首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In 2005 to 2007 45 skeletons of adults and subadults were excavated at the Lombard period cemetery at Szólád (6th century A.D.), Hungary. Embedded into the well-recorded historical context, the article presents the results obtained by an integrative investigation including anthropological, molecular genetic and isotopic (δ15N, δ13C, 87Sr/86Sr) analyses. Skeletal stress markers as well as traces of interpersonal violence were found to occur frequently. The mitochondrial DNA profiles revealed a heterogeneous spectrum of lineages that belong to the haplogroups H, U, J, HV, T2, I, and K, which are common in present-day Europe and in the Near East, while N1a and N1b are today quite rare. Evidence of possible direct maternal kinship was identified in only three pairs of individuals. According to enamel strontium isotope ratios, at least 31% of the individuals died at a location other than their birthplace and/or had moved during childhood. Based on the peculiar 87Sr/86Sr ratio distribution between females, males, and subadults in comparison to local vegetation and soil samples, we propose a three-phase model of group movement. An initial patrilocal group with narrower male but wider female Sr isotope distribution settled at Szólád, whilst the majority of subadults represented in the cemetery yielded a distinct Sr isotope signature. Owing to the virtual absence of Szólád-born adults in the cemetery, we may conclude that the settlement was abandoned after approx. one generation. Population heterogeneity is furthermore supported by the carbon and nitrogen isotope data. They indicate that a group of high-ranking men had access to larger shares of animal-derived food whilst a few individuals consumed remarkable amounts of millet. The inferred dynamics of the burial community are in agreement with hypotheses of a highly mobile lifestyle during the Migration Period and a short-term occupation of Pannonia by Lombard settlers as conveyed by written sources.  相似文献   

2.
The δ13C values for seagrasses collected along the Texas Gulf Coast range from −10.9 to −11.4‰. These values are similar to the δ13C values of terrestrial C4 plants, but seagrasses lack bundle sheath cells which are important in determining the δ13C values of C4 plants. This work attempts to explain the reason the δ13C values of seagrasses resemble the δ13C values of C4 plants.  相似文献   

3.
Leaf CO2 compensation points and stable hydrogen, oxygen and carbon isotope ratios were determined for Panicum species including C3/C4 intermediate photosynthesis plants, hybrids between C3/C4 intermediates and C3 plants, C3 and C4 plants in the Panicum genus as well as several other C3 and C4 plants. C3 plants had the highest compensation points, followed by hybrids, C3/C4 intermediates, and C4 plants. δ13C values of cellulose nitrate and saponifiable lipids from C4 plants were about 10‰ higher than those observed for cellulose nitrate and saponifiable lipids of C3/C4 intermediates, hybrids, and C3 plants. Oxygen isotope ratios of cellulose as well as those of leaf water were similar for all plants. There was substantial variability in the δD values of cellulose nitrate among the plants studied. In contrast, such variability was not observed in δD values of water distilled from the leaves, nor in the δD values of the saponifiable lipids. Variability in δD values of cellulose nitrate from C3/C4 intermediates, hybrids, C3, and C4 plants is due to fractionations occurring during biochemical reactions specific to leaf carbohydrate metabolism.  相似文献   

