Crantz, is one of the most important crops world-wide representing the staple security for more than one billion of people. The development of dense genetic and physical maps, as the basis for implementing genetic and molecular approaches to accelerate the rate of genetic gains in breeding program represents a significant challenge. A reference genome sequence for cassava has been made recently available and community efforts are underway for improving its quality. Cassava is threatened by several pathogens, but the mechanisms of defense are far from being understood. Besides, there has been a lack of information about the number of genes related to immunity as well as their distribution and genomic organization in the cassava genome.

Results

A high dense genetic map of cassava containing 2,141 SNPs has been constructed. Eighteen linkage groups were resolved with an overall size of 2,571 cM and an average distance of 1.26 cM between markers. More than half of mapped SNPs (57.4%) are located in coding sequences. Physical mapping of scaffolds of cassava whole genome sequence draft using the mapped markers as anchors resulted in the orientation of 687 scaffolds covering 45.6% of the genome. One hundred eighty nine new scaffolds are anchored to the genetic cassava map leading to an extension of the present cassava physical map with 30.7 Mb. Comparative analysis using anchor markers showed strong co-linearity to previously reported cassava genetic and physical maps. In silico based searching for conserved domains allowed the annotation of a repertory of 1,061 cassava genes coding for immunity-related proteins (IRPs). Based on physical map of the corresponding sequencing scaffolds, unambiguous genetic localization was possible for 569 IRPs.

Conclusions

This is the first study reported so far of an integrated high density genetic map using SNPs with integrated genetic and physical localization of newly annotated immunity related genes in cassava. These data build a solid basis for future studies to map and associate markers with single loci or quantitative trait loci for agronomical important traits. The enrichment of the physical map with novel scaffolds is in line with the efforts of the cassava genome sequencing consortium.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1397-4) contains supplementary material, which is available to authorized users.  相似文献   

10.
High-resolution genetic maps are essential for fine mapping of complex traits, genome assembly, and comparative genomic analysis. Single-nucleotide polymorphisms (SNPs) are the primary molecular markers used for genetic map construction. In this study, we identified 13,362 SNPs evenly distributed across the Japanese flounder (Paralichthys olivaceus) genome. Of these SNPs, 12,712 high-confidence SNPs were subjected to high-throughput genotyping and assigned to 24 consensus linkage groups (LGs). The total length of the genetic linkage map was 3,497.29 cM with an average distance of 0.47 cM between loci, thereby representing the densest genetic map currently reported for Japanese flounder. Nine positive quantitative trait loci (QTLs) forming two main clusters for Vibrio anguillarum disease resistance were detected. All QTLs could explain 5.1–8.38% of the total phenotypic variation. Synteny analysis of the QTL regions on the genome assembly revealed 12 immune-related genes, among them 4 genes strongly associated with V. anguillarum disease resistance. In addition, 246 genome assembly scaffolds with an average size of 21.79 Mb were anchored onto the LGs; these scaffolds, comprising 522.99 Mb, represented 95.78% of assembled genomic sequences. The mapped assembly scaffolds in Japanese flounder were used for genome synteny analyses against zebrafish (Danio rerio) and medaka (Oryzias latipes). Flounder and medaka were found to possess almost one-to-one synteny, whereas flounder and zebrafish exhibited a multi-syntenic correspondence. The newly developed high-resolution genetic map, which will facilitate QTL mapping, scaffold assembly, and genome synteny analysis of Japanese flounder, marks a milestone in the ongoing genome project for this species.  相似文献   

11.
Three linkage maps of flax (Linum usitatissimum L.) were constructed from populations CDC Bethune/Macbeth, E1747/Viking and SP2047/UGG5-5 containing between 385 and 469 mapped markers each. The first consensus map of flax was constructed incorporating 770 markers based on 371 shared markers including 114 that were shared by all three populations and 257 shared between any two populations. The 15 linkage group map corresponds to the haploid number of chromosomes of this species. The marker order of the consensus map was largely collinear in all three individual maps but a few local inversions and marker rearrangements spanning short intervals were observed. Segregation distortion was present in all linkage groups which contained 1–52 markers displaying non-Mendelian segregation. The total length of the consensus genetic map is 1,551?cM with a mean marker density of 2.0?cM. A total of 670 markers were anchored to 204 of the 416 fingerprinted contigs of the physical map corresponding to ~274?Mb or 74?% of the estimated flax genome size of 370?Mb. This high resolution consensus map will be a resource for comparative genomics, genome organization, evolution studies and anchoring of the whole genome shotgun sequence.  相似文献   

12.

