共查询到20条相似文献,搜索用时 0 毫秒
1.
Antonio J. Castro Cynthia Suárez Krzysztof Zienkiewicz Juan de Dios Alché Agnieszka Zienkiewicz María Isabel Rodríguez-García 《Annals of botany》2013,112(3):503-513
Background and Aims
Cell wall pectins and arabinogalactan proteins (AGPs) are important for pollen tube growth. The aim of this work was to study the temporal and spatial dynamics of these compounds in olive pollen during germination.Methods
Immunoblot profiling analyses combined with confocal and transmission electron microscopy immunocytochemical detection techniques were carried out using four anti-pectin (JIM7, JIM5, LM5 and LM6) and two anti-AGP (JIM13 and JIM14) monoclonal antibodies.Key Results
Pectin and AGP levels increased during olive pollen in vitro germination. (1 → 4)-β-d-Galactans localized in the cytoplasm of the vegetative cell, the pollen wall and the apertural intine. After the pollen tube emerged, galactans localized in the pollen tube wall, particularly at the tip, and formed a collar-like structure around the germinative aperture. (1 → 5)-α-l-Arabinans were mainly present in the pollen tube cell wall, forming characteristic ring-shaped deposits at regular intervals in the sub-apical zone. As expected, the pollen tube wall was rich in highly esterified pectic compounds at the apex, while the cell wall mainly contained de-esterified pectins in the shank. The wall of the generative cell was specifically labelled with arabinans, highly methyl-esterified homogalacturonans and JIM13 epitopes. In addition, the extracellular material that coated the outer exine layer was rich in arabinans, de-esterified pectins and JIM13 epitopes.Conclusions
Pectins and AGPs are newly synthesized in the pollen tube during pollen germination. The synthesis and secretion of these compounds are temporally and spatially regulated. Galactans might provide mechanical stability to the pollen tube, reinforcing those regions that are particularly sensitive to tension stress (the pollen tube–pollen grain joint site) and mechanical damage (the tip). Arabinans and AGPs might be important in recognition and adhesion phenomena of the pollen tube and the stylar transmitting cells, as well as the egg and sperm cells. 相似文献2.
3.
Background and Aims
The Arabidopsis thaliana pollen cell wall is a complex structure consisting of an outer sporopollenin framework and lipid-rich coat, as well as an inner cellulosic wall. Although mutant analysis has been a useful tool to study pollen cell walls, the ultrastructure of the arabidopsis anther has proved to be challenging to preserve for electron microscopy.Methods
In this work, high-pressure freezing/freeze substitution and transmission electron microscopy were used to examine the sequence of developmental events in the anther that lead to sporopollenin deposition to form the exine and the dramatic differentiation and death of the tapetum, which produces the pollen coat.Key Results
Cryo-fixation revealed a new view of the interplay between sporophytic anther tissues and gametophytic microspores over the course of pollen development, especially with respect to the intact microspore/pollen wall and the continuous tapetum epithelium. These data reveal the ultrastructure of tapetosomes and elaioplasts, highly specialized tapetum organelles that accumulate pollen coat components. The tapetum and middle layer of the anther also remain intact into the tricellular pollen and late uninucleate microspore stages, respectively.Conclusions
This high-quality structural information, interpreted in the context of recent functional studies, provides the groundwork for future mutant studies where tapetum and microspore ultrastructure is assessed. 相似文献4.
Protsenko MA Buza NL Krinitsyna AA Bulantseva EA Korableva NP 《Biochemistry. Biokhimii?a》2008,73(10):1053-1062
It is generally believed that plants "evolved a strategy of defending themselves from a phytopathogen attack" during evolution. This metaphor is used frequently, but it does not facilitate understanding of the mechanisms providing plant resistance to the invasion of foreign organisms and to other unfavorable external factors, as well as the role of these mechanisms in plant growth and development. Information on processes involving one of the plant resistance factors--polygalacturonase-inhibiting protein (PGIP)--is considered in this review. The data presented here indicate that PGIP, being an extracellular leucine-rich repeat-containing protein, performs important functions in the structure of plant cell wall. Amino acid residues participating in PGIP binding to homogalacturonan in the cell wall have been determined. The degree of methylation and the mode of distribution of homogalacturonan methyl groups are responsible for the formation of a complex structure, which perhaps determines the specificity of PGIP binding to pectin. PGIP is apparently one of the components of plant cell wall determining some of its mechanical properties; it is involved in biochemical processes related to growth, expansion, and maceration, and it influences plant morphology. Polygalacturonase (PG) is present within practically all plant tissues, but the manifestation of its activity varies significantly depending on physiological conditions in the tissue. Apparently, the regulation of PG functioning in apoplast significantly affects the development of processes associated with the modification of the structure of plant cell wall. PGIP can regulate PG activity through binding to homogalacturonan. The genetically determined structure of PGIP in plants determines the mode of its interaction with an invader and perhaps is one of the factors responsible for the set of pathogens causing diseases in a given plant species. 相似文献
5.
