首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 503 毫秒
1.
Alzheimer''s disease (AD) is a type of progressive dementia caused by degeneration of the nervous system. A single target drug usually does not work well. Therefore, multi-target drugs are designed and developed so that one drug can specifically bind to multiple targets to ensure clinical effectiveness and reduce toxicity. We synthesised a series of 2-arylbenzofuran derivatives and evaluated their in vitro activities. 2-Arylbenzofuran compounds have good dual cholinesterase inhibitory activity and β-secretase inhibitory activity. The IC50 value of compound 20 against acetylcholinesterase inhibition (0.086 ± 0.01 µmol·L−1) is similar to donepezil (0.085 ± 0.01 µmol·L−1) and is better than baicalein (0.404 ± 0.04 µmol·L−1). And most of the compounds have good BACE1 inhibitory activity, of which 3 compounds (8, 19 and 20) show better activity than baicalein (0.087 ± 0.03 µmol·L−1). According to experimental results, 2-arylbenzofuran compounds provide an idea for drug design to develop prevention and treatment for AD.  相似文献   

2.
A growing awareness of the risks associated with skin exposure to ultraviolet (UV) radiation over the past decades has led to increased use of sunscreen cosmetic products leading the introduction of new chemical compounds in the marine environment. Although coastal tourism and recreation are the largest and most rapidly growing activities in the world, the evaluation of sunscreen as source of chemicals to the coastal marine system has not been addressed. Concentrations of chemical UV filters included in the formulation of sunscreens, such as benzophehone 3 (BZ-3), 4-methylbenzylidene camphor (4-MBC), TiO2 and ZnO, are detected in nearshore waters with variable concentrations along the day and mainly concentrated in the surface microlayer (i.e. 53.6–577.5 ng L-1 BZ-3; 51.4–113.4 ng L-1 4-MBC; 6.9–37.6 µg L-1 Ti; 1.0–3.3 µg L-1 Zn). The presence of these compounds in seawater suggests relevant effects on phytoplankton. Indeed, we provide evidences of the negative effect of sunblocks on the growth of the commonly found marine diatom Chaetoceros gracilis (mean EC50 = 125±71 mg L-1). Dissolution of sunscreens in seawater also releases inorganic nutrients (N, P and Si forms) that can fuel algal growth. In particular, PO4 3− is released by these products in notable amounts (up to 17 µmol PO4 3− g−1). We conservatively estimate an increase of up to 100% background PO4 3− concentrations (0.12 µmol L-1 over a background level of 0.06 µmol L-1) in nearshore waters during low water renewal conditions in a populated beach in Majorca island. Our results show that sunscreen products are a significant source of organic and inorganic chemicals that reach the sea with potential ecological consequences on the coastal marine ecosystem.  相似文献   

3.
To mitigate eutrophication in fresh standing waters the focus is on phosphorus (P) control, i.e. on P inflows to a lake as well as a lake''s sediment as internal P source. The in-lake application of the lanthanum (La) modified clays – i.e. La modified bentonite (Phoslock) or La modified kaolinite, aim at dephosphatising the water column and at reducing the release of P from a lake''s sediment. Application of these clays raises the question whether La from these clays can become bioavailable to biota. We investigated the bioavailability of La from Phoslock in a controlled parallel groups experiment in which we measured the La in carapace, gills, ovaries, hepatopancreas and abdominal muscle after 0, 14 and 28 days of exposure to Phoslock. Expressing the treatment effect as the difference of the median concentration between the two treatment groups (Phoslock minus control group) yield the following effects, the plus sign (+) indicating an increase, concentrations in µg g−1 dry weight: Day 14: carapace +10.5 µg g−1, gills +112 µg g−1, ovaries +2.6 µg g−1, hepatopancreas +32.9 µg g−1 and abodminal muscle +3.2 µg g−1. Day 28: carapace +17.9 µg g−1; gills +182 µg g−1; ovaries +2.2 µg g−1; hepatopancreas +41.9 µg g−1 and abodminal muscle +7.6 µg g−1, all effects were statistically significant. As La from Phoslock is bio-available to and taken up by the marbled crayfishes (Procambarus fallax f. virginalis), we advocate that the application of in-lake chemical water treatments to mitigate eutrophication should be accompanied by a thorough study on potential side effects.  相似文献   

