首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
We report the discovery and characterisation of a novel nucleolar protein of Saccharomyces cerevisiae. We identified this protein encoded by ORF YIL019w, designated in SGD base as Faf1p, in a two hybrid interaction screen using the known nucleolar protein Krr1 as bait. The presented data indicate that depletion of the Faf1 protein has an impact on the 40S ribosomal subunit biogenesis resulting from a decrease in the production of 18S rRNA. The primary defect is apparently due to inefficient processing of 35S rRNA at the A(0), A(1), and A(2) cleavage sites.  相似文献   

5.
Alignment of the mitotic spindle with the axis of cell division is an essential process in Saccharomyces cerevisiae that is mediated by interactions between cytoplasmic microtubules and the cell cortex. We found that a cortical protein, the yeast formin Bni1p, was required for spindle orientation. Two striking abnormalities were observed in bni1Delta cells. First, the initial movement of the spindle pole body (SPB) toward the emerging bud was defective. This phenotype is similar to that previously observed in cells lacking the kinesin Kip3p and, in fact, BNI1 and KIP3 were found to be in the same genetic pathway. Second, abnormal pulling interactions between microtubules and the cortex appeared to cause preanaphase spindles in bni1Delta cells to transit back and forth between the mother and the bud. We therefore propose that Bni1p may localize or alter the function of cortical microtubule-binding sites in the bud. Additionally, we present evidence that other bipolar bud site determinants together with cortical actin are also required for spindle orientation.  相似文献   

6.
Tel1 is the budding yeast ortholog of the mammalian tumor suppressor and DNA damage response (DDR) kinase ATM. However, tel1 cells, unlike ATM-deficient cells, do not exhibit sensitivity to DNA-damaging agents, but do display shortened (but stably maintained) telomere lengths. Neither the extent to which Tel1p functions in the DDR nor the mechanism by which Tel1 contributes to telomere metabolism is well understood. To address the first question, we present the results from a comprehensive genome-wide screen for genetic interactions with tel1 that cause sensitivity to methyl methanesulfonate (MMS) and/or ionizing radiation, along with follow-up characterizations of the 13 interactions yielded by this screen. Surprisingly, many of the tel1 interactions that confer DNA damage sensitivity also exacerbate the short telomere phenotype, suggesting a connection between these two phenomena. Restoration of normal telomere length in the tel1-Δ xxx-Δ mutants results in only minor suppression of the DNA damage sensitivity, demonstrating that the sensitivity of these mutants must also involve mechanisms independent of telomere length. In support of a model for increased replication stress in the tel1-Δ xxx-Δ mutants, we show that depletion of dNTP pools through pretreatment with hydroxyurea renders tel1 cells (but not wild type) MMS-sensitive, demonstrating that, under certain conditions, Tel1p does indeed play a critical role in the DDR.  相似文献   

7.
8.
9.
Diverse roles in DNA metabolism have been envisaged for budding yeast and mammalian Rif1. In particular, yeast Rif1 is involved in telomere homeostasis, while its mammalian counterpart participates in the cellular response to DNA double-strand breaks (DSBs). Here, we show that Saccharomyces cerevisiae Rif1 supports cell survival to DNA lesions in the absence of MRX or Sae2. Furthermore, it contributes to the nucleolytic processing (resection) of DSBs. This Rif1-dependent control of DSB resection becomes important for DSB repair by homologous recombination when resection activities are suboptimal.  相似文献   

10.

Background

A highly regulated trafficking of cargo vesicles in eukaryotes performs protein delivery to a variety of cellular compartments of endomembrane system. The two main routes, the secretory and the endocytic pathways have pivotal functions in uni- and multi-cellular organisms. Protein delivery and targeting includes cargo recognition, vesicle formation and fusion. Developing new tools to modulate protein trafficking allows better understanding the endomembrane system mechanisms and their regulation. The compound Sortin2 has been described as a protein trafficking modulator affecting targeting of the vacuolar protein carboxypeptidase Y (CPY), triggering its secretion in Saccharomyces cerevisiae.