4.
Isotopic studies of multi-taxa terrestrial vertebrate assemblages allow determination of paleoclimatic and paleoecological aspects on account of the different information supplied by each taxon. The late Campanian-early Maastrichtian “Lo Hueco” Fossil-Lagerstätte (central eastern Spain), located at a subtropical paleolatitude of ~31°N, constitutes an ideal setting to carry out this task due to its abundant and diverse vertebrate assemblage. Local δ18OPO4 values estimated from δ18OPO4 values of theropods, sauropods, crocodyliforms, and turtles are close to δ18OH2O values observed at modern subtropical latitudes. Theropod δ18OH2O values are lower than those shown by crocodyliforms and turtles, indicating that terrestrial endothermic taxa record δ18OH2O values throughout the year, whereas semiaquatic ectothermic taxa δ18OH2O values represent local meteoric waters over a shorter time period when conditions are favorable for bioapatite synthesis (warm season). Temperatures calculated by combining theropod, crocodyliform, and turtle δ18OH2O values and gar δ18OPO4 have enabled us to estimate seasonal variability as the difference between mean annual temperature (MAT, yielded by theropods) and temperature of the warmest months (TWMs, provided by crocodyliforms and turtles). ΔTWMs-MAT value does not point to a significantly different seasonal thermal variability when compared to modern coastal subtropical meteorological stations and Late Cretaceous rudists from eastern Tethys. Bioapatite and bulk organic matter δ13C values point to a C3 environment in the “Lo Hueco” area. The estimated fractionation between sauropod enamel and diet is ~15‰. While waiting for paleoecological information yielded by the ongoing morphological study of the “Lo Hueco” crocodyliforms, δ13C and δ18OCO3 results point to incorporation of food items with brackish influence, but preferential ingestion of freshwater. “Lo Hueco” turtles showed the lowest δ13C and δ18OCO3 values of the vertebrate assemblage, likely indicating a diet based on a mixture of aquatic and terrestrial C3 vegetation and/or invertebrates and ingestion of freshwater.  相似文献   

5.
This study seeks to understand how humans impact the dietary patterns of eight free-ranging vervet monkey (Chlorocebus pygerythrus) groups in South Africa using stable isotope analysis. Vervets are omnivores that exploit a wide range of habitats including those that have been anthropogenically-disturbed. As humans encroach upon nonhuman primate landscapes, human-nonhuman primate interconnections become increasingly common, which has led to the rise of the field of ethnoprimatology. To date, many ethnoprimatological studies have examined human-nonhuman primate associations largely in qualitative terms. By using stable carbon (δ13C) and nitrogen (δ15N) isotope analysis, we use quantitative data to understand the degree to which humans impact vervet monkey dietary patterns. Based on initial behavioral observations we placed the eight groups into three categories of anthropogenic disturbance (low, mid, and high). Using δ13C and δ15N values we estimated the degree to which each group and each anthropogenically-disturbed category was consuming C4 plants (primarily sugar cane, corn, or processed foods incorporating these crops). δ13C values were significantly different between groups and categories of anthropogenic-disturbance. δ15N values were significantly different at the group level. The two vervet groups with the highest consumption of C4 plants inhabited small nature reserves, appeared to interact with humans only sporadically, and were initially placed in the mid level of anthropogenic-disturbance. However, further behavioral observations revealed that the high δ13C values exhibited by these groups were linked to previously unseen raiding of C4 crops. By revealing these cryptic feeding patterns, this study illustrates the utility of stable isotopes analysis for some ethnoprimatological questions.  相似文献   

6.
The rise of stratified societies fundamentally influences the interactions between status, movement, and food. Using isotopic analyses, we assess differences in diet and mobility of individuals excavated from two burial mounds located at the `Atele burial site on Tongatapu, the main island of the Kingdom of Tonga (c. 500 - 150 BP). The first burial mound (To-At-1) was classified by some archaeologists as a commoner’s mound while the second burial mound (To-At-2) was possibly used for interment of the chiefly class. In this study, stable isotope analyses of diet (δ13C, δ15N, and δ34S; n = 41) are used to asses paleodiet and 87Sr/86Sr ratios (n = 30) are analyzed to investigate individual mobility to test whether sex and social status affected these aspects of life. Our results show significant differences in diet between burial mounds and sexes. Those interred in To-At-2 displayed lower δ13C values, indicating they ate relatively more terrestrial plants (likely starchy vegetable staples) compared with To-At-1 individuals. Females displayed significantly lower δ15N values compared with males within the entire assemblage. No differences in δ34S values were observed between sexes or burial mound but it is possible that sea spray or volcanism may have affected these values. One individual displayed the strontium isotopic composition representative of a nonlocal immigrant (outside 2SD of the mean). This suggests the hegemonic control over interisland travel, may have prevented long-term access to the island by non-Tongans exemplifying the political and spiritual importance of the island of Tongatapu in the maritime chiefdom.  相似文献   

