首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In bacteria, ribosomal hibernation shuts down translation as a response to stress, through reversible binding of stress‐induced proteins to ribosomes. This process typically involves the formation of 100S ribosome dimers. Here, we present the structures of hibernating ribosomes from human pathogen Staphylococcus aureus containing a long variant of the hibernation‐promoting factor (SaHPF) that we solved using cryo‐electron microscopy. Our reconstructions reveal that the N‐terminal domain (NTD) of SaHPF binds to the 30S subunit as observed for shorter variants of HPF in other species. The C‐terminal domain (CTD) of SaHPF protrudes out of each ribosome in order to mediate dimerization. Using NMR, we characterized the interactions at the CTD‐dimer interface. Secondary interactions are provided by helix 26 of the 16S ribosomal RNA. We also show that ribosomes in the 100S particle adopt both rotated and unrotated conformations. Overall, our work illustrates a specific mode of ribosome dimerization by long HPF, a finding that may help improve the selectivity of antimicrobials.  相似文献   

2.
Many proteins exist and function as homodimers. Understanding the detailed mechanism driving the homodimerization is important and will impact future studies targeting the “undruggable” oncogenic protein dimers. In this study, we used 14-3-3σ as a model homodimeric protein and performed a systematic investigation of the potential roles of amino acid residues in the interface for homodimerization. Unlike other members of the conserved 14-3-3 protein family, 14-3-3σ prefers to form a homodimer with two subareas in the dimeric interface that has 180° symmetry. We found that both subareas of the dimeric interface are required to maintain full dimerization activity. Although the interfacial hydrophobic core residues Leu12 and Tyr84 play important roles in 14-3-3σ dimerization, the non-core residue Phe25 appears to be more important in controlling 14-3-3σ dimerization activity. Interestingly, a similar non-core residue (Val81) is less important than Phe25 in contributing to 14-3-3σ dimerization. Furthermore, dissociating dimeric 14-3-3σ into monomers by mutating the Leu12, Phe25, or Tyr84 dimerization residue individually diminished the function of 14-3-3σ in resisting drug-induced apoptosis and in arresting cells at G2/M phase in response to DNA-damaging treatment. Thus, dimerization appears to be required for the function of 14-3-3σ.  相似文献   

3.
A ferredoxin of MW 11 000 was isolated from the marine alga Rhodymenia palmata (Palmaria palmata). In its oxidised form the ferredoxin had absorption maxima at 276, sh 281, 328, 423 and 465 nm, and contained a single [2Fe-2S] cluster. The midpoint potential of the ferredoxin was ?400 mV and it effectively mediated electron transport in NADP+-photoreduction by higher plant chloroplasts, and pyruvate decarboxylation by the phosphoroclastic system of an anacrobic bacterium. The amino acid composition was Lys3, His1, Arg1, Asx12, Thr9, Ser8, Glx13, Pro4, Gly8, Ala7, Cys5, Val8, Ile4, Leu9, Tyr4, Phe2; tryptophan and methionine were absent from the molecule. The N-terminal amino acid region consisting of ca half the total amino acid sequence was determined using an automatic sequencer.  相似文献   