Background

The genome of the melon (Cucumis melo L.) double-haploid line DHL92 was recently sequenced, with 87.5 and 80.8% of the scaffold assembly anchored and oriented to the 12 linkage groups, respectively. However, insufficient marker coverage and a lack of recombination left several large, gene rich scaffolds unanchored, and some anchored scaffolds unoriented. To improve the anchoring and orientation of the melon genome assembly, we used resequencing data between the parental lines of DHL92 to develop a new set of SNP markers from unanchored scaffolds.

Results

A high-resolution genetic map composed of 580 SNPs was used to anchor 354.8 Mb of sequence, contained in 141 scaffolds (average size 2.5 Mb) and corresponding to 98.2% of the scaffold assembly, to the 12 melon chromosomes. Over 325.4 Mb (90%) of the assembly was oriented. The genetic map revealed regions of segregation distortion favoring SC alleles as well as recombination suppression regions coinciding with putative centromere, 45S, and 5S rDNA sites. New chromosome-scale pseudomolecules were created by incorporating to the previous v3.5 version an additional 38.3 Mb of anchored sequence representing 1,837 predicted genes contained in 55 scaffolds. Using fluorescent in situ hybridization (FISH) with BACs that produced chromosome-specific signals, melon chromosomes that correspond to the twelve linkage groups were identified, and a standardized karyotype of melon inbred line T111 was developed.

Conclusions

By utilizing resequencing data and targeted SNP selection combined with a large F2 mapping population, we significantly improved the quantity of anchored and oriented melon scaffold genome assembly. Using genome information combined with FISH mapping provided the first cytogenetic map of an inodorus melon type. With these results it was possible to make inferences on melon chromosome structure by relating zones of recombination suppression to centromeres and 45S and 5S heterochromatic regions. This study represents the first steps towards the integration of the high-resolution genetic and cytogenetic maps with the genomic sequence in melon that will provide more information on genome organization and allow for the improvement of the melon genome draft sequence.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-014-1196-3) contains supplementary material, which is available to authorized users.  相似文献   

13.
About 85% of the maize genome consists of highly repetitive sequences that are interspersed by low-copy, gene-coding sequences. The maize community has dealt with this genomic complexity by the construction of an integrated genetic and physical map (iMap), but this resource alone was not sufficient for ensuring the quality of the current sequence build. For this purpose, we constructed a genome-wide, high-resolution optical map of the maize inbred line B73 genome containing >91,000 restriction sites (averaging 1 site/∼23 kb) accrued from mapping genomic DNA molecules. Our optical map comprises 66 contigs, averaging 31.88 Mb in size and spanning 91.5% (2,103.93 Mb/∼2,300 Mb) of the maize genome. A new algorithm was created that considered both optical map and unfinished BAC sequence data for placing 60/66 (2,032.42 Mb) optical map contigs onto the maize iMap. The alignment of optical maps against numerous data sources yielded comprehensive results that proved revealing and productive. For example, gaps were uncovered and characterized within the iMap, the FPC (fingerprinted contigs) map, and the chromosome-wide pseudomolecules. Such alignments also suggested amended placements of FPC contigs on the maize genetic map and proactively guided the assembly of chromosome-wide pseudomolecules, especially within complex genomic regions. Lastly, we think that the full integration of B73 optical maps with the maize iMap would greatly facilitate maize sequence finishing efforts that would make it a valuable reference for comparative studies among cereals, or other maize inbred lines and cultivars.  相似文献   

