首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Otoliths, calcium carbonate (CaCO3) ear stones of fish, contain a wealth of information about fish life and environmental history yet the CaCO3 polymorph form the otolith is made of is a critical, but seldom considered, piece of information during otolith analysis. Otolith trace element chemistry data increasingly informs management decisions, but recent work has shown that CaCO3 polymorphs—aragonite, vaterite, and calcite—can bear on incorporation of trace elements in a non-trivial way. Most fishes are thought to have otoliths of the aragonite CaCO3 form, but this construct is potentially outdated with many recent literature reports showing otherwise. Our study used previously unpublished neutron diffraction data and reports from published literature to address three objectives: (1) summarize the relative effects of otolith CaCO3 polymorphism on otolith microchemistry, (2) summarize reports of otolith polymorphs to gain a better understanding of the extent of non-aragonite otoliths among fishes, (3) outline future research needed to align interpretations of microchemistry with our current understanding of otolith polymorph diversity. We found that while aragonite otoliths are the most common, so are exceptions. For example, the ostensibly rare (among species) CaCO3 form vaterite was reported in at least some otoliths of 40% of the species surveyed. Our work suggests that examination of the CaCO3 polymorph composition of otoliths should become more common particularly in studies where results will or may be used to inform management decisions. Future research should work to attribute controls on otolith CaCO3 polymorph expression using a combination of -omics and material characterization approaches to enrich the life history and environmental information output from otoliths and increase our understanding of the assumptions made in otolith trace element chemistry studies.

  相似文献   

2.
为探讨洞穴微生物沉积碳酸钙作用对洞穴沉积物的影响,利用传统生物学方法,采集贵州中西部地区石将军洞洞穴沉积物表面的微生物样品,结合洞穴监测数据和理化背景资料,利用B-4培养基和B-4C培养基对洞穴细菌进行筛选和纯化,分离出能沉积碳酸钙的菌种,观察和了解洞穴细菌形成的CaCO3晶体,应用X射线衍射分析仪(XRD)分析细菌形成的CaCO3晶体成分,并利用扫描电子显微镜(SEM)观察晶体结构特征。结果表明:1)在B-4培养基下微生物产生的碳酸钙晶体主要为方解石、球霰石和方解石混合物、球霰石,这种变化与培养基pH值的增幅相关;同时,在添加Mg离子的B-4C培养基下形成的碳酸钙晶体主要为方解石,此外,研究中并未检测到文石晶体。2)通过SEM扫描,发现微生物作用形成的碳酸钙晶体存在不规则六方体、柱状体、四方体层状、半球状等,这些晶体形态在化学作用系统下少见,多见于微生物作用形成的方解石。此外,晶体中微生物作用痕迹明显,微生物作用贯穿于整个沉积过程。  相似文献   

3.
In this study we quantified the percent CaCO3 polymorph composition in otoliths of larval and juvenile Lake Sturgeon Acipenser fulvescens via X-ray microdiffraction. Sagittal otoliths of sub-adults were primarily composed of aragonite (> 90%) while the lapilli otoliths were 100% vaterite. This is the first time the presence of aragonite in otoliths has been reported in an acipenseriform and is surprising given that the ability to form aragonite otoliths was not thought to have evolved until the separation of teleost and holostean species from other Actinopterygian fishes (e.g., sturgeon, paddlefish, gar).  相似文献   

4.
Abstract

Calcium carbonate (CaCO3) is found in different polymorph structures such as aragonite, vaterite, and calcite. The most common and stable form of CaCO3, calcite, which is abundant in sedimentary rocks as magnesite ore. Magnesite has application areas in many industrial fields including paper, pharmaceutical and refractory materials. Magnesite is theoretically formulated MgCO3, but contains many impurities (silicium, iron, and also calcite), that limits its usability and applicability. In this research, we aimed to investigate the decalcification possibility of the raw magnesite material through application of Enterococcus feacelis (EF) with CaCO3 dissolution ability. The exact mechanism of CaCO3 dissolution was investigated by carbonic anhydrase enzyme assay and HPLC analysis of organic acids produced by EF. Consequently, EF reduced the amount of CaCO3 from 2.94% to 0.49% which means a reduction (≈83.33%) in the rate of CaCO3 percentage. As a result of the experiments, it was observed that different organic acids produced by bacteria reacted with CaCO3 and removed the lime of magnesite ore. The bacteria used in the study did not show any pathogenic properties in rats, thus, it can be used safely for the industrial applications.  相似文献   