4.
Staphylococcus aureus: hibernation-promoting factor (SaHPF) is a 22.2 kDa stationary-phase protein that binds to the ribosome and turns it to the inactive form favoring survival under stress. Sequence analysis has shown that this protein is combination of two homolog proteins obtained in Escherichia coli—ribosome hibernation promoting factor (HPF) (11,000 Da) and ribosome modulation factor RMF (6500 Da). Binding site of E. coli HPF on the ribosome have been shown by X-ray study of Thermus thermophilus ribosome complex. Hence, recent studies reported that the interface is markedly different between 100S from S. aureus and E. coli. Cryo-electron microscopy structure of 100S S. aureus ribosomes reveal that the SaHPF-NTD binds to the 30S subunit as observed for shorter variants of HPF in other species and the C-terminal domain (CTD) protrudes out of each ribosome in order to mediate dimerization. SaHPF-NTD binds to the small subunit similarly to its homologs EcHPF, EcYfiA, and a plastid-specific YfiA. Furthermore, upon binding to the small subunit, the SaHPF-NTD occludes several antibiotic binding sites at the A site (hygromycin B, tetracycline), P site (edeine) and E site (pactamycin, kasugamycin). In order to elucidate the structure, dynamics and function of SaHPF-NTD from S. aureus, here we report the backbone and side chain resonance assignments for SaHPF-NTD. Analysis of the backbone chemical shifts by TALOS+ suggests that SaHPF-NTD contains two α-helices and four β-strands (β1-α1-β2-β3-β4-α2 topology). Investigating the long-term survival of S. aureus and other bacteria under antibiotic pressure could lead to advances in antibiotherapy.  相似文献   

5.
Klebsiella pneumoniae strain DF12SA (HQ114261) was isolated from diabetic foot wounds. The strain showed resistance against ampicillin, kanamycin, gentamicin, streptomycin, spectinomycin, trimethoprim, tetracycline, meropenem, amikacin, piperacillin/tazobactam, augmentin, co-trimoxazole, carbapenems, penicillins and cefoperazone, and was sensitive to clindamycin. Molecular characterization of the multidrug-resistance phenotype revealed the presence of a class 1 integron containing two genes, a dihydrofolate reductase (DHFR) (PF00186), which confers resistance to trimethoprim; and aminoglycoside adenyltransferase (AadA) (PF01909), which confers resistance to streptomycin and spectinomycin. A class 1 integron in K. pneumoniae containing these two genes was present in eight (18.18 %) out of 44 different diabetic foot ulcer (DFU) patients. Hence, there is a need to develop therapeutics that inhibit growth of multidrug resistant K. pneumoniae in DFU patients and still achieve amputation control. Am attempt was made to create a 3D model and find a suitable inhibitor using an in silico study. Rational drug design/testing requires crystal structures for DHFR and AadA. However, the structures of DHFR and AadA from K. pneumoniae are not available. Modelling was performed using Swiss Model Server and Discovery Studio 3.1. The PDBSum server was used to check stereo chemical properties using Ramachandran plot analysis of modeled structures. Clindamycin was found to be suitable inhibitor of DHFR and AadA. A DockingServer based on Autodock & Mopac was used for docking calculations. The amino acid residues Ser32, Ile46, Glu53, Gln54, Phe57, Thr72, Met76, Val78, Leu79, Ser122, Tyr128, Ile151 in case of DHFR and Phe34, Asp60, Arg63, Gln64, Leu68, Glu87, Thr89, Val90 for AadA were found to be responsible for positioning clindamycin into the active site. The study identifies amino acid residues crucial to ‘DHFR and AadA -drug’ and ‘DHFR and AadA -inhibitor’ interactions that might be useful in the ongoing search for a versatile DHFR and AadA -inhibitor.  相似文献   

6.
By using liquid chromatography–electrospray ionization mass spectrometry, Western blotting and N-terminal amino acid sequence analysis, we characterized the molecular heterogeneity and advanced glycation end product (AGE) modification of β2-microglobulin (β2m) extracted from the amyloid tissue of a hemodialysis patient. Amyloid β2m was composed of full-length β2m, truncated β2m and dimer β2m. Truncated β2m and dimer β2m were modified with AGEs such as imidazolone and Nϵ-(carboxymethyl)lysine, and showed fluorescence characteristic of AGE. Truncated β2m species were formed by cleavage between amino acid residues of Pro6/Ile7, Gln8/Val9 and Val9/Tyr10. Heterogeneous dimer β2m species showed the molecular masses of 22 591 and 22 675, which resulted from cross-linking between truncated β2m.  相似文献   