7.
This study tests the hypothesis that vertical habitat preferences of different monkey species inhabiting closed canopy rainforest are reflected in oxygen isotopes. We sampled bone from seven sympatric cercopithecid species in the Taï forest, Côte d''Ivoire, where long-term study has established taxon-specific patterns of habitat use and diet. Modern rib samples (n = 34) were examined for oxygen (δ18Oap) and carbon (δ13Cap) from bone apatite (‘bioapatite’), and carbon (δ13Cco) and nitrogen (δ15Nco) from bone collagen. Results are consistent for C3 feeders in a closed canopy habitat. Low irradiance and evapotranspiration, coupled with high relative humidity and recycled CO2 in forest understory, contribute to observed isotopic variability. Both δ13Cco and δ13Cap results reflect diet; however, δ13C values are not correlated with species preference for canopy height. By contrast, δ18Oap results are correlated with mean observed height and show significant vertical partitioning between taxa feeding at ground, lower and upper canopy levels. This oxygen isotope canopy effect has important palaeobiological implications for reconstructing vertical partitioning among sympatric primates and other species in tropical forests.  相似文献   

8.
Variations in the carbon isotope signature of leaf dark-respired CO213CR) within a single night is a widely observed phenomenon. However, it is unclear whether there are plant functional type differences with regard to the amplitude of the nighttime variation in δ13CR. These differences, if present, would be important for interpreting the short-term variations in the stable carbon signature of ecosystem respiration and the partitioning of carbon fluxes. To assess the plant functional type differences relating to the magnitude of the nighttime variation in δ13CR and the respiratory apparent fractionation, we measured the δ13CR, the leaf gas exchange, and the δ13C of the respiratory substrates of 22 species present in the agricultural-pastoral zone of the Songnen Plain, northeast China. The species studied were grouped into C3 and C4 plants, trees, grasses, and herbs. A significant nocturnal shift in δ13CR was detected in 20 of the studied species, with the magnitude of the shift ranging from 1‰ to 5.8‰. The magnitude of the nighttime variation in δ13CR was strongly correlated with the daytime cumulative carbon assimilation, which suggests that variation in δ13CR were influenced, to some extent, by changes in the contribution of malate decarboxylation to total respiratory CO2 flux. There were no differences in the magnitude of the nighttime variation in δ13CR between the C3 and C4 plants, as well as among the woody plants, herbs and graminoids. Leaf respired CO2 was enriched in 13C compared to biomass, soluble carbohydrates and lipids; however the magnitude of enrichment differed between 8 pm and 4 am, which were mainly caused by the changes in δ13CR. We also detected the plant functional type differences in respiratory apparent fractionation relative to biomass at 4 am, which suggests that caution should be exercised when using the δ13C of bulk leaf material as a proxy for the δ13C of leaf-respired CO2.  相似文献   

9.
We examined the potential use of natural-abundance stable carbon isotope ratios of lipids for determining substrate usage by sulfate-reducing bacteria (SRB). Four SRB were grown under autotrophic, mixotrophic, or heterotrophic growth conditions, and the δ13C values of their individual fatty acids (FA) were determined. The FA were usually 13C depleted in relation to biomass, with Δδ13C(FA − biomass) of −4 to −17‰; the greatest depletion occurred during heterotrophic growth. The exception was Desulfotomaculum acetoxidans, for which substrate limitation resulted in biomass and FA becoming isotopically heavier than the acetate substrate. The δ13C values of FA in Desulfotomaculum acetoxidans varied with the position of the double bond in the monounsaturated C16 and C18 FA, with FA becoming progressively more 13C depleted as the double bond approached the methyl end. Mixotrophic growth of Desulfovibrio desulfuricans resulted in little depletion of the i17:1 biomarker relative to biomass or acetate, whereas growth with lactate resulted in a higher proportion of i17:1 with a greater depletion in 13C. The relative abundances of 10Me16:0 in Desulfobacter hydrogenophilus and Desulfobacterium autotrophicum were not affected by growth conditions, yet the Δδ13C(FA − substrate) values of 10Me16:0 were considerably greater during autotrophic growth. These experiments indicate that FA δ13C values can be useful for interpreting carbon utilization by SRB in natural environments.  相似文献   