5.
Aragonite is an important dimorph of calcium carbonate, industrially and biologically. However, aragonite is so thermodynamically unstable that it is difficult to understand its formation mechanism. A continuous microfluidic system was employed, in which crystallization was induced only by diffusion in a micron-scale channel. Calcium carbonate (CaCO3) formed by liquid-liquid reaction and magnesium ions (Mg2+) were used as additives. To assess the influence of Mg2+ concentration, the Mg2+/Ca2+ molar ratio was set to 1, 3, and 5. Laminar streams flowed in the detection channel with different concentration gradients. The initial crystallization time (tI.C) increased exponentially and the density of crystals decreased as the Mg2+ ion concentration increased. Following transformation of all particles into snowman or sphere shapes, they became spinose sphere-shaped crystals, which was the final form in this study.  相似文献   

6.
Birds’ eggshells are primarily composed of calcite, an abundant polymorph of calcium carbonate (CaCO3). However, the eggshells of some species are coated with spherules of vaterite, a rare and thermodynamically unstable polymorph of CaCO3, the function of which remains unknown. We experimentally tested the mechanical and physiological effects of the vaterite coating on eggshells of the Greater Ani Crotophaga major, a tropical cuckoo. Vaterite removal did not affect vapour conductance rates across the eggshell, indicating that the vaterite coating does not influence gas exchange during embryonic development. However, nanoindentation revealed that the hardness and elasticity of vaterite is similar to that of calcite, and white light interferometry showed that the vaterite layer increased the total thickness of the shell cuticle by up to 10%. Furthermore, calculations of contact mechanics found that when two eggs come into contact, the depth of the surface deformation caused by the contact is far less than the thickness of the vaterite coating. These results suggest that the layer of vaterite spherules may act as a shock absorber for the underlying calcite shell, protecting it from mechanical damage caused by collision with other eggs in the nest and reducing the risk of eggshell fracture during incubation.  相似文献   

7.
The formation of skeletal structures composed of different calcium carbonate polymorphs (e.g. aragonite and calcite) appears to be both biologically and environmentally regulated. Among environmental factors influencing aragonite and calcite precipitation, changes in seawater conditions—primarily in the molar ratio of magnesium and calcium during so-called ‘Calcite’ (mMg:mCa below 2) or ‘Aragonite’ seas (mMg:mCa above 2)—have had profound impacts on the distribution and performance of marine calcifiers throughout Earth's history. Nonetheless, the fossil record shows that some species appear to have counteracted such changes and kept their skeleton polymorph unaltered. Here, the aragonitic octocoral Heliopora coerulea and the aragonitic scleractinian Montipora digitata were exposed to Calcite Sea-like mMg:mCa with various levels of magnesium and calcium concentration, and changes in both the mineralogy (i.e. CaCO3 polymorph) and gene expression were monitored. Both species maintained aragonite deposition at lower mMg:mCa ratios, while concurrent calcite presence was only detected in M. digitata. Despite a strong variability between independent experimental replicates for both species, the expression for a set of putative calcification-related genes, including known components of the M. digitata skeleton organic matrix (SkOM), was found to consistently change at lower mMg:mCa. These results support the previously proposed involvements of the SkOM in counteracting decreases in seawater mMg:mCa. Although no consistent expression changes in calcium and magnesium transporters were observed, down-regulation calcium channels in H. coerulea in one experimental replicate and at an mMg:mCa of 2.5, pointing to a possible active calcium uptake regulation by the corals under altered mMg:mCa.  相似文献   