7.
Cdc34 is an E2 ubiquitin-conjugating enzyme that functions in conjunction with SCF (Skp1·Cullin 1·F-box) E3 ubiquitin ligase to catalyze covalent attachment of polyubiquitin chains to a target protein. Here we identified direct interactions between the human Cdc34 C terminus and ubiquitin using NMR chemical shift perturbation assays. The ubiquitin binding activity was mapped to two separate Cdc34 C-terminal motifs (UBS1 and UBS2) that comprise residues 206–215 and 216–225, respectively. UBS1 and UBS2 bind to ubiquitin in the proximity of ubiquitin Lys48 and C-terminal tail, both of which are key sites for conjugation. When bound to ubiquitin in one orientation, the Cdc34 UBS1 aromatic residues (Phe206, Tyr207, Tyr210, and Tyr211) are probably positioned in the vicinity of ubiquitin C-terminal residue Val70. Replacement of UBS1 aromatic residues by glycine or of ubiquitin Val70 by alanine decreased UBS1-ubiquitin affinity interactions. UBS1 appeared to support the function of Cdc34 in vivo because human Cdc34(1–215) but not Cdc34(1–200) was able to complement the growth defect by yeast Cdc34 mutant strain. Finally, reconstituted IκBα ubiquitination analysis revealed a role for each adjacent pair of UBS1 aromatic residues (Phe206/Tyr207, Tyr210/Tyr211) in conjugation, with Tyr210 exhibiting the most pronounced catalytic function. Intriguingly, Cdc34 Tyr210 was required for the transfer of the donor ubiquitin to a receptor lysine on either IκBα or a ubiquitin in a manner that depended on the neddylated RING sub-complex of the SCF. Taken together, our results identified a new ubiquitin binding activity within the human Cdc34 C terminus that contributes to SCF-dependent ubiquitination.  相似文献   

8.
Total tRNA of Chlamydomonas reinhardii was fractionated by 2-dimensional gel electrophoresis. Sixteen tRNAs specific for eleven amino acids could be identified by aminoacylation with Escherichia coli tRNA synthetases. Hybridization of these tRNAs with chloroplast restriction fragments allowed for the localization of the genes of tRNATyr, tRNAPro, tRNAPhe (2 genes), tRNAIle (2 genes) and tRNAHis (2 genes) on the chloroplast genome of C. reinhardii. The genes for tRNAAla (2 genes), tRNAAsn and tRNALeu were mapped by using individual chloroplast tRNAs from higher plants as probes.  相似文献   

9.
The present study examines the effect of [Sar1, Ile8] angiotensin II ([Sar1, Ile8] ANG II) on the blood clearance rate of [Val5] angiotensin II ([Val5] ANG II) in conscious, sodium-replete sheep. Animals were infused simultaneously with [Val5] ANG II and [Sar1, Ile8] ANG II at a rate of 42 nmol/h and 6 μmol/h respectively. Blood [Val5] ANG II was quantitatively determined with care taken in separating [Val5] ANG II from [Sar1, Ile8] ANG II prior to radioimmunoassay. The blood clearance rate of [Val5] ANG II calculated from infusion rate/blood concentration was significantly different before and during [Sar1, Ile8] ANG II infusion, being 141 ± 13 L/h (n = 12) and 95 ± 10 L/h (n = 12) respectively. Plasma renin concentration remained suppressed after the commencement of [Sar1, Ile8] ANG II infusion. In-vitro studies showed no significant decrease in the rate of degradation of [Val5] ANG II in blood in the presence of [Sar1, Ile8] ANG II. Possible interpretation of this reduction of blood clearance rate of [Val5] ANG II by 45 ± 15 L/h (n = 6) was discussed.  相似文献   

