首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background and Aims

Dioecism characterizes many crop species of economic value, including kiwifruit (Actinidia deliciosa). Kiwifruit male sterility occurs at the microspore stage. The cell walls of the microspores and the pollen of the male-sterile and male-fertile flowers, respectively, differ in glucose and galactose levels. In numerous plants, pollen formation involves normal functioning and degeneration timing of the tapetum, with calcium and carbohydrates provided by the tapetum essential for male fertility. The aim of this study was to determine whether the anther wall controls male fertility in kiwifruit, providing calcium and carbohydrates to the microspores.

Methods

The events occurring in the anther wall and microspores of male-fertile and male-sterile anthers were investigated by analyses of light microscopy, epifluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL assay) and transmission electron microscopy coupled with electron spectroscopy. The possibility that male sterility was related to anther tissue malfunctioning with regard to calcium/glucose/galactose provision to the microspores was also investigated by in vitro anther culture.

Key Results

Both tapetum and the middle layer showed secretory activity and both degenerated by programmed cell death (PCD), but PCD was later in male-sterile than in male-fertile anthers. Calcium accumulated in cell walls of the middle layer and tapetum and in the exine of microspores and pollen, reaching higher levels in anther wall tissues and dead microspores of male-sterile anthers. A specific supply of glucose and calcium induced normal pollen formation in in vitro-cultured anthers of the male-sterile genotype.

Conclusions

The results show that male sterility in kiwifruit is induced by anther wall tissues through prolonged secretory activity caused by a delay in PCD, in the middle layer in particular. In vitro culture results support the sporophytic control of male fertility in kiwifruit and open the way to applications to overcome dioecism and optimize kiwifruit production.  相似文献   

2.

Background and Aims

The sexual separation in dioecious species has interested biologists for decades; however, the cellular mechanism leading to unisexuality has been poorly understood. In this study, the cellular changes that lead to male sterility in the functionally dioecious cactus, Opuntia stenopetala, are described.

Methods

The spatial and temporal patterns of programmed cell death (PCD) were determined in the anthers of male and female flowers using scanning electron microscopy analysis and histological observations, focusing attention on the transition from bisexual to unisexual development. In addition, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assays were used as an indicator of DNA fragmentation to corroborate PCD.

Key results

PCD was detected in anthers of both female and male flowers, but their patterns differed in time and space. Functionally male individuals developed viable pollen, and normal development involved PCD on each layer of the anther wall, which occurred progressively from the inner (tapetum) to the outer layer (epidermis). Conversely, functional female individuals aborted anthers by premature and displaced PCD. In anthers of female flowers, the first signs of PCD, such as a nucleus with irregular shape, fragmented and condensed chromatin, high vacuolization and condensed cytoplasm, occurred at the microspore mother cell stage. Later these features were observed simultaneously in all anther wall layers, connective tissue and filament. Neither pollen formation nor anther dehiscence was detected in female flowers of O. stenopetala due to total anther disruption.

Conclusions

Temporal and spatial changes in the patterns of PCD are responsible for male sterility of female flowers in O. stenopetala. Male fertility requires the co-ordination of different events, which, when altered, can lead to male sterility and to functionally unisexual individuals. PCD could be a widespread mechanism in the determination of functionally dioecious species.  相似文献   

3.

Background and Aims

Cell wall pectins and arabinogalactan proteins (AGPs) are important for pollen tube growth. The aim of this work was to study the temporal and spatial dynamics of these compounds in olive pollen during germination.

Methods

Immunoblot profiling analyses combined with confocal and transmission electron microscopy immunocytochemical detection techniques were carried out using four anti-pectin (JIM7, JIM5, LM5 and LM6) and two anti-AGP (JIM13 and JIM14) monoclonal antibodies.

Key Results

Pectin and AGP levels increased during olive pollen in vitro germination. (1 → 4)-β-d-Galactans localized in the cytoplasm of the vegetative cell, the pollen wall and the apertural intine. After the pollen tube emerged, galactans localized in the pollen tube wall, particularly at the tip, and formed a collar-like structure around the germinative aperture. (1 → 5)-α-l-Arabinans were mainly present in the pollen tube cell wall, forming characteristic ring-shaped deposits at regular intervals in the sub-apical zone. As expected, the pollen tube wall was rich in highly esterified pectic compounds at the apex, while the cell wall mainly contained de-esterified pectins in the shank. The wall of the generative cell was specifically labelled with arabinans, highly methyl-esterified homogalacturonans and JIM13 epitopes. In addition, the extracellular material that coated the outer exine layer was rich in arabinans, de-esterified pectins and JIM13 epitopes.

Conclusions

Pectins and AGPs are newly synthesized in the pollen tube during pollen germination. The synthesis and secretion of these compounds are temporally and spatially regulated. Galactans might provide mechanical stability to the pollen tube, reinforcing those regions that are particularly sensitive to tension stress (the pollen tube–pollen grain joint site) and mechanical damage (the tip). Arabinans and AGPs might be important in recognition and adhesion phenomena of the pollen tube and the stylar transmitting cells, as well as the egg and sperm cells.  相似文献   

4.

Background and Aims

A pollen grain contains a number of esterases, many of which are released upon contact with the stigma surface. However, the identity and function of most of these esterases remain unknown. In this work, esterases from olive pollen during its germination were identifided and functionally characterized.

