首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rape M  Reddy SK  Kirschner MW 《Cell》2006,124(1):89-103
The anaphase-promoting complex (APC) coordinates mitosis and G1 by sequentially promoting the degradation of key cell-cycle regulators. Following the degradation of its substrates in G1, the APC catalyzes the autoubiquitination of its E2 UbcH10. This stabilizes cyclin A and allows it to inactivate APC(Cdh1). How the APC establishes this complex temporal sequence of ubiquitinations, referred to as substrate ordering, is not understood. Here we show that substrate ordering depends on the relative processivity of substrate multiubiquitination by the APC. Processive substrates obtain ubiquitin chains in a single APC binding event. The multiubiquitination of distributive substrates requires multiple rounds of APC binding, which render it sensitive to lower APC concentrations, competition by processive substrates, and deubiquitination. Consequently, more processive substrates are preferentially multiubiquitinated in vitro and degraded earlier in vivo. The processivity of multiubiquitination is strongly influenced by the D box within the substrate, suggesting that substrate ordering is established by a mechanism intrinsic to APC and its substrates and similar to kinetic proofreading.  相似文献   

2.
Zur A  Brandeis M 《The EMBO journal》2002,21(17):4500-4510
The anaphase promoting complex/cyclosome (APC/C), activated by fzy and fzr, degrades cell cycle proteins that carry RXXL or KEN destruction boxes (d-boxes). APC/C substrates regulate sequential events and must be degraded in the correct order during mitosis and G(1). We studied how d-boxes determine APC/C(fzy)/APC/C(fzr) specificity and degradation timing. Cyclin B1 has an RXXL box and is degraded by both APC/C(fzy) and APC/C(fzr); fzy has a KEN box and is degraded by APC/C(fzr) only. We characterized the degradation of substrates with swapped d-boxes. Cyclin B1 with KEN was degraded by APC/C(fzr) only. Fzy with RXXL could be degraded by APC/C(fzy) and APC/C(fzr). Interestingly, APC/C(fzy)- but not APC/C(fzr)-specific degradation is highly dependent on the location of RXXL. We studied degradation of tagged substrates in real time and observed that APC/C(fzr) is activated in early G(1). These observations demonstrate how d-box specificities of APC/C(fzy) and APC/C(fzr), and the successive activation of APC/C by fzy and fzr, establish the temporal degradation pattern. Our observations can explain further why some endogenous RXXL substrates are degraded by APC/C(fzy), while others are restricted to APC/C(fzr).  相似文献   

3.
The Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase activated by its G1 specific adaptor protein Cdh1 is a major regulator of the cell cycle. The APC/CCdh1 mediates degradation of dozens of proteins, however, the kinetics and requirements for their degradation are largely unknown. We demonstrate that overexpression of the constitutive active CDH1m11 mutant that is not inhibited by phosphorylation results in mitotic exit in the absence of the FEAR and MEN pathways, and DNA re-replication in the absence of Cdc7 activity. This mode of mitotic exit also reveals additional requirements for APC/CCdh1 substrate degradation, which for some substrates such as Pds1 or Clb5 is dephosphorylation, but for others such as Cdc5 is phosphorylation.  相似文献   

4.
The ubiquitin proteasome system (UPS) directs programmed destruction of key cellular regulators via posttranslational modification of its targets with polyubiquitin chains. These commonly contain Lys-48 (K48)–directed ubiquitin linkages, but chains containing atypical Lys-11 (K11) linkages also target substrates to the proteasome—for example, to regulate cell cycle progression. The ubiquitin ligase called the anaphase-promoting complex/cyclosome (APC/C) controls mitotic exit. In higher eukaryotes, the APC/C works with the E2 enzyme UBE2S to assemble K11 linkages in cells released from mitotic arrest, and these are proposed to constitute an improved proteolytic signal during exit from mitosis. We tested this idea by correlating quantitative measures of in vivo K11-specific ubiquitination of individual substrates, including Aurora kinases, with their degradation kinetics tracked at the single-cell level. All anaphase substrates tested by this methodology are stabilized by depletion of K11 linkages via UBE2S knockdown, even if the same substrates are significantly modified with K48-linked polyubiquitin. Specific examination of substrates depending on the APC/C coactivator Cdh1 for their degradation revealed Cdh1-dependent enrichment of K11 chains on these substrates, whereas other ubiquitin linkages on the same substrates added during mitotic exit were Cdh1-independent. Therefore we show that K11 linkages provide the APC/C with a means to regulate the rate of substrate degradation in a coactivator-specified manner.  相似文献   