14.
A linkage map of expressed sequence tag (EST)-based markers in radish (Raphanus sativus L.) was constructed using a low-cost and high-efficiency single-nucleotide polymorphism (SNP) genotyping method named multiplex polymerase chain reaction–mixed probe dot-blot analysis developed in this study. Seven hundred and forty-six SNP markers derived from EST sequences of R. sativus were assigned to nine linkage groups with a total length of 806.7 cM. By BLASTN, 726 markers were found to have homologous genes in Arabidopsis thaliana, and 72 syntenic regions, which have great potential for utilizing genomic information of the model species A. thaliana in basic and applied genetics of R. sativus, were identified. By construction and analysis of the genome structures of R. sativus based on the 24 genomic blocks within the Brassicaceae ancestral karyotype, 23 of the 24 genomic blocks were detected in the genome of R. sativus, and half of them were found to be triplicated. Comparison of the genome structure of R. sativus with those of the A, B, and C genomes of Brassica species and that of Sinapis alba L. revealed extensive chromosome homoeology among Brassiceae species, which would facilitate transfer of the genomic information from one Brassiceae species to another.  相似文献   

15.
SNP markers for QTL analysis of 4-MTB-GSL contents in radish roots were developed by determining nucleotide sequences of bulked PCR products using a next-generation sequencer. DNA fragments were amplified from two radish lines by multiplex PCR with six primer pairs, and those amplified by 2,880 primer pairs were mixed and sequenced. By assembling sequence data, 1,953 SNPs in 750 DNA fragments, 437 of which have been previously mapped in a linkage map, were identified. A linkage map of nine linkage groups was constructed with 188 markers, and five QTLs were detected in two F2 populations, three of them accounting for more than 50% of the total phenotypic variance being repeatedly detected. In the identified QTL regions, nine SNP markers were newly produced. By synteny analysis of the QTLs regions with Arabidopsis thaliana and Brassica rapa genome sequences, three candidate genes were selected, i.e., RsMAM3 for production of aliphatic glucosinolates linked to GSL-QTL-4, RsIPMDH1 for leucine biosynthesis showing strong co-expression with glucosinolate biosynthesis genes linked to GSL-QTL-2, and RsBCAT4 for branched-chain amino acid aminotransferase linked to GSL-QTL-1. Nucleotide sequences and expression of these genes suggested their possible function in 4MTB-GSL biosynthesis in radish roots.  相似文献   

16.
The large genome and allohexaploidy of common wheat have complicated construction of a high-density genetic map. Although improvements in the throughput of next-generation sequencing (NGS) technologies have made it possible to obtain a large amount of genotyping data for an entire mapping population by direct sequencing, including hexaploid wheat, a significant number of missing data points are often apparent due to the low coverage of sequencing. In the present study, a microarray-based polymorphism detection system was developed using NGS data obtained from complexity-reduced genomic DNA of two common wheat cultivars, Chinese Spring (CS) and Mironovskaya 808. After design and selection of polymorphic probes, 13,056 new markers were added to the linkage map of a recombinant inbred mapping population between CS and Mironovskaya 808. On average, 2.49 missing data points per marker were observed in the 201 recombinant inbred lines, with a maximum of 42. Around 40% of the new markers were derived from genic regions and 11% from repetitive regions. The low number of retroelements indicated that the new polymorphic markers were mainly derived from the less repetitive region of the wheat genome. Around 25% of the mapped sequences were useful for alignment with the physical map of barley. Quantitative trait locus (QTL) analyses of 14 agronomically important traits related to flowering, spikes, and seeds demonstrated that the new high-density map showed improved QTL detection, resolution, and accuracy over the original simple sequence repeat map.  相似文献   

17.
The Chinese jujube (Ziziphus jujuba Mill., 2n = 2 × = 24), one of the most popular fruit trees in China, is widely cultivated and utilized in Asia. High-density genetic linkage maps are valuable resources for molecular breeding and functional genomics; however, they are still under-developed for the jujube. The genotyping by sequencing (GBS) strategy could be an efficient and cost-effective tool for single nucleotide polymorphism (SNP) discovery based on the sequenced jujube genome. Here, we report a new high-density genetic map constructed using GBS technology. An F1 population with 145 progenies and their parents (‘Dongzao’ × ‘Zhongningyuanzao’) were sequenced on the Illumina HiSeq 4000 platform. In total, 79.8 Gb of raw data containing 256,708,177 paired-end reads were generated. After data filtering and SNP genotyping, 40,372 polymorphic SNP markers were developed between the parents and 2540 (1756 non-redundant) markers were mapped onto the integrated genetic linkage map. The map spanned 1456.53 cM and was distributed among 12 linkage groups, which is consistent with the haploid chromosome number of the jujube. The average marker interval was 0.88 cM. The genetic map allowed us to anchor 224 Mb (63.7 %) of scaffolds from the sequenced ‘Junzao’ genome, containing 52 newly anchored scaffolds, which extended the genome assembly by 7 Mb. In conclusion, GBS technology was applied efficiently for SNP discovery in this study. The high-density genetic map will serve as a unique tool for molecular-assisted breeding and genomic studies, which will contribute to further research and improvement of the jujube in the near future.  相似文献   