10.
We studied the plant resource use between and within populations of desert tortoise (Gopherus agassizii) across a precipitation gradient in the Sonoran Desert of Arizona. The carbon and nitrogen stable isotope values in animal tissues are a reflection of the carbon and nitrogen isotope values in diet, and consequently represent a powerful tool to study animal feeding ecology. We measured the δ13C and δ15N values in the growth rings on the shells of tortoises in different populations to characterize dietary specialization and track tortoise use of isotopically distinct C4/CAM versus C3 plant resources. Plants using C3 photosynthesis are generally more nutritious than C4 plants and these trait differences can have important growth and fitness consequences for consumers. We found that dietary specialization decreases in successively drier and less vegetated sites, and that broader population niche widths are accompanied by an increase in the dietary variability between individuals. Our results highlight how individual consumer plant resource use is bounded under a varying regime of precipitation and plant productivity, lending insight into how intra-individual dietary specialization varies over a spatial scale of environmental variability.  相似文献   

11.
Physiological and isotopic aspects of photosynthesis in peperomia   总被引:2,自引:2,他引:0       下载免费PDF全文
Physiological and isotopic aspects of several Peperomia species were investigated. All but one species had C3-like stomatal behavior, in that stomata were open during the day and closed during the night. In these species, most atmospheric CO2 uptake occurred during the day. Concurrent with this stomatal behavior, there were Crassulacean acid metabolism-like acid fluctuations in most species. Carbon and hydrogen isotope ratios of cellulose nitrate from Peperomia reflect their physiological behavior. The δ13C values of cellulose nitrate from Peperomia species were similar to values observed in C3 plants and consistent with the daytime uptake of exogeneous CO2 via the C3 photosynthetic pathway. The δD values of cellulose nitrate from Peperomia species approach those of Crassulacean acid metabolism plants. These elevated δD values are caused by fractionations occurring during biochemical reactions and not as a consequence of water relations.  相似文献   

12.
The exceptional fossil sites of Cerro de los Batallones (Madrid Basin, Spain) contain abundant remains of Late Miocene mammals. From these fossil assemblages, we have inferred diet, resource partitioning and habitat of three sympatric carnivorous mammals based on stable isotopes. The carnivorans include three apex predators: two sabre-toothed cats (Felidae) and a bear dog (Amphicyonidae). Herbivore and carnivore carbon isotope (δ13C) values from tooth enamel imply the presence of a woodland ecosystem dominated by C3 plants. δ13C values and mixing-model analyses suggest that the two sabre-toothed cats, one the size of a leopard and the other the size of a tiger, consumed herbivores with similar δ13C values from a more wooded portion of the ecosystem. The two sabre-toothed cats probably hunted prey of different body sizes, and the smaller species could have used tree cover to avoid encounters with the larger felid. For the bear dog, δ13C values are higher and differ significantly from those of the sabre-toothed cats, suggesting a diet that includes prey from more open woodland. Coexistence of the sabre-toothed cats and the bear dog was likely facilitated by prey capture in different portions of the habitat. This study demonstrates the utility of stable isotope analysis for investigating the behaviour and ecology of members of past carnivoran guilds.  相似文献   

13.
Yakir D  Osmond B  Giles L 《Plant physiology》1991,97(3):1196-1198
The natural abundance of carbon and hydrogen isotopic composition, expressed as a δ13C value of plant dry matter and cellulose in the hypsophylls (husk leaves) of maize (Zea mays L.) was measured and compared with that of leaves and cobs. The δ13C values of outer hypsophylls were usually 2 to 3%‰ more negative than leaves or other tissues, and became more negative with increasing chlorophyll content, indicating significant local C3 pathway fixation of CO2 in the outer hypsophylls. The δD values indicated a significant part of hypsophyll cellulose was derived from heterotrophic sources (sucrose from C4 photosynthesis in other tissues). Isotopic mass balance calculations allowed quantitative estimation of these carbon sources and, in the samples examined, about 16% of hypsophyll cellulose was derived from local C3 photosynthesis, about 62% from local C4 photosynthesis, and about 22% from sucrose imported from other leaves.  相似文献   