5.
6.
The anaphase promoting complex is a highly conserved E3 ligase complex that mediates the destruction of key regulatory proteins during both mitotic and meiotic divisions. In order to maintain ploidy, this destruction must occur after the regulatory proteins have executed their function. Thus, the regulation of APC/C activity itself is critical for maintaining ploidy during all types of cell divisions. During mitotic cell division, two conserved activator proteins called Cdc20 and Cdh1 are required for both APC/C activation and substrate selection. However, significantly less is known about how these proteins regulate APC/C activity during the specialized meiotic nuclear divisions. In addition, both budding yeast and flies utilize a third meiosis-specific activator. In Saccharomyces cerevisiae, this meiosis-specific activator is called Ama1. This review summarizes our knowledge of how Cdc20 and Ama1 coordinate APC/C activity to regulate the meiotic nuclear divisions in yeast.  相似文献   

7.

Background

During cell-cycle progression, substrates of a single master regulatory enzyme can be modified in a specific order. Here, we used experimental and computational approaches to dissect the quantitative mechanisms underlying the ordered degradation of the substrates of the ubiquitin ligase APC/CCdc20, a key regulator of chromosome segregation in mitosis.

Results

We show experimentally that the rate of catalysis varies with different substrates of APC/CCdc20. Using a computational model based on multi-step ubiquitination, we then show how changes in the interaction between a single substrate and APC/CCdc20 can alter the timing of degradation onset relative to APC/CCdc20 activation, while ensuring a fast degradation rate. Degradation timing and dynamics depend on substrate affinity for the enzyme as well as the catalytic rate at which the substrate is modified. When two substrates share the same pool of APC/CCdc20, their relative enzyme affinities and rates of catalysis influence the partitioning of APC/CCdc20 among substrates, resulting in substrate competition. Depending on how APC/CCdc20 is partitioned among its substrates, competition can have minor or major effects on the degradation of certain substrates. We show experimentally that increased expression of the early APC/CCdc20 substrate Clb5 does not delay the degradation of the later substrate securin, arguing against a role for competition with Clb5 in establishing securin degradation timing.

Conclusions

The degradation timing of APC/CCdc20 substrates depends on the multi-step nature of ubiquitination, differences in substrate-APC/CCdc20 interactions, and competition among substrates. Our studies provide a conceptual framework for understanding how ordered modification can be established among substrates of the same regulatory enzyme, and facilitate our understanding of how precise temporal control is achieved by a small number of master regulators to ensure a successful cell division cycle.
  相似文献   

8.
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and critical regulator of cell cycle progression. Despite its vital role, it has remained challenging to globally map APC/C substrates. By combining orthogonal features of known substrates, we predicted APC/C substrates in silico. This analysis identified many known substrates and suggested numerous candidates. Unexpectedly, chromatin regulatory proteins are enriched among putative substrates, and we show experimentally that several chromatin proteins bind APC/C, oscillate during the cell cycle, and are degraded following APC/C activation, consistent with being direct APC/C substrates. Additional analysis revealed detailed mechanisms of ubiquitylation for UHRF1, a key chromatin regulator involved in histone ubiquitylation and DNA methylation maintenance. Disrupting UHRF1 degradation at mitotic exit accelerates G1-phase cell cycle progression and perturbs global DNA methylation patterning in the genome. We conclude that APC/C coordinates crosstalk between cell cycle and chromatin regulatory proteins. This has potential consequences in normal cell physiology, where the chromatin environment changes depending on proliferative state, as well as in disease.

This study shows that the cell cycle E3 ubiquitin ligase APC/C is a regulator of several chromatin regulatory proteins, including the multivalent epigenetic reader and writer UHRF1. Perturbing UHRF1 ubiquitylation and degradation alters cell cycle and DNA methylation patterning, pointing to a key role for cell cycle degradation in shaping chromatin environments.  相似文献   