4.
This study was designed to determine concentrations of polycyclic aromatic hydrocarbons (PAHs) in soil samples collected from Midway Atoll and evaluate their potential risks to human health. The total concentrations of 16 PAHs ranged from 3.55 to 3200 µg kg−1 with a mean concentration of 198 µg kg−1. Higher molecular weight PAHs (4–6 ring PAHs) dominated the PAH profiles, accounting for 83.3% of total PAH mass. PAH diagnostic ratio analysis indicated that primary sources of PAHs in Midway Atoll could be combustion. The benzo[a]pyrene equivalent concentration (BaPeq) in most of the study area (86.5%) was less than 40 µg kg−1 BaPeq and total incremental lifetime cancer risks of PAHs ranged from 1.00×10−10 to 9.20×10−6 with a median value of 1.24×10−7, indicating a minor carcinogenic risk of PAHs in Midway Atoll.  相似文献   

5.
We investigated the physiological consequences of the most challenging mountain ultra-marathon (MUM) in the world: a 330-km trail run with 24000 m of positive and negative elevation change. Neuromuscular fatigue (NMF) was assessed before (Pre-), during (Mid-) and after (Post-) the MUM in experienced ultra-marathon runners (n = 15; finish time  = 122.43 hours ±17.21 hours) and in Pre- and Post- in a control group with a similar level of sleep deprivation (n = 8). Blood markers of muscle inflammation and damage were analyzed at Pre- and Post-. Mean ± SD maximal voluntary contraction force declined significantly at Mid- (−13±17% and −10±16%, P<0.05 for knee extensor, KE, and plantar flexor muscles, PF, respectively), and further decreased at Post- (−24±13% and −26±19%, P<0.01) with alteration of the central activation ratio (−24±24% and −28±34% between Pre- and Post-, P<0.05) in runners whereas these parameters did not change in the control group. Peripheral NMF markers such as 100 Hz doublet (KE: −18±18% and PF: −20±15%, P<0.01) and peak twitch (KE: −33±12%, P<0.001 and PF: −19±14%, P<0.01) were also altered in runners but not in controls. Post-MUM blood concentrations of creatine kinase (3719±3045 Ul·1), lactate dehydrogenase (1145±511 UI·L−1), C-Reactive Protein (13.1±7.5 mg·L−1) and myoglobin (449.3±338.2 µg·L−1) were higher (P<0.001) than at Pre- in runners but not in controls. Our findings revealed less neuromuscular fatigue, muscle damage and inflammation than in shorter MUMs. In conclusion, paradoxically, such extreme exercise seems to induce a relative muscle preservation process due likely to a protective anticipatory pacing strategy during the first half of MUM and sleep deprivation in the second half.  相似文献   

6.
In this study, dienelactone hydrolases (TfdEI and TfdEII) located on plasmid pJP4 of Cupriavidus necator JMP134 were cloned, purified, characterized and three dimensional structures were predicted. tfdEI and tfdEII genes were cloned into pET21b vector and expressed in E. coli BL21(DE3). The enzymes were purified by applying ultra-membrane filtration, anion-exchange QFF and gel-filtration columns. The enzyme activity was determined by using cis-dienelactone. The three-dimensional structure of enzymes was predicted using SWISS-MODEL workspace and the biophysical properties were determined on ExPASy server. Both TfdEI and TfdEII (Mr 25 kDa) exhibited optimum activity at 37°C and pH 7.0. The enzymes retained approximately 50% of their activity after 1 h of incubation at 50°C and showed high stability against denaturing agents. The TfdEI and TfdEII hydrolysed cis-dienelactone at a rate of 0.258 and 0.182 µMs−1, with a Km value of 87 µM and 305 µM, respectively. Also, TfdEI and TfdEII hydrolysed trans-dienelactone at a rate of 0.053 µMs−1 and 0.0766 µMs−1, with a Km value of 84 µM and 178 µM, respectively. The TfdEI and TfdEII kcat/Km ratios were 0.12 µM−1s−1and 0.13 µM−1s−1 and 0.216 µM−1s−1 and 0.094 µM−1s−1 for for cis- and trans-dienelactone, respectively. The kcat/Km ratios for cis-dienelactone show that both enzymes catalyse the reaction with same efficiency even though Km value differs significantly. This is the first report to characterize and compare reaction kinetics of purified TfdEI and TfdEII from Cupriavidus necator JMP134 and may be helpful for further exploration of their catalytic mechanisms.  相似文献   