8.
To date, the calcareous tubes of serpulid marine worms have not been studied extensively in a biomineralization context. The structure and composition of the tube shell and adhesive cement of the marine tubeworm Hydroides dianthus were studied using a variety of characterization techniques, including powder XRD, FTIR, SEM, EDX, and AFM. The tube and cement were determined to be inorganic–organic composite materials, consisting of inorganic aragonite (CaCO3) and Mg-calcite ((Ca0.8Mg0.2)CO3) crystals, and both soluble and insoluble organic matrices (SOM and IOM). SEM imaging revealed a variety of crystal morphologies. AFM nanoindentation of the inorganic components yielded Young’s moduli of ~20 GPa in the wet state, and ~50 GPa in the dry state. Amino acid analysis of the SOM indicated substantial amounts of acidic and non-polar neutral amino acids. Part of the insoluble organic tube lining was identified as being composed of collagen-containing fibres aligned in a criss-crossed structure. The SOM and organic tube lining were found to contain carboxylated and sulphated polysaccharides. In an artificial seawater solution, the SOM and the organic tube lining mediated CaCO3 mineralization in vitro.  相似文献   

9.
The effect of mersalyl and of antibodies, directed against smooth-muscle myosin and skeletal muscle myosin, on the (Ca2+ + Mg2+)-activated adenosine triphosphatase (Ca,Mg)ATPase) system of mouse liver plasma membranes has been studied. Antismooth-muscle myosin inhibited by 38.6% at optimum substrate concentration the (Ca,Mg)ATPase with a Km of 0.88 × 10?3m. Mersalyl (0.5 mm) also inhibited this enzyme, the percentage inhibition being 44.6% at optimal substrate concentration. These results suggest the presence of a smooth-muscle myosin-like protein in the plasma membrane of mouse liver cells which has an associated (Ca,Mg)ATPase activity.  相似文献   

10.
Vacuoles of different leaf cell-types vary in their capacity to store specific mineral elements. In Arabidopsis thaliana potassium (K) accumulates preferentially in epidermal and bundle sheath cells whereas calcium (Ca) and magnesium (Mg) are stored at high concentrations only in mesophyll cells. Accumulation of these elements in a particular vacuole can be reciprocal, i.e. as [K]vac increases [Ca]vac decreases. Mesophyll-specific Ca-storage involves CAX1 (a Ca2+/H+ antiporter) and Mg-storage involves MRS2-1/MGT2 and MRS2-5/MGT3 (both Mg2+-transporters), all of which are preferentially expressed in the mesophyll and encode tonoplast-localised proteins. However, what controls leaf-cell [K]vac is less well understood. TPC1 encodes the two-pore Ca2+ channel protein responsible for the tonoplast-localised SV cation conductance, and is highly expressed in cell-types that not preferentially accumulate Ca. Here, we evaluate evidence that TPC1 has a role in maintaining differential K and Ca storage across the leaf, and propose a function for TPC1 in releasing Ca2+ from epidermal and bundle sheath cell vacuoles to maintain low [Ca]vac. Mesophyll-specific Ca storage is essential to maintain apoplastic free Ca concentration at a level that does not perturb a range of physiological parameters including leaf gas exchange, cell wall extensibility and growth. When plants are grown under serpentine conditions (high Mg/Ca ratio), MGT2/MRS2-1 and MGT3/MRS2-5 are required to sequester additional Mg2+ in vacuoles to replace Ca2+ as an osmoticum to maintain growth. An updated model of Ca2+ and Mg2+ transport in leaves is presented as a reference for future interrogation of nutritional flows and elemental storage in plant leaves.  相似文献   

11.
The urease‐positive fungi Pestalotiopsis sp. and Myrothecium gramineum, isolated from calcareous soil, were examined for their properties of CaCO3 and SrCO3 biomineralization. After incubation in media amended with urea and CaCl2 and/or SrCl2, calcite (CaCO3), strontianite (SrCO3), vaterite in different forms [CaCO3, (CaxSr1?x)CO3] and olekminskite [Sr(Sr,Ca)(CO3)2] were precipitated, and fungal ‘footprints’ were observed on mineral surfaces. The amorphous precipitate mediated by Pestalotiopsis sp. grown with urea and equivalent concentrations of CaCl2 and SrCl2 was identified as hydrated Ca and Sr carbonates by Fourier transform infrared spectroscopy. Liquid media experiments showed M. gramineum possessed the highest Sr2+ removal ability, and ~ 49% of supplied Sr2+ was removed from solution when grown in media amended with urea and 50 mM SrCl2. Furthermore, this organism could also precipitate 56% of the available Ca2+ and 28% of the Sr2+ in the form of CaCO3, SrCO3 and (CaxSr1?x)CO3 when incubated in urea‐amended media and equivalent CaCl2 and SrCl2 concentrations. This is the first report of biomineralization of olekminskite and coprecipitation of Sr into vaterite mediated by fungi. These findings suggest that urease‐positive fungi could play an important role in the environmental fate, bioremediation or biorecovery of Sr or other metals and radionuclides that form insoluble carbonates.  相似文献   