9.
NADPH is a cofactor used by reactive oxygen species (ROS) scavenging enzymes to block ROS produced in cells. Recently, it was shown that in cancer cells, ROS progressively increases in tune to cell cycle leading to a peak in mitosis. Loss of IDH2 is known to cause severe oxidative stress in cell and mouse models as ROS increases in mitochondria. Therefore, we hypothesized that IDH2, a major NADPH-producing enzyme in mitochondria is ubiquitinated for ROS to increase in mitosis. To test this hypothesis, in cancer cells we examined IDH2 ubiquitination in mitosis and measured the ROS produced. We found that IDH2 is ubiquitinated in mitosis and on inhibiting anaphase-promoting complex/Cyclosome (APC/C) IDH2 was stabilized. Further, we observed that overexpressing APC/C coactivator CDH1 decreased IDH2, whereas depleting CDH1 decreased IDH2 ubiquitination. To understand the link between IDH2 ubiquitination and ROS produced in mitosis, we show that overexpressing mitochondria-targeted-IDH1 decreased ROS by increasing NADPH in IDH2 ubiquitinated cells. We conclude that APC/C CDH1 ubiquitinates IDH2, a major NADPH-producing enzyme in mitochondria contributing to ROS increase in mitosis. Based on our results, we suggest that mitosis can be a therapeutic window in mutant IDH2-linked pathologies.  相似文献   

10.
11.
During the G1/S transition, p21 proteolysis is mediated by Skp2; however, p21 reaccumulates in G2 and is degraded again in prometaphase. How p21 degradation is controlled in mitosis remains unexplored. We found that Cdc20 (an activator of the ubiquitin ligase APC/C) binds p21 in cultured cells and identified a D box motif in p21 necessary for APC/C(Cdc20)-mediated ubiquitylation of p21. Overexpression of Cdc20 or Skp2 destabilized wild-type p21; however, only Skp2, but not Cdc20, was able to destabilize a p21(D box) mutant. Silencing of Cdc20 induced an accumulation of p21, increased the fraction of p21 bound to Cdk1, and inhibited Cdk1 activity in p21(+/+) prometaphase cells, but not in p21(-/-) cells. Thus, in prometaphase Cdc20 positively regulates Cdk1 by mediating the degradation of p21. We propose that the APC/C(Cdc20)-mediated degradation of p21 contributes to the full activation of Cdk1 necessary for mitotic events and prevents mitotic slippage during spindle checkpoint activation.  相似文献   

12.
Regulation of BubR1 is central to the control of APC/C activity. We have found that BubR1 forms a complex with PCAF and is acetylated at lysine 250. Using mass spectrometry and acetylated BubR1-specific antibodies, we have confirmed that BubR1 acetylation occurs at prometaphase. Importantly, BubR1 acetylation was required for checkpoint function, through the inhibition of ubiquitin-dependent BubR1 degradation. BubR1 degradation began before the onset of anaphase. It was noted that the pre-anaphase degradation was regulated by BubR1 acetylation. Degradation of an acetylation-mimetic form, BubR1–K250Q, was inhibited and chromosome segregation in cells expressing BubR1–K250Q was markedly delayed. By contrast, the acetylation-deficient mutant, BubR1–K250R, was unstable, and mitosis was accelerated in BubR1–K250R-expressing cells. Furthermore, we found that APC/C–Cdc20 was responsible for BubR1 degradation during mitosis. On the basis of our collective results, we propose that the acetylation status of BubR1 is a molecular switch that converts BubR1 from an inhibitor to a substrate of the APC/C complex, thus providing an efficient way to modulate APC/C activity and mitotic timing.  相似文献   

13.
The events of late mitosis, from sister-chromatid separation to cytokinesis, are governed by the anaphase-promoting complex (APC), a multisubunit assembly that triggers the ubiquitin-dependent proteloysis of key regulatory proteins. An intricate regulatory network governs APC activity and helps to ensure that late mitotic events are properly timed and coordinated.  相似文献   

14.
Using multiplexed quantitative proteomics, we analyzed cell cycle‐dependent changes of the human proteome. We identified >4,400 proteins, each with a six‐point abundance profile across the cell cycle. Hypothesizing that proteins with similar abundance profiles are co‐regulated, we clustered the proteins with abundance profiles most similar to known Anaphase‐Promoting Complex/Cyclosome (APC/C) substrates to identify additional putative APC/C substrates. This protein profile similarity screening (PPSS) analysis resulted in a shortlist enriched in kinases and kinesins. Biochemical studies on the kinesins confirmed KIFC1, KIF18A, KIF2C, and KIF4A as APC/C substrates. Furthermore, we showed that the APC/CCDH1‐dependent degradation of KIFC1 regulates the bipolar spindle formation and proper cell division. A targeted quantitative proteomics experiment showed that KIFC1 degradation is modulated by a stabilizing CDK1‐dependent phosphorylation site within the degradation motif of KIFC1. The regulation of KIFC1 (de‐)phosphorylation and degradation provides insights into the fidelity and proper ordering of substrate degradation by the APC/C during mitosis.  相似文献   