7.
With the consumption of energy and the spread of COVID-19, the demand for ethanol production is increasing in the world. The industrial ethanol fermentation microbes cannot metabolize the alginate component of macro algae, which affects the ethanol yield. In this research, the ethanol production process from macro algae by an alginate fermentation yeast Meyerozyma guilliermondii, especially the pretreatment process of Colpomenia sinuosa, was studied. At the same time, the experimental design of Box-Behnken was carried out to achieve the optimum fermentation performance. The concentration of KH2PO4 (A: 2–6 g.L−1), pH (B: 4–7), reaction time (C: 60–120 h) and temperature (D: 24–34 °C) were variable input parameters. During the ethanol production process, the algae powder was firstly mixed with water at 90 °C for 0.5 h. Later the fermentation culture medium was prepared and then it was fermented by the yeast Meyerozyma guilliermondii to produce ethanol. And the optimal fermentation parameters were as follows: fermentation temperature of 28 °C, KH2PO4 dosage of 4.7 g.L−1, initial pH of 6, and fermentation time of 99 h. The ethanol yield reached 0.268 g.g−1 (ethanol to algae), close to the predicted value of model. The generation of alginate lyase during the fermentation of algae was also examined. The highest alginate lyase activity reached 46.42 U.mL−1.  相似文献   

8.

Background

Completing a marathon is one of the most challenging sports activities, yet the source of running fatigue during this event is not completely understood. The aim of this investigation was to determine the cause(s) of running fatigue during a marathon in warm weather.

Methodology/Principal Findings

We recruited 40 amateur runners (34 men and 6 women) for the study. Before the race, body core temperature, body mass, leg muscle power output during a countermovement jump, and blood samples were obtained. During the marathon (27 °C; 27% relative humidity) running fatigue was measured as the pace reduction from the first 5-km to the end of the race. Within 3 min after the marathon, the same pre-exercise variables were obtained.

Results

Marathoners reduced their running pace from 3.5 ± 0.4 m/s after 5-km to 2.9 ± 0.6 m/s at the end of the race (P<0.05), although the running fatigue experienced by the marathoners was uneven. Marathoners with greater running fatigue (> 15% pace reduction) had elevated post-race myoglobin (1318 ± 1411 v 623 ± 391 µg L−1; P<0.05), lactate dehydrogenase (687 ± 151 v 583 ± 117 U L−1; P<0.05), and creatine kinase (564 ± 469 v 363 ± 158 U L−1; P = 0.07) in comparison with marathoners that preserved their running pace reasonably well throughout the race. However, they did not differ in their body mass change (−3.1 ± 1.0 v −3.0 ± 1.0%; P = 0.60) or post-race body temperature (38.7 ± 0.7 v 38.9 ± 0.9 °C; P = 0.35).

Conclusions/Significance

Running pace decline during a marathon was positively related with muscle breakdown blood markers. To elucidate if muscle damage during a marathon is related to mechanistic or metabolic factors requires further investigation.  相似文献   

9.
Lactic acid is one of the top 30 potential building-block chemicals from biomass, of which the most extensive use is in the polymerization of lactic acid to poly-lactic-acid (PLA). To reduce the cost of PLA, the search for cheap raw materials and low-cost process for lactic acid production is highly desired. In this study, the final titer of produced L-lactic acid reached a concentration of 185 g·L−1 with a volumetric productivity of 1.93 g·L−1·h−1 by using sugarcane bagasse hydrolysate as the sole carbon source simultaneously with cottonseed meal as cheap nitrogen sources under the open fed-batch fermentation process. Furthermore, a lactic acid yield of 0.99 g per g of total reducing sugars was obtained, which is very close to the theoretical value (1.0 g g−1). No D-isomer of lactic acid was detected in the broth, and thereafter resulted in an optical purity of 100%, which exceeds the requirement of lactate polymerization process. To our knowledge, this is the best performance of fermentation on polymer-grade L-lactic acid production totally using lignocellulosic sources. The high levels of optically pure l-lactic acid produced, combined with the ease of handling and low costs associated with the open fermentation strategy, indicated the thermotolerant Bacillus sp. P38 could be an excellent candidate strain with great industrial potential for polymer-grade L-lactic acid production from various cellulosic biomasses.  相似文献   