12.
Gerald T. Lang 《Zoo biology》1993,12(5):425-433
The coral reef mesocosms designed by the Smithsonian Institution's Dr. Walter Adey, his Marine System Laboratory personnel, and staff members of the Pittsburgh Aqua-Zoo simulate most of the physical, chemical, and biological parameters found in natural Caribbean coral reefs. After developing the mesocosm in Pittsburgh, an evaluation and comparison between natural reef seawater sources and closed mesocosm seawater conditions indicated that an additional parameter should be investigated. It was hypothesized that, given time, the aragonite- and calcite (CaCO3 crystal forms)-producing organisms in the closed mesocosms could deplete the seawater of available Ca2+ and substitutive Sr2+. Atomic absorption spectrophotometry was utilized to determine concentrations in the seawater over time. Results showed a substantial reduction in dissolved Ca and Sr in the mesocosm after approximately two years. Dissolved aragonitic Halimeda algae parts were put into the system for replacive purposes. In terms of the biogeochemical cycling of Ca2+ and Sr2+, the coral reef mesocosm organisms behaved similarly to natural reefs, which have a constant supply of dissolved Ca2+ and Sr2+. Further research utilizing radiolabeled sources of Ca2+, Sr2+, and Mg2+, in conjunction with in vivo scanning electron microscopy (SEM) and growth increment studies, are recommended for determining the exact biogeochemical pathways for these elements in coral reefs, and to quantify growth parameters. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Vaterite otoliths were sampled from two reared populations (Celtic and Clyde Seas) of juvenile herring Clupea harengus. The crystallography, elemental composition and morphometry were analysed and compared with those of normal aragonite otoliths. The incidence of vaterite otoliths in the juveniles sampled (n = 601) ranged from 7·8% in the Clyde population to 13·9% in the Celtic Sea population, and was 5·5% in the small sample (n = 36) of wild adults examined. In all but one case fish had only one vaterite otolith; the corresponding otolith of the pair was completely aragonite. Although the majority of the juveniles sampled showed craniofacial deformities, there was no link between the skull or jaw malformation and the incidence of vaterite otoliths. All vaterite otoliths had an aragonite inner area, and vaterite deposition began sometime after the age of 90 days. The vaterite otoliths were larger and lighter than their corresponding aragonite partners, and were less dense as a consequence of the vaterite crystal structure. The vaterite areas of the otoliths were depleted in Sr, Na and K. Concentrations of Mn were higher in the vaterite areas. The transition between the aragonite inner areas and the vaterite areas was sharply delineated. Within a small spatial scale (20 μm3) in the vaterite areas, however, there was co‐precipitation of both vaterite and aragonite. The composition of the aragonite cores in the vaterite otoliths was the same as in the cores of the normal aragonite otoliths indicating that the composition of the aragonite cores did not seed the shift to vaterite. Vaterite is less dense than aragonite, yet the concentrations of Ca analysed with wavelength‐dispersive spectrometry (WDS) were the same between the two polymorphs, indicating that Ca concentrations measured with WDS are not a good indicator of hypermineralized zones with high mineral density. The asymmetry in density and size of the otoliths may cause disruptions of hearing and pressure sensitivity for individual fish with one vaterite otolith, however, the presence of vaterite otoliths did not seem to affect the growth of these laboratory reared juvenile herring.  相似文献   