15.
16.
Ubiquitin-mediated proteolysis is critical for the alternation between DNA replication and mitosis and for the key regulatory events in mitosis. The anaphase-promoting complex/cyclosome (APC/C) is a conserved ubiquitin ligase that has a fundamental role in regulating mitosis and the cell cycle in all eukaryotes. In vertebrate cells, early mitotic inhibitor 1 (Emi1) has been proposed as an important APC/C inhibitor whose destruction may trigger activation of the APC/C at mitosis. However, in this study, we show that the degradation of Emi1 is not required to activate the APC/C in mitosis. Instead, we uncover a key role for Emi1 in inhibiting the APC/C in interphase to stabilize the mitotic cyclins and geminin to promote mitosis and prevent rereplication. Thus, Emi1 plays a crucial role in the cell cycle to couple DNA replication with mitosis, and our results also question the current view that the APC/C has to be inactivated to allow DNA replication.  相似文献   

17.
We have examined the 5-exo-hydroxylation of camphor by cytochrome P450 in [18O] water/buffer solution. In the NADHO2-dependent reaction of the reconstituted multienzyme system, no 18O-label is observed in the product alcohol. Similarly, in the m-chloroperbenzoic acid or cumene hydroperoxide supported reactions with ferric P450, solvent oxygen is not incorporated into hydroxycamphor. When the analagous reaction is carried out using iodosobenzene as the exogenous oxidant, however, the alcoholic oxygen of the product is derived entirely from the solvent. These results cannot be explained by equilibration of the iodosobenzene oxygen with solvent water before reacting with P450, and suggest a unique mechanism for iodosobenzene-supported P450 oxygenations. We propose two distinct mechanistic activities for cytochrome P450: a hydroxylase, and an oxene transferase, with the former encompassing the classic oxygenase as well as “peroxygenase” reactions.  相似文献   

18.
Passage through mitosis is required to reset replication origins for the subsequent S phase. During mitosis, a series of biochemical reactions involving cyclin-dependent kinases (CDKs), the anaphase promoting complex or cyclosome (APC/C), and a mitotic exit network including Cdc5, 14, and 15 coordinates the proper separation and segregation of sister chromatids. Here we show that cyclin B/CDK inactivation can drive origin resetting in either early S phase or mitosis. This origin resetting occurs efficiently in the absence of APC/C function and mitotic exit network function. We conclude that CDK inactivation is the single essential event in mitosis required to allow pre-RC assembly for the next cell cycle.  相似文献   

19.
The E3 ubiquitin ligase complex CDC20‐activated anaphase‐promoting complex/Cyclosome (APC/CCDC20) plays a critical role in governing mitotic progression by targeting key cell cycle regulators for degradation. Cell division cycle protein 20 homolog (CDC20), the co‐activator of APC/C, is required for full ubiquitin ligase activity. In addition to its well‐known cell cycle‐related functions, we demonstrate that CDC20 plays an essential role in osteogenic commitment of bone marrow mesenchymal stromal/stem cells (BMSCs). Cdc20 conditional knockout mice exhibit decreased bone formation and impaired bone regeneration after injury. Mechanistically, we discovered a functional interaction between the WD40 domain of CDC20 and the DNA‐binding domain of p65. Moreover, CDC20 promotes the ubiquitination and degradation of p65 in an APC11‐dependent manner. More importantly, knockdown of p65 rescues the bone loss in Cdc20 conditional knockout mice. Our current work reveals a cell cycle‐independent function of CDC20, establishes APC11CDC20 as a pivotal regulator for bone formation by governing the ubiquitination and degradation of p65, and may pave the way for treatment of bone‐related diseases.  相似文献   

20.
Haas AL  Wilkinson KD 《Cell》2008,133(4):570-572
Regulated protein degradation by the ubiquitin-proteasome pathway ensures the unidirectionality of mitotic progression by removing cell-cycle regulators required at earlier stages. The APC/C ubiquitin-protein ligase targets proteins by appending polyubiquitin degradation signals that are subsequently recognized by the 26S proteasome. Reporting in this issue, Jin et al. (2008) identify a TEK motif in both ubiquitin and substrates of APC/C that mediates assembly of these degradation signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号