10.
To improve the fermentation efficiency of Propionibacterium acidipropionici, a semi‐continuous coupled fermentation process was established to achieve co‐production of propionic acid (PA) and succinic acid (SA). First, the optimal proportion of glucose (Glc) and glycerol (Gl) as a mixed carbon source was determined, and the feeding procedure of Gl was optimized to make more energy flow in the direction of product synthesis. Then, ZGD630 anion exchange resin was used for efficient adsorption of PA, thereby eliminating the feedback inhibition effect of PA. Finally, an efficient, coupled fermentation process of P. acidipropionici characterized by membrane separation and chromatography technology was developed. The concentrations of PA and SA reached 62.22 ± 2.32 and 20.45 ± 1.34 g L−1, with corresponding productivity of 0.43 and 0.14 g L−1 h−1, increased by 65.38% and 48.54%, respectively. Membrane separation coupled fermentation of PA and SA could significantly improve the process economics of P. acidipropionici, and has good prospects for industrial application.  相似文献   

11.
Cephapirin, a cephalosporin antibiotic, is used by the majority of dairy farms in the US. Fecal and urinary excretion of cephapirin could introduce this compound into the environment when manure is land applied as fertilizer, and may cause development of bacterial resistance to antibiotics critical for human health. The environmental loading of cephapirin by the livestock industry remains un-assessed, largely due to a lack of appropriate analytical methods. Therefore, this study aimed to develop and validate a cephapirin quantification method to capture the temporal pattern of cephapirin excretion in dairy cows following intramammary infusion. The method includes an extraction with phosphate buffer and methanol, solid-phase extraction (SPE) clean-up, and quantification using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The LOQ values of the developed method were 4.02 µg kg−1 and 0.96 µg L−1 for feces and urine, respectively. This robust method recovered >60% and >80% cephapirin from spiked blank fecal and urine samples, respectively, with acceptable intra- and inter-day variation (<10%). Using this method, we detected trace amounts (µg kg−1) of cephapirin in dairy cow feces, and cephapirin in urine was detected at very high concentrations (133 to 480 µg L−1). Cephapirin was primarily excreted via urine and its urinary excretion was influenced by day (P = 0.03). Peak excretion (2.69 mg) was on day 1 following intramammary infusion and decreased sharply thereafter (0.19, 0.19, 0.08, and 0.17 mg on day 2, 3, 4, and 5, respectively) reflecting a quadratic pattern of excretion (Quadratic: P = 0.03). The described method for quantification of cephapirin in bovine feces and urine is sensitive, accurate, and robust and allowed to monitor the pattern of cephapirin excretion in dairy cows. This data will help develop manure segregation and treatment methods to minimize the risk of antibiotic loading to the environment from dairy farms.  相似文献   

12.

Introduction

Numerous anti-angiogenic agents are currently developed to limit tumor growth and metastasis. While these drugs offer hope for cancer patients, their transient effect on tumor vasculature is difficult to assess in clinical settings. Confocal laser endomicroscopy (CLE) is a novel endoscopic imaging technology that enables histological examination of the gastrointestinal mucosa. The aim of the present study was to evaluate the feasibility of using CLE to image the vascular network in fresh biopsies of human colorectal tissue. For this purpose we have imaged normal and malignant biopsy tissue samples and compared the vascular network parameters obtained with CLE with established histopathology techniques.

Materials and Methods

Fresh non-fixed biopsy samples of both normal and malignant colorectal mucosa were stained with fluorescently labeled anti-CD31 antibodies and imaged by CLE using a dedicated endomicroscopy system. Corresponding biopsy samples underwent immunohistochemical staining for CD31, assessing the microvessel density (MVD) and vascular areas for comparison with CLE data, which were measured offline using specific software.