6.
A. Speranza A. R. Taddei G. Gambellini E. Ovidi & V. Scoccianti 《Plant biology (Stuttgart, Germany)》2009,11(2):179-193
Trivalent chromium has previously been found to effectively inhibit kiwifruit pollen tube emergence and elongation in vitro . In the present study, a photometric measure of increases in tube wall production during germination showed that 25 and 50 μ m CrCl3 treatment induced a substantial reduction in levels of polysaccharides in walls over those in controls. Moreover, chromium-treated kiwifruit pollen tubes had irregular and indented cell walls. Callose, the major tube wall polysaccharide, was deposited in an anomalous punctuate pattern. Arabinogalactan proteins (AGPs), which are integral in maintaining correct tube growth and shape in kiwifruit pollen, were found to be strongly altered in their distribution after CrCl3 treatment compared to control tube walls. Transmission electron microscopy–immunogold analysis using four monoclonal antibodies (JIM8, JIM13, JIM14 and MAC207) revealed discontinuous AGP distribution within the treated tube walls. Such clearly discernable alterations in the molecular and morphological architecture of pollen tube walls may be detrimental in vivo for the male gametophyte to accomplish its vital role in the fertilisation process. 相似文献
7.
8.
Background Lignin is a polyphenolic polymer that strengthens and waterproofs the cell wall of specialized plant cell types. Lignification is part of the normal differentiation programme and functioning of specific cell types, but can also be triggered as a response to various biotic and abiotic stresses in cells that would not otherwise be lignifying.Scope Cell wall lignification exhibits specific characteristics depending on the cell type being considered. These characteristics include the timing of lignification during cell differentiation, the palette of associated enzymes and substrates, the sub-cellular deposition sites, the monomeric composition and the cellular autonomy for lignin monomer production. This review provides an overview of the current understanding of lignin biosynthesis and polymerization at the cell biology level.Conclusions The lignification process ranges from full autonomy to complete co-operation depending on the cell type. The different roles of lignin for the function of each specific plant cell type are clearly illustrated by the multiple phenotypic defects exhibited by knock-out mutants in lignin synthesis, which may explain why no general mechanism for lignification has yet been defined. The range of phenotypic effects observed include altered xylem sap transport, loss of mechanical support, reduced seed protection and dispersion, and/or increased pest and disease susceptibility. 相似文献
9.
10.
Ida Bagus Andika Kazuyuki Maruyama Liying Sun Hideki Kondo Tetsuo Tamada Nobuhiro Suzuki 《Plant signaling & behavior》2015,10(8)
Eukaryotes employ RNA silencing as an innate defense system against invading viruses. Dicer proteins play the most crucial role in initiating this antiviral pathway as they recognize and process incoming viral nucleic acids into small interfering RNAs. Generally, 2 successive infection stages constitute viral infection in plants. First, the virus multiplies in initially infected cells or organs after viral transmission and then the virus subsequently spreads systemically through the vasculature to distal plant tissues or organs. Thus, antiviral silencing in plants must cope with both local and systemic invasion of viruses. In a recent study using 2 sets of different experiments, we clearly demonstrated the differential requirement for Dicer-like 4 (DCL4) and DCL2 proteins in the inhibition of intracellular and systemic infection by potato virus X in Arabidopsis thaliana. Taken together with the results of other studies, here we further discuss the functional specificity of DCL proteins in the antiviral silencing pathway. 相似文献
11.
Prashant Singh Chih-Cheng Chien Swati Mishra Chia-Hong Tsai Laurent Zimmerli 《Plant signaling & behavior》2013,8(1)
Sensing of microbial pathogens by pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs) elicits a defense program known as PAMP-triggered immunity (PTI). Recently, we have shown that the Arabidopsis thaliana L-TYPE LECTIN RECEPTOR KINASE-VI.2 (LecRK-VI.2) positively regulates bacterial PTI. In this report, we suggest by in silico analysis that the kinase domain of LecRK-VI.2 is functional. LecRK-VI.2 also demonstrated auto-phosphorylation activity in vitro in the presence of divalent metal cations indicating that LecRK-VI.2 has the ability to auto-phosphorylate. We further investigate the role of LecRK-VI.2 in Arabidopsis resistance to the necrotrophic fungal pathogen Botrytis cinerea. Disruption of LecRK-VI.2 did not affect Arabidopsis resistance to B. cinerea. Accordingly, wild-type upregulation levels of PTI-responsive WRKY53, FRK1, NHL10, CYP81F2 and CBP60 g after treatment with the fungal PAMP chitin were observed in lecrk-VI.2-1. These data provide evidences that the kinase domain of LecRK-VI.2 is active and show that LecRK-VI.2 is not critical for resistance to the fungal pathogen B. cinerea. 相似文献
12.