Results

A reverse chemical-genetics approach was used to identify key proteins for Sortin2 bioactivity. A genome-wide Sortin2 resistance screen revealed six yeast deletion mutants that do not secrete CPY when grown at Sortin2 condition where the parental strain does: met18, sla1, clc1, dfg10, dpl1 and yjl175w. Integrating mutant phenotype and gene ontology annotation of the corresponding genes and their interactome pointed towards a high representation of genes involved in the endocytic process. In wild type yeast endocytosis towards the vacuole was faster in presence of Sortin2, which further validates the data of the genome-wide screen. This effect of Sortin2 depends on structural features of the molecule, suggesting compound specificity. Sortin2 did not affect endocytic trafficking in Sortin2-resistant mutants, strongly suggesting that the Sortin2 effects on the secretory and endocytic pathways are linked.

Conclusions

Overall, the results reveal that Sortin2 enhances the endocytic transport pathway in Saccharomyces cerevisiae. This cellular effect is most likely at the level where secretory and endocytic pathways are merged. Them Sortin2 specificity over the endomembrane system places it as a powerful biological modulator for cell biology.

Electronic supplementary material

The online version of this article (doi:10.1186/s40659-015-0032-9) contains supplementary material, which is available to authorized users.  相似文献   

11.
Thiol peroxidases are critical enzymes in the redox control of cellular processes that function by reducing low levels of hydroperoxides and regulating redox signaling. These proteins were also shown to regulate genome stability, but how their dysfunction affects the actual mutations in the genome is not known. Saccharomyces cerevisiae has eight thiol peroxidases of glutathione peroxidase and peroxiredoxin families, and the mutant lacking all these genes (∆8) is viable. In this study, we employed two independent ∆8 isolates to analyze the genome-wide mutation spectrum that results from deficiency in these enzymes. Deletion of these genes was accompanied by a dramatic increase in point mutations, many of which clustered in close proximity and scattered throughout the genome, suggesting strong mutational bias. We further subjected multiple lines of wild-type and ∆8 cells to long-term mutation accumulation, followed by genome sequencing and phenotypic characterization. ∆8 lines showed a significant increase in nonrecurrent point mutations and indels. The original ∆8 cells exhibited reduced growth rate and decreased life span, which were further reduced in all ∆8 mutation accumulation lines. Although the mutation spectrum of the two independent isolates was different, similar patterns of gene expression were observed, suggesting the direct contribution of thiol peroxidases to the observed phenotypes. Expression of a single thiol peroxidase could partially restore the growth phenotype of ∆8 cells. This study shows how deficiency in nonessential, yet critical and conserved oxidoreductase function, leads to increased mutational load and decreased fitness.  相似文献   

12.
During mitosis in budding yeast the nucleus first moves to the mother-bud neck and then into the neck. Both movements depend on interactions of cytoplasmic microtubules with the cortex. We investigated the mechanism of these movements in living cells using video analysis of GFP-labeled microtubules in wild-type cells and in EB1 and Arp1 mutants, which are defective in the first and second steps, respectively. We found that nuclear movement to the neck is largely mediated by the capture of microtubule ends at one cortical region at the incipient bud site or bud tip, followed by microtubule depolymerization. Efficient microtubule interactions with the capture site require that microtubules be sufficiently long and dynamic to probe the cortex. In contrast, spindle movement into the neck is mediated by microtubule sliding along the bud cortex, which requires dynein and dynactin. Free microtubules can also slide along the cortex of both bud and mother. Capture/shrinkage of microtubule ends also contributes to nuclear movement into the neck and can serve as a backup mechanism to move the nucleus into the neck when microtubule sliding is impaired. Conversely, microtubule sliding can move the nucleus into the neck even when capture/shrinkage is impaired.  相似文献   

13.
Yi Yin  Thomas D. Petes 《Genetics》2014,197(4):1097-1109
The yeast Exo1p nuclease functions in multiple cellular roles: resection of DNA ends generated during recombination, telomere stability, DNA mismatch repair, and expansion of gaps formed during the repair of UV-induced DNA damage. In this study, we performed high-resolution mapping of spontaneous and UV-induced recombination events between homologs in exo1 strains, comparing the results with spontaneous and UV-induced recombination events in wild-type strains. One important comparison was the lengths of gene conversion tracts. Gene conversion events are usually interpreted as reflecting heteroduplex formation between interacting DNA molecules, followed by repair of mismatches within the heteroduplex. In most models of recombination, the length of the gene conversion tract is a function of the length of single-stranded DNA generated by end resection. Since the Exo1p has an important role in end resection, a reduction in the lengths of gene conversion tracts in exo1 strains was expected. In accordance with this expectation, gene conversion tract lengths associated with spontaneous crossovers in exo1 strains were reduced about twofold relative to wild type. For UV-induced events, conversion tract lengths associated with crossovers were also shorter for the exo1 strain than for the wild-type strain (3.2 and 7.6 kb, respectively). Unexpectedly, however, the lengths of conversion tracts that were unassociated with crossovers were longer in the exo1 strain than in the wild-type strain (6.2 and 4.8 kb, respectively). Alternative models of recombination in which the lengths of conversion tracts are determined by break-induced replication or oversynthesis during strand invasion are proposed to account for these observations.  相似文献   