Results

The vessels were imaged by CLE in both normal and tumor samples. The average diameter of normal vessels was 8.5±0.9 µm whereas in tumor samples it was 13.5±0.7 µm (p = 0.0049). Vascular density was 188.7±24.9 vessels/mm2 in the normal tissue vs. 242.4±16.1 vessels/mm2 in the colorectal cancer samples (p = 0.1201). In the immunohistochemistry samples, the MVD was 211.2±42.9/mm2 and 351.3±39.6/mm2 for normal and malignant mucosa, respectively. The vascular area was 2.9±0.5% of total tissue area for the normal mucosa and 8.5±2.1% for primary colorectal cancer tissue.

Conclusion

Selective imaging of blood vessels with CLE is feasible in normal and tumor colorectal tissue by using fluorescently labeled antibodies targeted against an endothelial marker. The method could be translated into the clinical setting for monitoring of anti-angiogenic therapy.  相似文献   

13.
The amounts of labile trace metals: [Co] (3 to 11 µg g−1), [Cu] (15 to 69 µg g−1), [Ni] (6 to 15 µg g−1), [Pb] (7 to 42 µg g−1), and [Zn] (65 to 500 µg g−1) in ash collected from the 2012 Williams Fire in Los Angeles, California attest to the role of fires in remobilizing industrial metals deposited in forests. These remobilized trace metals may be dispersed by winds, increasing human exposures, and they may be deposited in water bodies, increasing exposures in aquatic ecosystems. Correlations between the concentrations of these trace metals, normalized to Fe, in ash from the fire suggest that Co, Cu, and Ni in most of those samples were predominantly from natural sources, whereas Pb and Zn were enriched in some ash samples. The predominantly anthropogenic source of excess Pb in the ash was further demonstrated by its isotopic ratios (208Pb/207Pb: 206Pb/207Pb) that fell between those of natural Pb and leaded gasoline sold in California during the previous century. These analyses substantiate current human and environmental health concerns with the pyrogenic remobilization of toxic metals, which are compounded by projections of increases in the intensity and frequency of wildfires associated with climate change.  相似文献   

14.
Pancreatic lipase plays a key role in intestinal digestion of feed fat, and is often deficient in young animals such as weaning piglets. The objective of this study was to express and characterize a partial codon optimized porcine pancreatic lipase (opPPL). A 537 bp cDNA fragment encoding N-terminus amino acid residue of the mature porcine pancreatic lipase was synthesized according to the codon bias of Pichia pastoris and ligated to the full-length porcine pancreatic lipase cDNA fragment. The codon optimized PPL was cloned into the pPICZαA (Invitrogen, Beijing, China) vector. After the resultant opPPL/pPICZαΑ plasmid was transformed into P.pastoris, the over-expressed extracellular opPPL containing a His-tag to the C terminus was purified using Ni Sepharose affinity column (GE Healthcare, Piscataway, NJ, USA), and was characterized against the native enzyme (commercial PPL from porcine pancreas, Sigma). The opPPL exhibited a molecular mass of approximately 52 kDa, and showed optimal temperature (40°C), optimal pH (8.0), Km (0.041 mM), and Vmax (2.008 µmol.mg protein −1.min−1) similar to those of the commercial enzyme with p-NPP as the substrate. The recombinant enzyme was stable at 60°C, but lost 80% (P<0.05) of its activity after exposure to heat ≥60°C for 20 min. The codon optimization increased opPPL yield for ca 4 folds (146 mg.L−1 vs 36 mg.L−1) and total enzyme activity increased about 5 folds (1900 IU.L−1 vs 367 IU.L−1) compared with those native naPPL/pPICZαΑ tranformant. Comparison of gene copies and mRNA profiles between the two strains indicated the increased rePPL yields may partly be ascribed to the increased protein translational efficiency after codon optimization. In conclusion, we successfully optimized 5-terminal of porcine pancreatic lipase encoding gene and over-expressed the gene in P. pastoris as an extracellular, functional enzyme. The recombination enzyme demonstrates a potential for future use as an animal feed additive for animal improvement.  相似文献   