14.
Photosynthetic carbon metabolism of a marine grass   总被引:5,自引:4,他引:5       下载免费PDF全文
The δ13C value of a tropical marine grass Thalassia testudinum is −9.04‰. This value is similar to the δ13C value of terrestrial tropical grasses. The δ13C values of the organic acid fraction, the amino acid fraction, the sugar fraction, malic acid, and glucose are: −11.2‰, −13.1‰, −10.1‰, −11.1‰, and −11.5‰, respectively. The δ13C values of malic acid and glucose of Thalassia are similar to the δ13C values of these intermediates in sorghum leaves and attest to the presence of the photosynthetic C4-dicarboxylic acid pathway in this marine grass. The inorganic HCO3 for the growth of the grass fluctuates between −6.7 to −2.7‰ during the day. If CO2 fixation in Thalassia is catalyzed by phosphoenolpyruvate carboxylase (which would result in a −3‰ fractionation between HCO3 and malic acid), the predicted δ13C value for Thalassia would be −9.7 to −5.7‰. This range is close to the observed range of −12.6 to −7.8‰ for Thalassia and agree with the operation of the C4-dicarboxylic acid pathway in this plant. The early products of the fixation of HCO3 in the leaf sections are malic acid and aspartic acid which are similar to the early products of CO2 fixation in C4 terrestrial plants.  相似文献   

15.
The hydrogen isotope (2H/1H) ratio of lipids from phytoplankton is a powerful new tool for reconstructing hydroclimate variations in the geologic past from marine and lacustrine sediments. Water 2H/1H changes are reflected in lipid 2H/1H changes with R2 > 0.99, and salinity variations have been shown to cause about a 1‰ change in lipid δ2H values per unit (ppt) change in salinity. Less understood are the effects of growth rate, nutrient limitation and light on 2H/1H fractionation in phytoplankton. Here we present the first published study of growth rate effects on 2H/1H fractionation in the lipids of coccolithophorids grown in continuous cultures. Emiliania huxleyi was cultivated in steady state at four growth rates and the δ2H value of individual alkenones (C37:2, C37:3, C38:2, C38:3), fatty acids (C14:0, C16:0, C18:0), and 24-methyl cholest-5,22-dien-3β-ol (brassicasterol) were measured. 2H/1H fractionation increased in all lipids as growth rate increased by 24‰ to 79‰ (div d-1)-1. We attribute this response to a proportional increase in the fraction of NADPH from Photosystem I (PS1) of photosynthesis relative to NADPH from the cytosolic oxidative pentose phosphate (OPP) pathway in the synthesis of lipids as growth rate increases. A 3-endmember model is presented in which lipid hydrogen comes from NADPH produced in PS1, NADPH produced by OPP, and intracellular water. With published values or best estimates of the fractionation factors for these sources (αPS1 = 0.4, αOPP = 0.75, and αH2O = 0) and half of the hydrogen in a lipid derived from water the model indicates αlipid = 0.79. This value is within the range measured for alkenones (αalkenone = 0.77 to 0.81) and fatty acids (αFA = 0.75 to 0.82) in the chemostat cultures, but is greater than the range for brassicasterol (αbrassicasterol = 0.68 to 0.72). The latter is attributed to a greater proportion of hydrogen from NADPH relative to water in isoprenoid lipids. The model successfully explains the increase in 2H/1H fractionation in the sterol 24-methyl-cholesta-5,24(28)-dien-3β-ol from marine centric diatom T. pseudonana chemostat cultures as growth rate increases. Insensitivity of αFA in those same cultures may be attributable to a larger fraction of hydrogen in fatty acids sourced from intracellular water at the expense of NADPH as growth rate increases. The high sensitivity of α to growth rate in E. huxleyi lipids and a T. pseudonana sterol implies that any change in growth rate larger than ~0.15 div d-1 can cause a change in δ2Hlipid that is larger than the analytical error of the measurement (~5‰), and needs to be considered when interpreting δ2Hlipid variations in sediments.  相似文献   