14.
Calcareous otoliths in the inner ears of fishes are necessary for proper hearing and vestibular function. Sagittal otoliths are usually composed of the calcium carbonate polymorph aragonite but may contain the polymorph vaterite, a phenomenon called otolith crystallization. The causes of otolith crystallization are poorly understood. Thyroid hormone (TH) can influence the chemical microenvironment and structure of the inner ear, suggesting that TH may influence otolith crystallization. The present study examined the effect of exogenous TH treatment on sagittal otolith crystallization and growth in larval and juvenile rainbow trout, Oncorhynchus mykiss. In the first experiment, 110?C179?day-old fish raised from TH-treated oocytes had significantly fewer sagittal otoliths containing the crystalline calcium carbonate polymorph vaterite as compared to untreated fish. Vaterite-containing otoliths were significantly longer than those containing the typical polymorph aragonite, although there was no effect of TH treatment on otolith length. In the second experiment, juveniles immersed in an exogenous solution of TH for 6?weeks had slightly longer otoliths (relative to fish length) than age-matched controls, but this effect was not significant. This juvenile population had a very high percentage (88.3?%) of vaterite sagittae overall and this percentage did not change significantly with treatment, suggesting the switch from aragonite to vaterite occurred prior to inclusion of the fish in the study. These results suggest that early manipulation of TH levels may affect calcium carbonate deposition on the otolith but that later TH exposure is unable to restore typical otolith composition.  相似文献   

15.

Background  

The coral skeleton consists of CaCO3 deposited upon an organic matrix primarily as aragonite. Currently galaxin, from Galaxea fascicularis, is the only soluble protein component of the organic matrix that has been characterized from a coral. Three genes related to galaxin were identified in the coral Acropora millepora.  相似文献   

16.
Microbial mineralization of carbonate is a research subject widely studied in the past decades. The magnesium ions (Mg2+), present in water systems, are a key determinant in biomineralization process of carbonate and they are widely found in calcium-based biominerals as an accessory component. However, the crystallization mechanism and morphological change of carbonate polymorphs in the presence of Mg2+ ions has not been clarified sufficiently. In this report, a series of culture experiments were performed for 50 days using the Arthrobacter sp. strain MF-2 in a M2 culture medium using Mg/Ca molar ratios (R) of 0, 1.5, 3, 6, 9, and 12 in solution. And the roles of Mg2+ ions on the crystal growth and morphological change of biogenic carbonate were investigated. Experimental results show: (1) MF-2 could induce aragonite, high-Mg calcite, and Ca-dolomite formation in M2 culture media with different R values. The increased stability of amorphous calcium carbonate suggests Mg2+ ions inhibit carbonate crystallization. (2) The mineral morphologies were varied (rod-shaped, dumbbell-shaped, cauliflower-like, spherical, etc.) in the medium with R = 1.5, but they became simple (spherical and lamellar) in high Mg2+ concentrations (Mg > 0.15 M, R > 3). (3) The increased ionic strength of Mg2+ ions in the environment has an influence on the polymorphs and morphologies of carbonate formed by controlling the metabolism of strain MF-2 and the activity of carbonic anhydrase.  相似文献   

17.
Experimental studies have shown that coral calcification rates are dependent on light, nutrients, food availability, temperature, and seawater aragonite saturation (Ω arag), but the relative importance of each parameter in natural settings remains uncertain. In this study, we applied Calcein fluorescent dyes as time indicators within the skeleton of coral colonies (n = 3) of Porites astreoides and Diploria strigosa at three study sites distributed across the northern Bermuda coral reef platform. We evaluated the correlation between seasonal average growth rates based on coral density and extension rates with average temperature, light, and seawater Ω arag in an effort to decipher the relative importance of each parameter. The results show significant seasonal differences among coral calcification rates ranging from summer maximums of 243 ± 58 and 274 ± 57 mmol CaCO3 m?2 d?1 to winter minimums of 135 ± 39 and 101 ± 34 mmol CaCO3 m?2 d?1 for P. astreoides and D. strigosa, respectively. We also placed small coral colonies (n = 10) in transparent chambers and measured the instantaneous rate of calcification under light and dark treatments at the same study sites. The results showed that the skeletal growth of D. strigosa and P. astreoides, whether hourly or seasonal, was highly sensitive to Ω arag. We believe this high sensitivity, however, is misleading, due to covariance between light and Ω arag, with the former being the strongest driver of calcification variability. For the seasonal data, we assessed the impact that the observed seasonal differences in temperature (4.0 °C), light (5.1 mol photons m?2 d?1), and Ω arag (0.16 units) would have on coral growth rates based on established relationships derived from laboratory studies and found that they could account for approximately 44, 52, and 5 %, respectively, of the observed seasonal change of 81 ± 14 mmol CaCO3 m?2 d?1. Using short-term light and dark incubations, we show how the covariance of light and Ω arag can lead to the false conclusion that calcification is more sensitive to Ω arag than it really is.  相似文献   