15.
Irrigation with wastewater releases pharmaceuticals, pathogenic bacteria, and resistance genes, but little is known about the accumulation of these contaminants in the environment when wastewater is applied for decades. We sampled a chronosequence of soils that were variously irrigated with wastewater from zero up to 100 years in the Mezquital Valley, Mexico, and investigated the accumulation of ciprofloxacin, enrofloxacin, sulfamethoxazole, trimethoprim, clarithromycin, carbamazepine, bezafibrate, naproxen, diclofenac, as well as the occurrence of Enterococcus spp., and sul and qnr resistance genes. Total concentrations of ciprofloxacin, sulfamethoxazole, and carbamazepine increased with irrigation duration reaching 95% of their upper limit of 1.4 µg/kg (ciprofloxacin), 4.3 µg/kg (sulfamethoxazole), and 5.4 µg/kg (carbamazepine) in soils irrigated for 19–28 years. Accumulation was soil-type-specific, with largest accumulation rates in Leptosols and no time-trend in Vertisols. Acidic pharmaceuticals (diclofenac, naproxen, bezafibrate) were not retained and thus did not accumulate in soils. We did not detect qnrA genes, but qnrS and qnrB genes were found in two of the irrigated soils. Relative concentrations of sul1 genes in irrigated soils were two orders of magnitude larger (3.15×10−3±0.22×10−3 copies/16S rDNA) than in non-irrigated soils (4.35×10−5±1.00×10−5 copies/16S rDNA), while those of sul2 exceeded the ones in non-irrigated soils still by a factor of 22 (6.61×10–4±0.59×10−4 versus 2.99×10−5±0.26×10−5 copies/16S rDNA). Absolute numbers of sul genes continued to increase with prolonging irrigation together with Enterococcus spp. 23S rDNA and total 16S rDNA contents. Increasing total concentrations of antibiotics in soil are not accompanied by increasing relative abundances of resistance genes. Nevertheless, wastewater irrigation enlarges the absolute concentration of resistance genes in soils due to a long-term increase in total microbial biomass.  相似文献   

16.
Gymnastics floor exercises are composed of a set of four to five successive acrobatic jumps usually called a “series”. The aims of the study were: 1) to relate the acrobatic gymnastics performance of these series with a repeated jumps test of similar duration (R60), 2) to study the relation between R60 and physiological parameters (heart rate and blood lactate), and the performance obtained in different kinds of jumps, 3) to confirm whether R60, executed without a damped jumping technique, can be considered an anaerobic lactic power test. Twenty male and twenty-four female gymnasts performed three repeated jumps tests for 5 s (R5), 10 s (R10) and 60 s (R60) and vertical jumps, such as drop jumps (DJ), squat jumps (SJ) and countermovement jumps (CMJ). We assessed heart rate (HR) and blood lactate during R10 and R60. The average values of the maximal blood lactate concentration (Lmax) after R10 (males = 2.5±0.6 mmol · l−1; females = 2.1±0.8 mmol · l−1) confirm that anaerobic glycolysis is not activated to a high level. In R60, the Lmax (males = 7.5±1.7 mmol · l−1 females = 5.9±2.1 mmol · l−1) that was recorded does not validate R60 as an anaerobic lactic power test. We confirmed the relation between the average power obtained in R60 (R60Wm) and the acrobatic performance on the floor. The inclusion in the multiple regression equation of the best power in DJ and the best flight-contact ratio (FC) in R5 confirms the influence of other non-metabolic components on the variability in R60 performance, at least in gymnasts.  相似文献   

17.
We assessed the reactivity of Sb(V) in human blood. Sb(V) reactivity was determined using an HPLC-HG-AFS hyphenated system. Sb(V) was partially reduced to Sb(III) in blood incubation experiments; however, Sb(III) was a highly unstable species. The addition of 0.1 mol L−1 EDTA prevented Sb(III) oxidation, thus enabling the detection of the reduction of Sb(V) to Sb(III). The transformation of Sb(V) to Sb(III) in human whole blood was assessed because the reduction of Sb(V) in human blood may likely generate redox side effects. Our results indicate that glutathione was the reducing agent in this reaction and that Sb(V) significantly decreased the GSH/GSSG ratio from 0.32±0.09 to 0.07±0.03. Moreover, the presence of 200 ng mL−1 of Sb(V) increased the activity of superoxide dismutase from 4.4±0.1 to 7.0±0.4 U mL−1 and decreased the activity of glutathione peroxidase from 62±1 to 34±2 nmol min−1 mL−1.  相似文献   