16.
Over the past forty years, stable isotope analysis of bone (and tooth) collagen and hydroxyapatite has become a mainstay of archaeological and paleoanthropological reconstructions of paleodiet and paleoenvironment. Despite this method''s frequent use across anthropological subdisciplines (and beyond), the present work represents the first attempt at gauging the effects of inter-laboratory variability engendered by differences in a) sample preparation, and b) analysis (instrumentation, working standards, and data calibration). Replicate analyses of a 14C-dated ancient human bone by twenty-one archaeological and paleoecological stable isotope laboratories revealed significant inter-laboratory isotopic variation for both collagen and carbonate. For bone collagen, we found a sizeable range of 1.8‰ for δ13Ccol and 1.9‰ for δ15Ncol among laboratories, but an interpretatively insignificant average pairwise difference of 0.2‰ and 0.4‰ for δ13Ccol and δ15Ncol respectively. For bone hydroxyapatite the observed range increased to a troublingly large 3.5‰ for δ13Cap and 6.7‰ for δ18Oap, with average pairwise differences of 0.6‰ for δ13Cap and a disquieting 2.0‰ for δ18Oap. In order to assess the effects of preparation versus analysis on isotopic variability among laboratories, a subset of the samples prepared by the participating laboratories were analyzed a second time on the same instrument. Based on this duplicate analysis, it was determined that roughly half of the isotopic variability among laboratories could be attributed to differences in sample preparation, with the other half resulting from differences in analysis (instrumentation, working standards, and data calibration). These findings have serious implications for choices made in the preparation and extraction of target biomolecules, the comparison of results obtained from different laboratories, and the interpretation of small differences in bone collagen and hydroxyapatite isotope values. To address the issues arising from inter-laboratory comparisons, we devise a novel measure we term the Minimum Meaningful Difference (MMD), and demonstrate its application.  相似文献   

17.
Understanding the influences of climatic changes on water use efficiency (WUE) of Tibetan alpine meadows is important for predicting their long-term net primary productivity (NPP) because they are considered very sensitive to climate change. Here, we collected wool materials produced from 1962 to 2010 and investigated the long-term WUE of an alpine meadow in Tibet on basis of the carbon isotope values of vegetation (δ 13Cveg). The values of δ 13Cveg decreased by 1.34‰ during 1962–2010, similar to changes in δ 13C values of atmospheric CO2. Carbon isotope discrimination was highly variable and no trend was apparent in the past half century. Intrinsic water use efficiency (W i) increased by 18 μmol·mol–1 (approximately 23.5%) during 1962–2010 because the increase in the intercellular CO2 concentration (46 μmol·mol–1) was less than that in the atmospheric CO2 concentration (C a, 73 μmol·mol–1). In addition, W i increased significantly with increasing growing season temperature and C a. However, effective water use efficiency (W e) remained relatively stable, because of increasing vapor pressure deficit. C a, precipitation, and growing season temperature collectively explained 45% of the variation of W e. Our findings indicate that the W e of alpine meadows in the Tibetan Plateau remained relatively stable by physiological adjustment to elevated C a and growing season temperature. These findings improve our understanding and the capacity to predict NPP of these ecosystems under global change scenarios.  相似文献   