Fabien Sénéchal Lucile Graff Ogier Surcouf Paulo Marcelo Catherine Rayon Sophie Bouton Alain Mareck Gregory Mouille Annick Stintzi Herman H?fte Patrice Lerouge Andreas Schaller Jér?me Pelloux 《Annals of botany》2014,114(6):1161-1175
Background and Aims
In Arabidopsis thaliana, the degree of methylesterification (DM) of homogalacturonans (HGs), the main pectic constituent of the cell wall, can be modified by pectin methylesterases (PMEs). In all organisms, two types of protein structure have been reported for PMEs: group 1 and group 2. In group 2 PMEs, the active part (PME domain, Pfam01095) is preceded by an N-terminal extension (PRO part), which shows similarities to PME inhibitors (PMEI domain, Pfam04043). This PRO part mediates retention of unprocessed group 2 PMEs in the Golgi apparatus, thus regulating PME activity through a post-translational mechanism. This study investigated the roles of a subtilisin-type serine protease (SBT) in the processing of a PME isoform.Methods
Using a combination of functional genomics, biochemistry and proteomic approaches, the role of a specific SBT in the processing of a group 2 PME was assessed together with its consequences for plant development.Key Results
A group 2 PME, AtPME17 (At2g45220), was identified, which was highly co-expressed, both spatially and temporally, with AtSBT3.5 (At1g32940), a subtilisin-type serine protease (subtilase, SBT), during root development. PME activity was modified in roots of knockout mutants for both proteins with consequent effects on root growth. This suggested a role for SBT3.5 in the processing of PME17 in planta. Using transient expression in Nicotiana benthamiana, it was indeed shown that SBT3.5 can process PME17 at a specific single processing motif, releasing a mature isoform in the apoplasm.Conclusions
By revealing the potential role of SBT3.5 in the processing of PME17, this study brings new evidence of the complexity of the regulation of PMEs in plants, and highlights the need for identifying specific PME–SBT pairs. 相似文献13.
Background and Aims
Root hairs are responsible for water and nutrient uptake from the soil and their growth is responsive to biotic and abiotic changes in their environment. Root hair expansion is a polarized process requiring secretory and endosomal pathways that deliver and recycle plasma membrane and cell wall material to the growing root hair tip. In this paper, the role of VTI13 (AT3G29100), a member of the VTI vesicular soluble NSF attachment receptor (SNARE) gene family in Arabidopsis thaliana, in root hair growth is described.Methods
Genetic analysis and complementation of the vti13 root hair phenotypes of Arabidopsis thaliana were first used to assess the role of VTI13 in root hair growth. Transgenic lines expressing a green fluorescent protein (GFP)–VTI13 construct were used to characterize the intracellular localization of VTI13 in root hairs using confocal microscopy and immunotransmission electron microscopy.Key Results
VTI13 was characterized and genetic analysis used to show that its function is required for root hair growth. Expression of a GFP–VTI13 fusion in the vti13 mutant background was shown to complement the vti13 root hair phenotype. GFP–VTI13 localized to both the vacuole membrane and a mobile endosomal compartment. The function of VTI13 was also required for the localization of SYP41 to the trans-Golgi network. Immunohistochemical analysis indicated that cell wall organization is altered in vti13 root hairs and root epidermal cells.Conclusions
These results show that VTI13 plays a unique role in endosomal trafficking pathways associated with the vacuole within root hairs and is essential for the maintenance of cell wall organization and root hair growth in arabidopsis. 相似文献14.
15.
Background and Aims
The putative FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 4 (At-FLA4) locus of Arabidopsis thaliana has previously been shown to be required for the normal growth of wild-type roots in response to moderately elevated salinity. However, the genetic and physiological pathway that connects At-FLA4 and normal root growth remains to be elucidated.Methods
The radial swelling phenotype of At-fla4 was modulated with growth regulators and their inhibitors. The relationship of At-FLA4 to abscisic acid (ABA) signalling was analysed by probing marker gene expression and the observation of the At-fla4 phenotype in combination with ABA signalling mutants.Key Results
Application of ABA suppresses the non-redundant role of At-FLA4 in the salt response. At-FLA4 positively regulates the response to low ABA concentration in roots and is required for the normal expression of ABA- and abiotic stress-induced genes. The At-fla4 phenotype is enhanced in the At-abi4 background, while two genetic suppressors of ABA-induced gene expression are required for salt oversensitivity of At-fla4. Salt oversensitivity in At-fla4 is suppressed by the CYP707A inhibitor abscinazole E2B, and salt oversensitivity in At-fla4 roots is phenocopied by chemical inhibition of ABA biosynthesis.Conclusions
The predicted lipid-anchored glycoprotein At-FLA4 positively regulates cell wall biosynthesis and root growth by modulating ABA signalling. 相似文献16.