10.
Syntheses by conventional procedures of the three analogs corresponding to the porcine secretin sequence crossed at position 6 by the N-terminal hexapeptide sequences of VIP, GIP, and glucagon are described, viz., Ala4,Val5-, Tyr1,Ala2,Glu3-, and Gln3-secretin (VIP-SN, GIP-SN, and GLU-SN). The analog Phe1,Phe2,Trp3,Lys4-secretin (SOMA-SN), designed on the basis of the surprising homology of the sequence portions 10–13 of somatostatin and 5–8 of secretin, was also prepared. Finally, the synthesis of Nα-3-(4-hydroxyphenyl)propionyl-β-alanyl-secretin (DATA-SN), a tracer suitable for secretin radioimmunoassay and as an N-terminus modified secretin analog, is reported. The analogs are compared, in terms of their biological and immunological properties in different assay systems, with pure synthetic secretin.  相似文献   

11.
In opportunistic Gram-positive Staphylococcus aureus, a small protein called hibernation-promoting factor (HPFSa) is sufficient to dimerize 2.5-MDa 70S ribosomes into a translationally inactive 100S complex. Although the 100S dimer is observed in only the stationary phase in Gram-negative gammaproteobacteria, it is ubiquitous throughout all growth phases in S. aureus. The biological significance of the 100S ribosome is poorly understood. Here, we reveal an important role of HPFSa in preserving ribosome integrity and poising cells for translational restart, a process that has significant clinical implications for relapsed staphylococcal infections. We found that the hpf null strain is severely impaired in long-term viability concomitant with a dramatic loss of intact ribosomes. Genome-wide ribosome profiling shows that eliminating HPFSa drastically increased ribosome occupancy at the 5′ end of specific mRNAs under nutrient-limited conditions, suggesting that HPFSa may suppress translation initiation. The protective function of HPFSa on ribosomes resides at the N-terminal conserved basic residues and the extended C-terminal segment, which are critical for dimerization and ribosome binding, respectively. These data provide significant insight into the functional consequences of 100S ribosome loss for protein synthesis and stress adaptation.  相似文献   

12.
The X-ray crystal structure is presented for a nitrogenase MoFe protein where the alpha subunit residue at position 70 (α-70Val) has been substituted by the amino acid isoleucine (α-70Ile). Substitution of α-70Val by α-70Ile results in a MoFe protein that is hampered in its ability to reduce a range of substrates including acetylene and N2, yet retains normal proton reduction activity. The 2.3 Å structure of the α-70Ile MoFe protein is compared to the α-70Val wild-type MoFe protein, revealing that the δ methyl group of α-70Val is positioned over Fe6 within the active site FeMo-cofactor. This work provides strong crystallographic support for the previously proposed model that substrates bind and are reduced at a single 4Fe-4S face of the FeMo-cofactor and that when α-70Val is substituted by α-70Ile access of substrates to Fe6 of this face is effectively blocked. Furthermore the detailed examination of the structure provides the basis for understanding the ability to trap and characterize hydrides in the variant, contributing significantly to our understanding of substrate access and substrate reduction at the FeMo-cofactor active site of nitrogenase.  相似文献   

13.
Some physicochemical properties of neutral proteinases I and II, zinc-containing metalloenzymes, from Aspergillus sojae were investigated.

Neutral proteinase I: The enzyme protein had a sedimentation coefficient of 3.90S, an intrinsic viscosity of 0.0315 dl/g, and a partial specific volume, calculated from the amino acid and carbonhydrate composition, of 0.715 cm3/g. The molecular weight was 42,200 from the Yphantis’ procedure, and was 42,500 from the calculation according to the Scheraga-Mandel-kern’s formula. The integral numbers of amino acid residues per molecule calculated on the basis of 42,200 as molecular weight were as follows; Lys16, His6, Arg13, Trp8, Asp56, Thr25, Ser23, Glu31, Pro18, Gly40, Ala33, l/2Cys4, Val11, Met6, Ile15, Leu25, Tyr20, Р?е10, (amide-ammonia)29, in addition to mannose6, galactose1, hexosamine3.