18.
The development of single nucleotide polymorphism (SNP) markers in Japanese pear (Pyrus pyrifolia Nakai) offers the opportunity to use DNA markers for marker-assisted selection in breeding programs because of their high abundance, codominant inheritance, and potential for automated high-throughput analysis. We developed a 1,536-SNP bead array without a reference genome sequence from more than 44,000 base changes on the basis of a large-scale expressed sequence tag (EST) analysis combined with 454 genome sequencing data of Japanese pear ‘Housui’. Among the 1,536 SNPs on the array, 756 SNPs were genotyped, and 609 SNP loci were mapped to linkage groups on a genetic linkage map of ‘Housui’, based on progeny of an interspecific cross between European pear (Pyrus communis L.) ‘Bartlett’ and ‘Housui’. The newly constructed genetic linkage map consists of 951 loci, comprising 609 new SNPs, 110 pear genomic simple sequence repeats (SSRs), 25 pear EST–SSRs, 127 apple SSRs, 61 pear SNPs identified by the “potential intron polymorphism” method, and 19 other loci. The map covers 22 linkage groups spanning 1341.9 cM with an average distance of 1.41 cM between markers and is anchored to reference genetic linkage maps of European pears and apples. A total of 514 contigs containing mapped SNP loci showed significant similarity to known proteins by functional annotation analysis.  相似文献   

19.
Upland cotton (Gossypium hirsutum L., 2n = 52, AADD) is an allotetraploid, therefore the discovery of single nucleotide polymorphism (SNP) markers is difficult. The recent emergence of genome complexity reduction technologies based on the next-generation sequencing (NGS) platform has greatly expedited SNP discovery in crops with highly repetitive and complex genomes. Here we applied restriction-site associated DNA (RAD) sequencing technology for de novo SNP discovery in allotetraploid cotton. We identified 21,109 SNPs between the two parents and used these for genotyping of 161 recombinant inbred lines (RILs). Finally, a high dense linkage map comprising 4,153 loci over 3500-cM was developed based on the previous result. Using this map quantitative trait locus (QTLs) conferring fiber strength and Verticillium Wilt (VW) resistance were mapped to a more accurate region in comparison to the 1576-cM interval determined using the simple sequence repeat (SSR) genetic map. This suggests that the newly constructed map has more power and resolution than the previous SSR map. It will pave the way for the rapid identification of the marker-assisted selection in cotton breeding and cloning of QTL of interest traits.  相似文献   

20.
Clubroot is a devastating disease caused by Plasmodiophora brassicae and results in severe losses of yield and quality in Brassica crops. Many clubroot resistance genes and markers are available in Brassica rapa but less is known in Brassica oleracea. Here, we applied the genotyping-by-sequencing (GBS) technique to construct a high-resolution genetic map and identify clubroot resistance (CR) genes. A total of 43,821 SNPs were identified using GBS data for two parental lines, one resistant and one susceptible lines to clubroot, and 18,187 of them showed >5× coverage in the GBS data. Among those, 4,103 were credibly genotyped for all 78 F2 individual plants. These markers were clustered into nine linkage groups spanning 879.9 cM with an average interval of 1.15 cM. Quantitative trait loci (QTLs) survey based on three rounds of clubroot resistance tests using F2 : 3 progenies revealed two and single major QTLs for Race 2 and Race 9 of P. brassicae, respectively. The QTLs show similar locations to the previously reported CR loci for Race 4 in B. oleracea but are in different positions from any of the CR loci found in B. rapa. We utilized two reference genome sequences in this study. The high-resolution genetic map developed herein allowed us to reposition 37 and 2 misanchored scaffolds in the 02–12 and TO1000DH genome sequences, respectively. Our data also support additional positioning of two unanchored 3.3 Mb scaffolds into the 02–12 genome sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号