18.
We have investigated the localization of a set of intrinsic ATPase activities associated with purified synaptic plasma membranes and consisting of (a) a Mg2+-ATPase; (b) an ATPase active at high concentrations of Ca2+ in the absence of Mg2+ (CaH-ATPase); (c) a Ca2+ requiring Mg2+-dependent ATPase (Ca + Mg)-ATPase, stimulated by calmodulin (Ca-CaM-ATPase); (d) a Ca2+-dependent ATPase stimulated by dopamine (DA-ATPase); and (e) the ouabain-sensitive (Na + K)-ATPase. The following results were obtained: (1) All ATPases are largely confined to the presynaptic membrane; (2) the DA-, (Ca + Mg)-, (Ca-CaM)-, and (Na + K)-ATPases are oriented with their ATP hydrolysis sites facing the synaptoplasm; (3) the Mg- and CaH-ATPases are oriented with their ATP hydrolysis sites on the junctional side of the presynaptic membrane and are therefore classified as ecto-ATPases of as yet unknown function.  相似文献   

19.
Eggshells were randomly collected from turtle nests immediately after oviposition and at the end of incubation to examine the ultrastructural features using scanning JSM-5600LV microscopy. Three layers were recognized; an outer calcareous, a middle multistrata and an inner membrane. The calcareous layer had loose nodular units varying in shape and size without interlocking attachments. In freshly laid eggs, each nodular unit had spicules arranged in folded stacks. The spicules became unfolded during incubation, to form radiating configurations. Elemental composition and mapping of the layers were analyzed using energy dispersive spectroscopy (EDS). The elements were unevenly distributed throughout the eggshell and Ca2+ decreased significantly after hatching. X-ray diffraction was used to identify the crystals of the eggshells. It revealed that nodular units of the calcareous were made up of CaCO3, as aragonite (91%), calcite (6%) and vaterite (3%). The middle layer consisted of organic amorphous material with aragonite (89%) and calcite (11%). The shell membrane consisted of reticular fibers with crystals predominantly of NaCl halite. Thermogravimetry analysis of the calcareous layer indicated a complete evaporation of bonded H2O at 480 °C and CO2 at 830 °C. Using the differential thermal analysis (DTA), aragonite was transformed to stable calcite at 425 °C.  相似文献   

20.
Precipitation of calcium carbonate (CaCO3(s)) can be driven by microbial activity. Here, a systematic approach is used to identify the morphological and mineralogical characteristics of CaCO3(s) precipitated during the heterotrophic growth of micro‐organisms isolated from polar environments. Focus was placed on establishing mineralogical features that are common in bioliths formed during heterotrophic activity, while in parallel identifying features that are specific to bioliths precipitated by certain microbial phylotypes. Twenty microbial isolates that precipitated macroscopic CaCO3(s) when grown on B4 media supplemented with calcium acetate or calcium citrate were identified. A multimethod approach, including scanning electron microscopy, high‐resolution transmission electron microscopy, and micro‐X‐ray diffraction (μ‐XRD), was used to characterize CaCO3(s) precipitates. Scanning and transmission electron microscopy showed that complete CaCO3(s) crystal encrustation of Arthrobacter sp. cells was common, while encrustation of Rhodococcus sp. cells did not occur. Several euhedral and anhedral mineral formations including disphenoid‐like epitaxial plates, rhomboid‐like aggregates with epitaxial rhombs, and spherulite aggregates were observed. While phylotype could not be linked to specific mineral formations, isolates tended to precipitate either euhedral or anhedral minerals, but not both. Three anhydrous CaCO3(s) polymorphs (calcite, aragonite, and vaterite) were identified by μ‐XRD, and calcite and aragonite were also identified based on TEM lattice‐fringe d value measurements. The presence of certain polymorphs was not indicative of biogenic origin, although several mineralogical features such as crystal‐encrusted bacterial cells, or casts of bacterial cells embedded in mesocrystals are an indication of biogenic origin. In addition, some features such as the formation of vaterite and bacterial entombment appear to be linked to certain phylotypes. Identifying phylotypes consistent with certain mineralogical features is the first step toward discovering a link between these crystal features and the precise underlying molecular biology of the organism precipitating them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号