Background and Aims
In seed plants, the ability of guard cell walls to move is imparted by pectins. Arabinan rhamnogalacturonan I (RG1) pectins confer flexibility while unesterified homogalacturonan (HG) pectins impart rigidity. Recognized as the first extant plants with stomata, mosses are key to understanding guard cell function and evolution. Moss stomata open and close for only a short period during capsule expansion. This study examines the ultrastructure and pectin composition of guard cell walls during development in Funaria hygrometrica and relates these features to the limited movement of stomata.Methods
Developing stomata were examined and immunogold-labelled in transmission electron microscopy using monoclonal antibodies to five pectin epitopes: LM19 (unesterified HG), LM20 (esterified HG), LM5 (galactan RG1), LM6 (arabinan RG1) and LM13 (linear arabinan RG1). Labels for pectin type were quantitated and compared across walls and stages on replicated, independent samples.Key Results
Walls were four times thinner before pore formation than in mature stomata. When stomata opened and closed, guard cell walls were thin and pectinaceous before the striated internal and thickest layer was deposited. Unesterified HG localized strongly in early layers but weakly in the thick internal layer. Labelling was weak for esterified HG, absent for galactan RG1 and strong for arabinan RG1. Linear arabinan RG1 is the only pectin that exclusively labelled guard cell walls. Pectin content decreased but the proportion of HG to arabinans changed only slightly.Conclusions
This is the first study to demonstrate changes in pectin composition during stomatal development in any plant. Movement of Funaria stomata coincides with capsule expansion before layering of guard cell walls is complete. Changes in wall architecture coupled with a decrease in total pectin may be responsible for the inability of mature stomata to move. Specialization of guard cells in mosses involves the addition of linear arabinans. 相似文献17.
18.
Yu J Fleming SL Williams B Williams EV Li Z Somma P Rieder CL Goldberg ML 《The Journal of cell biology》2004,164(4):487-492
Mutations in the Drosophila gene greatwall cause improper chromosome condensation and delay cell cycle progression in larval neuroblasts. Chromosomes are highly undercondensed, particularly in the euchromatin, but nevertheless contain phosphorylated histone H3, condensin, and topoisomerase II. Cells take much longer to transit the period of chromosome condensation from late G2 through nuclear envelope breakdown. Mutant cells are also subsequently delayed at metaphase, due to spindle checkpoint activity. These mutant phenotypes are not caused by spindle aberrations, by global defects in chromosome replication, or by activation of a caffeine-sensitive checkpoint. The Greatwall proteins in insects and vertebrates are located in the nucleus and belong to the AGC family of serine/threonine protein kinases; the kinase domain of Greatwall is interrupted by a long stretch of unrelated amino acids. 相似文献
19.
Alain Mareck Romain Lamour Annick Schaumann Philippe Chan Azeddine Driouich Jér?me Pelloux Patrice Lerouge 《Plant signaling & behavior》2012,7(1):59-61
Pectin methylesterase (PME) catalyzes the de-methylesterification of pectin in plant cell walls during cell elongation.1 Pectins are mainly composed of α(1, 4)-D-galacturonosyl acid units that are synthesized in a methylesterified form in the Golgi apparatus to prevent any interaction with Ca2+ ions during their intracellular transport.2 The highly methylesterified pectins are then secreted into the apoplasm3 and subsequently de-methylesterified in muro by PMEs. This can either induce the formation of pectin gels through the Ca2+ crosslinking of neighboring non-methylesterified chains or create substrates for pectin-degrading enzymes such as polygalacturonases and pectate lyases for the initiation of cell wall loosening.4 PMEs belong to a large multigene family. Sixtysix PME-related genes are predicted in the Arabidopsis genome.1 Among them, we have recently shown that AtPME3 (At3g14310), a major basic PME isoform in A. thaliana, is ubiquitously expressed in vascular tissues and play a role in adventitious rooting.5 In flax (Linum usitatissimum), three genes encoding PMEs have been sequenced so far, including LuPME3, the ortholog of AtPME3. Analysis of the LuPME3 isoform brings new insights into the processing of these proteins. 相似文献