Neutral proteinase II: The enzyme protein had a sedimentation coefficient of 2.32S, an intrinsic viscosity of 0.0270 dl/g, and a calculated partial specific volume of 0.714 cm3/g. The molecular weight was 16,800 from the Yphantis’ procedure, and was 18,000 from the sedimentation and intrinsic viscosity. The following amino acid compositions was calculated on the basis of 16,800 as molecular weight; Lys8, His3, Arg3, Asp19, Thr17, Ser11, GIu23, Pro5, Gly9, Ala24, l/2Cys4, Val5, Ile3, Leu13, Tyr10, Phe3, (amide-ammonia)15. In the enzyme preparation, neither methionine nor tryptophan was detected and carbohydrate was also absent.

In both neutral proteinases I and II, no free SH group was detected by the PCMB-titration in the presence of 8 M urea.  相似文献   

14.
《BBA》2023,1864(3):148979
In the cyanobacterium Thermosynechococcus elongatus, there are three psbA genes coding for the Photosystem II (PSII) D1 subunit that interacts with most of the main cofactors involved in the electron transfers. Recently, the 3D crystal structures of both PsbA2-PSII and PsbA3-PSII have been solved [Nakajima et al., J. Biol. Chem. 298 (2022) 102668.]. It was proposed that the loss of one hydrogen bond of PheD1 due to the D1-Y147F exchange in PsbA2-PSII resulted in a more negative Em of PheD1 in PsbA2-PSII when compared to PsbA3-PSII. In addition, the loss of two water molecules in the Cl-1 channel was attributed to the D1-P173M substitution in PsbA2-PSII. This exchange, by narrowing the Cl-1 proton channel, could be at the origin of a slowing down of the proton release. Here, we have continued the characterization of PsbA2-PSII by measuring the thermoluminescence from the S2QA/DCMU charge recombination and by measuring proton release kinetics using time-resolved absorption changes of the dye bromocresol purple. It was found that i) the Em of PheD1/PheD1 was decreased by ∼30 mV in PsbA2-PSII when compared to PsbA3-PSII and ii) the kinetics of the proton release into the bulk was significantly slowed down in PsbA2-PSII in the S2TyrZ to S3TyrZ and S3TyrZ → (S3TyrZ)’ transitions. This slowing down was partially reversed by the PsbA2/M173P mutation and induced by the PsbA3/P173M mutation thus confirming a role of the D1-173 residue in the egress of protons trough the Cl-1 channel.  相似文献   

15.
An interesting and quite complex protein pattern has been described at ovine milk proteins but the genetic control of the variation observed was assessed only in few cases. The aim of this work was to characterize the ovine α s2 -casein (CSN1S2) B variant, first observed in the Italian Gentile di Puglia, a fine-wooled ovine breed, and to investigate its occurrence in two further breeds, the Sarda and Camosciata, which are the most widespread dairy breeds in Italy. The B variant differs from the most common form A with two amino acid exchanges: Asp75 → Tyr75 and Ile105 → Val105. The first substitution, resulting in a loss of a negative charge, is responsible for the higher isoelectric point of the B protein variant, which allows its detection by isoelectric focusing electrophoresis (IEF). The occurrence of CSN1S2*B in Sarda and Comisana was demonstrated. Since the Asp75 → Tyr75 substitution modifies the protein electric charge, milk properties may result affected to some extent.  相似文献   

16.
Amino acid composition of the CGMMV* coat protein was determined to be as follows: Asp20, Thr10, Ser24, Glu10. Pro6, Gly9, Ala21, Val7, Ile7, Leu18, Tyr4, Phe9, Lys4, His1, Arg8, Trp2. No terminal α-amino group was detected by dinitrophenylation method. The carboxyl-terminus was found to be serine by hydrazinolysis of the protein and digestion with carboxypeptidase A.

For sequence analysis of the coat protein, tryptic digestion was accomplished at pH 8.0 resulting in ten soluble and several insoluble peptides at pH 4.5. The amino acids contained in soluble peptides accounted for 91 out of 160 residues in the whole protein. The amino acid sequences of ten soluble peptides were determined.