14.
The absence of pentose-utilizing enzymes in Saccharomyces cerevisiae is an obstacle for efficiently converting lignocellulosic materials to ethanol. In the present study, the genes coding xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) from Pichia stipitis were successfully engineered into S. cerevisae. As compared to the control transformant, engineering of XYL1 and XYL2 into yeasts significantly increased the microbial biomass (8.1 vs. 3.4 g/L), xylose consumption rate (0.15 vs. 0.02 g/h) and ethanol yield (6.8 vs. 3.5 g/L) after 72 h fermentation using a xylose-based medium. Interestingly, engineering of XYL1 and XYL2 into yeasts also elevated the ethanol yield from sugarcane bagasse hydrolysate (SUBH). This study not only provides an effective approach to increase the xylose utilization by yeasts, but the results also suggest that production of ethanol by this recombinant yeasts using unconventional nutrient sources, such as components in SUBH deserves further attention in the future.  相似文献   

15.
16.
Previously, we created a paclitaxel-sensitive strain of Saccharomyces cerevisiae by mutating five amino acid residues in beta-tubulin in a strain that has a decreased level of the ABC multidrug transporters. We have used site-directed mutagenesis to examine the relative importance of the five residues in determining sensitivity of this strain to paclitaxel. We found that the change at position 19 from K (brain beta-tubulin) to A (yeast beta-tubulin) and at position 227 from H (brain beta-tubulin) to N (yeast beta-tubulin) had no effect on the activity of paclitaxel. On the other hand, the changes V23T, D26G and F270Y, drastically reduced sensitivity of AD1-8-tax to paclitaxel. Molecular modeling and computational studies were used to explain the results.  相似文献   

17.
A part of eukaryotic tRNA genes harbor an intron at one nucleotide 3' to the anticodon, so that removal of the intron is an essential processing step for tRNA maturation. While some tRNA introns have important roles in modification of certain nucleotides, essentiality of the tRNA intron in eukaryotes has not been tested extensively. This is partly because most of the eukaryotic genomes have multiple genes encoding an isoacceptor tRNA. Here, we examined whether the intron of tRNA-Trp(CCA) genes, six copies of which are scattered on the genome of yeast, Saccharomyces cerevisiae, is essential for growth or translation of the yeast in vivo. We devised a procedure to remove all of the tRNA introns from the yeast genome iteratively with marker cassettes containing both positive and negative markers. Using this procedure, we removed all the introns from the six tRNA-Trp(CCA) genes, and found that the intronless strain grew normally and expressed tRNA-Trp(CCA) in an amount similar to that of the wild-type genes. Neither incorporation of (35)S-labeled amino acids into a TCA-insoluble fraction nor the major protein pattern on SDS-PAGE/2D gel were affected by complete removal of the intron, while expression levels of some proteins were marginally affected. Therefore, the tRNA-Trp(CCA) intron is dispensable for growth and bulk translation of the yeast. This raises the possibility that some mechanism other than selective pressure from translational efficiency maintains the tRNA intron on the yeast genome.  相似文献   

18.
19.
20.
The CCZ1 (YBR131w) gene encodes a protein required for fusion of various transport intermediates with the vacuole. Ccz1p, in a complex with Mon1p, is a close partner of Ypt7p in the processes of fusion of endosomes to vacuoles and homotypic vacuole fusion. In this work, we exploited the Ca(2+)-sensitivity of the ccz1Delta mutant to identify genes specifically interacting with CCZ1, basing on functional multicopy suppression of calcium toxicity. The presented results indicate that Ccz1p functions in the cell either in association with Mon1p and Ypt7p in fusion at the vacuolar membrane, or--separately--with Arl1p at early steps of vacuolar transport. We also show that suppression of calcium toxicity by the calcium pumps Pmr1p and Pmc1p is restricted only to the subset of mutants defective in vacuole morphology. The mechanisms of Ca(2+)-pump-mediated suppression also differ from each other, since the action of Pmr1p, but not Pmc1p, appears to require Arl1p function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号