18.
Removal of the plant hormone ethylene (C2H4) is often required by horticultural storage facilities, which are operated at temperatures below 10°C. The aim of this study was to demonstrate an efficient, biological C2H4 removal under such low-temperature conditions. Peat-soil, acclimated to degradation of C2H4, was packed in a biofilter (687 cm3) and subjected to an airflow (~73 ml min−1) with 2 ppm (μl liter−1) C2H4. The C2H4 removal efficiencies achieved at 20, 10, and 5°C, respectively, were 99.0, 98.8, and 98.4%. This corresponded to C2H4 levels of 0.022 to 0.032 ppm in the biofilter outlet air. At 2°C, the average C2H4 removal efficiency dropped to 83%. The detailed temperature response of C2H4 removal was tested under batch conditions by incubation of 1-g soil samples in a temperature gradient ranging from 0 to 29°C with increments of 1°C. The C2H4 removal rate was highest at 26°C (0.85 μg of C2H4 g [dry weight]−1 h−1), but remained at levels of 0.14 to 0.28 μg of C2H4 g (dry weight)−1 h−1 at 0 to 10°C. At 35 to 40°C, the C2H4 removal rate was negligible (0.02 to 0.06 μg of C2H4 g [dry weight]−1 h−1). The Q10 (i.e., the ratio of rates 10°C apart) for C2H4 removal was 1.9 for the interval 0 to 10°C. In conclusion, the present results demonstrated microbial C2H4 removal, which proceeded at 0 to 2°C and produced a moderately psychrophilic temperature response.  相似文献   

19.
The occurrence and abundance of microbial fatty acids have been used for the identification of microorganisms in microbial communities. However, these fatty acids can also be used as indicators of substrate usage. For this, a systematic investigation of the discrimination of the stable carbon isotopes by different microorganisms is necessary. We grew 11 strains representing major bacterial and fungal species with four different isotopically defined carbon sources and determined the isotope ratios of fatty acids of different lipid fractions. A comparison of the differences of δ13C values of palmitic acid (C16:0) with the δ13C values of the substrates revealed that the isotope ratio is independent of the growth stage and that most microorganisms showed enrichment of C16:0 with 13C when growing on glycerol. With the exception of Burkholderia gladioli, all microorganism showed depletion of 13C in C16:0 while incorporating the carbons of glucose, and most of them were enriched with 13C from mannose, with the exception of Pseudomonas fluorescens and the Zygomycotina. Usually, the glycolipid fractions are depleted in 13C compared to the phospholipid fractions. The δ13C pattern was not uniform within the different fatty acids of a given microbial species. Generally, tetradecanoic acid (C14:0) was depleted of 13C compared to palmitic acid (C16:0) while octadecanoic acid (C18:0) was enriched. These results are important for the calibration of a new method in which δ13C values of fatty acids from the environment delineate the use of bacterial substrates in an ecosystem.  相似文献   

20.
Llama (Lama glama) and alpaca (Vicugna pacos) are the only large domesticated animals indigenous to the Americas. Pastoralism occupies a fundamental economic, social and religious role in Andean life. Today, camelid livestock are confined to the ecozone of the puna (above 3,500 masl), while their presence on the Pacific coast during pre-Hispanic times is attested by archaeological skeletal remains. This study aims to document herding practices on the northern Peruvian coast during the Early Intermediate Period (200 BC-600 AD) by gaining insights into diet, location of breeding and mobility of archaeological camelids from the funerary and ritual contexts of two Mochica sites, Uhle Platform in Huacas de Moche and El Brujo. The three first early years and the long-term life histories of the animals were documented by the combined bulk analysis of bone collagen (δ13Ccol and δ15Ncol) and bone structural carbonate (δ13Cbone and δ18Obone) and the serial analysis of structural carbonate of molar tooth enamel (δ13Cenamel and δ18Oenamel). Mochica camelids were bred in the low and/or middle valleys, unlike their modern counterparts, who are restricted to highland puna C3 pastures. Archaeological camelids had diverse and complex life histories, usually with substantial maize foddering. An ontogenetic switch in diet and possible residential mobility during the course of life were identified for some specimens. Although the inference of geographic origin from δ18Obone and δ18Oenamel values was limited because of the lack of understanding of the influence of environmental and biological factors, tooth enamel analysis has great potential for exploring camelid herding practices and Andean pastoralism. Our study suggested that Mochica herders adapted their practices to the difficult lowland environment and that herding practices were varied and not restricted to breeding at higher altitudes. The role of maize in different aspects of the economic life of the Mochicas is also underlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号