18.
An in vitro method of multiple shoot induction and plant regeneration in Psophocarpus tetragonolobus (L.) DC was developed. Cotyledons, hypocotyls, epicotyls, internodal and young seedling leaves were used as explants. MS media supplemented with various concentrations of either thidiazuron (TDZ) or N6-benzylaminopurine (BAP) along with NAA or IAA combinations were used to determine their influence on multiple shoot induction. MS media supplemented with TDZ induced direct shoot regeneration when epicotyls and internodal segments were used as explants. TDZ at 3 mg L−1 induced highest rate (89.2 ± 3.28%) of regeneration with (13.4 ± 2.04) shoots per explant. MS media supplemented with BAP in combination with NAA or IAA induced callus mediated regeneration when cotyledons and hypocotyls were used as explants. BAP (2.5 mg L−1) and IAA (0.2 mg L−1) induced highest rate (100 ± 2.66%) of regeneration with (23.2 ± 2.66) shoots per explant. Mature plants produced from regenerated shoots were transferred successfully to the greenhouse. In a comparative study, the phenolics contents of various parts of greenhouse-grown plants with that of in vitro-raised plants showed significant variations.  相似文献   

19.
We examined rates of N2 fixation from the surface to 2000 m depth in the Eastern Tropical South Pacific (ETSP) during El Niño (2010) and La Niña (2011). Replicated vertical profiles performed under oxygen-free conditions show that N2 fixation takes place both in euphotic and aphotic waters, with rates reaching 155 to 509 µmol N m−2 d−1 in 2010 and 24±14 to 118±87 µmol N m−2 d−1 in 2011. In the aphotic layers, volumetric N2 fixation rates were relatively low (<1.00 nmol N L−1 d−1), but when integrated over the whole aphotic layer, they accounted for 87–90% of total rates (euphotic+aphotic) for the two cruises. Phylogenetic studies performed in microcosms experiments confirm the presence of diazotrophs in the deep waters of the Oxygen Minimum Zone (OMZ), which were comprised of non-cyanobacterial diazotrophs affiliated with nifH clusters 1K (predominantly comprised of α-proteobacteria), 1G (predominantly comprised of γ-proteobacteria), and 3 (sulfate reducing genera of the δ-proteobacteria and Clostridium spp., Vibrio spp.). Organic and inorganic nutrient addition bioassays revealed that amino acids significantly stimulated N2 fixation in the core of the OMZ at all stations tested and as did simple carbohydrates at stations located nearest the coast of Peru/Chile. The episodic supply of these substrates from upper layers are hypothesized to explain the observed variability of N2 fixation in the ETSP.  相似文献   

20.
The specific growth rate is a key control parameter in the industrial production of baker’s yeast. Nevertheless, quantitative data describing its effect on fermentative capacity are not available from the literature. In this study, the effect of the specific growth rate on the physiology and fermentative capacity of an industrial Saccharomyces cerevisiae strain in aerobic, glucose-limited chemostat cultures was investigated. At specific growth rates (dilution rates, D) below 0.28 h−1, glucose metabolism was fully respiratory. Above this dilution rate, respirofermentative metabolism set in, with ethanol production rates of up to 14 mmol of ethanol · g of biomass−1 · h−1 at D = 0.40 h−1. A substantial fermentative capacity (assayed offline as ethanol production rate under anaerobic conditions) was found in cultures in which no ethanol was detectable (D < 0.28 h−1). This fermentative capacity increased with increasing dilution rates, from 10.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.025 h−1 to 20.5 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.28 h−1. At even higher dilution rates, the fermentative capacity showed only a small further increase, up to 22.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.40 h−1. The activities of all glycolytic enzymes, pyruvate decarboxylase, and alcohol dehydrogenase were determined in cell extracts. Only the in vitro activities of pyruvate decarboxylase and phosphofructokinase showed a clear positive correlation with fermentative capacity. These enzymes are interesting targets for overexpression in attempts to improve the fermentative capacity of aerobic cultures grown at low specific growth rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号