From the similarities of amino acid sequence of the peptides to those of TMV* protein, CGMMV was assumed to be a strain of TMV group.  相似文献   

17.
Summary A strain of Saccharomyces cerevisiae, known to produce multiple isoaccepting forms of several tRNA's which differ from a standard wild type strain, has been studied genetically. The multiple isoaccepting tRNA phenotype behaves as if it is caused by a single recessive mutation. Five tetrads were analyzed and all showed a 2:2 segregation of mutant to wild type profiles for Phe-tRNAPhe. Furthermore, the multiple isoacceptors for the other tRNA's in the mutant strain are probably caused by the same mutation, since Tyr-tRNATyr and Val-tRNAVal also exhibit 2:2 segregation for mutant versus wild type tRNA profiles and the segregation pattern is the same as that for Phe-tRNAPhe.  相似文献   

18.
Transfer RNAs (tRNA) are important molecules that involved in protein translation machinery and acts as a bridge between the ribosome and codon of the mRNA. The study of tRNA is evolving considerably in the fields of bacteria, plants, and animals. However, detailed genomic study of the cyanobacterial tRNA is lacking. Therefore, we conducted a study of cyanobacterial tRNA from 61 species. Analysis revealed that; cyanobacteria contain thirty-six to seventy-eight tRNA gens per genome that encodes for 20 tRNA isotypes. The number of iso-acceptors (anti-codons) ranged from thirty-two to forty-three per genome. tRNAIle with anti-codon AAU, GAU, and UAU was reported to be absent from the genome of Gleocapsa PCC 73,106 and Xenococcus sp. PCC 7305. Instead, they were contained anti-codon CAU that is common to tRNAMet and tRNAIle as well. The iso-acceptors ACA (tRNACys), ACC (tRNAGly), AGA, ACU (tRNASer), AAA (tRNAPhe), AGG (tRNAPro), AAC (tRNAVal), GCG (tRNAArg), AUG (tRNAHis), and AUC (tRNAAsp) were absent from the genome of cyanobacterial lineages studied so far. A few of the cyanobacterial species encode suppressor tRNAs, whereas none of the species were found to encode a selenocysteine iso-acceptor. Cyanobacterial species encode a few putative novel tRNAs whose functions are yet to be elucidated.  相似文献   

19.
Corticosterone, aldosterone and cortisol were found to be present in lungfish plasma. Plasma levels of these hormones were measured in lungfish following separate single intramuscular injections of three forms of angiotensin II; [Asp1, Ile5], [Asp1, Val5] and [Asn1, Val5]. Aldosterone levels were significantly elevated in response to [Asp1, Ile5] AII and [Asn1, Val5] AII injection. [Asp1, Val5] AII increased plasma corticosterone levels. The difference between these data and the negative results previously reported by Blair-West et al. (1977) are discussed.Abbreviations AII angiotensin II - bw body weight - DOC deoxycorticosterone - RAS renin-angiotensin system - RIA radioimmuno assay  相似文献   

20.
The structural determinants that are responsible for the formation of higher order associations of folded proteins remain unknown. We have investigated the role on the dimerization process of different residues of a domain-swapped dimer human pancreatic ribonuclease variant. This variant is a good model to study the dimerization and swapping processes because dimer and monomer forms interconvert, are easily isolated, and only one dimeric species is produced. Thus, simple models for the swapping process can be proposed. The dimerization (dissociation constant) and swapping propensity have been studied using different variants with changes in residues that belong to different putative molecular determinants of dimerization. Using NMR spectroscopy, we show that these mutations do not substantially alter the overall conformation and flexibility, but affect the residue level stability. Overall, the most critical residues for the swapping process are those of one subunit that interact with the hinge loop of another one-subunit residue, stabilizing it in a conformation that favors the interchange. Tyr25, Gln101, and Pro19, with Asn17, Ser21, and Ser23, are found to be the most significant; notably, Glu103 and Arg104, which were postulated to form salt bridges that would stabilize the dimer, are not critical for dimerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号