Methods

The esterolytic capacity of olive (Olea europaea) pollen was examined using in vitro and in-gel enzymatic assays with different enzyme substrates. The functional analysis of pollen esterases was achieved by inhibition assays by using specific inhibitors. The cellular localization of esterase activities was performed using histochemical methods.

Key Results

Olive pollen showed high levels of non-specific esterase activity, which remained steady after hydration and germination. Up to 20 esterolytic bands were identified on polyacrylamide gels. All the inhibitors decreased pollen germinability, but only diisopropyl fluorophosphate (DIFP) hampered pollen tube growth. Non-specific esterase activity is localized on the surface of oil bodies (OBs) and small vesicles, in the pollen intine and in the callose layer of the pollen tube wall. Acetylcholinesterase (AChE) activity was mostly observed in the apertures, exine and pollen coat, and attached to the pollen tube wall surface and to small cytoplasmic vesicles.

Conclusions

In this work, for the first time a systematic functional characterization of esterase enzymes in pollen from a plant species with wet stigma has been carried out. Olive pollen esterases belong to four different functional groups: carboxylesterases, acetylesterases, AChEs and lipases. The cellular localization of esterase activity indicates that the intine is a putative storage site for esterolytic enzymes in olive pollen. Based on inhibition assays and cellular localization of enzymatic activities, it can be concluded that these enzymes are likely to be involved in pollen germination, and pollen tube growth and penetration of the stigma.  相似文献   

5.

Background and Aims

The phenomenon of self-assembly, widespread in both the living and the non-living world, is a key mechanism in sporoderm pattern formation. Observations in developmental palynology appear in a new light if they are regarded as aspects of a sequence of micellar colloidal mesophases at genomically controlled initial parameters. The exine of Persea is reduced to ornamentaion (spines and gemmae with underlying skin-like ectexine); there is no endexine. Development of Persea exine was analysed based on the idea that ornamentation of pollen occurs largely by self-assembly.

Methods

Flower buds were collected from trees grown in greenhouses over 11 years in order to examine all the main developmental stages, including the very short tetrad period. After fixing, sections were examined using transmission electron microscopy.

Key Results and Conclusions

The locations of future spines are determined by lipid droplets in invaginations of the microspore plasma membrane. The addition of new sporopollenin monomers into these invaginations leads to the appearance of chimeric polymersomes, which, after splitting into two individual assemblies, give rise to both liquid-crystal conical ‘skeletons’ of spines and spherical micelles. After autopolymerization of sporopollenin, spines emerge around their skeletons, nested into clusters of globules. These clusters and single globules between spines appear on a base of spherical micelles. The intine also develops on the base of micellar mesophases. Colloidal chemistry helps to provide a more general understanding of the processes and explains recurrent features of pollen walls from remote taxa.  相似文献   

6.
Cao G  Xue L  Li Y  Pan K 《Annals of botany》2011,107(8):1413-1419

Background and Aims

Allocation of resources to floral traits often declines distally within inflorescences in flowering plants. Architecture and resource competition have been proposed as underlying mechanisms. The aim of the present study is to assess the relative importance of resource competition and architectural effects in pollen and ovule production on racemes of Hosta ventricosa, an apomictic perennial herb.

Methods

Combinations of two defoliation treatments (intact and defoliated) and two fruit-set treatments (no-fruit and fruit) were created, and the roles of architecture and resource competition at each resource level were assessed.

Key Results

Pollen and ovule number per flower increased after defoliation, but pollen to ovule ratio per flower did not change. Pollen, ovules and the pollen to ovule ratio per flower declined distally on racemes at each resource level. In the intact treatment, fruit development of early flowers did not affect either pollen or ovule number of late flowers. In the defoliated treatment, fruit development of early flowers reduced both pollen and ovule numbers of late flowers due to over-compensation caused by defoliation. Late flowers on defoliated fruit racemes produced less pollen than intact fruit racemes but the same number of ovules; therefore, the reduction in pollen number was not caused by over-compensation. In addition, the fruit-set rate of early flowers during flowering was higher in intact racemes than in defoliated racemes.

Conclusions

In flowering plants, the relative importance of architecture and resource competition in allocation to pollen and ovules may vary with the resource pools or the overall resource availability of maternal plants.  相似文献   

7.
8.

Background and Aims

Stamen movements directly determine pollen fates and mating patterns by altering positions of female and male organs. However, the implications of such movements in terms of pollination are not well understood. Recently, complex patterns of stamen movements have been identified in Loasaceae, Parnassiaceae, Rutaceae and Tropaeolaceae. In this study the stamen movements in Ruta graveolens (Rutaceae) and their impact on pollination are determined.

Methods

Pollination effects of stamen movements were studied in Ruta graveolens, in which one-by-one uplifting and falling back is followed by simultaneous movement of all stamens in some flowers. Using 30 flowers, one stamen was manipulated either to be immobilized or to be allowed to move freely towards the centre of the flower but be prevented from falling back. Pollen loads on stigmas and ovule fertilization in flowers with or without simultaneous stamen movement were determined.

Results

Pollen removal decreased dramatically (P < 0·001) when the stamen was stopped from uplifting because its anther was seldom contacted by pollinators. When a stamen stayed at the flower''s centre, pollen removal of the next freely moved anther decreased significantly (P < 0·005) because of fewer touches by pollinators and quick leaving of pollinators that were discouraged by the empty anther. Simultaneous stamen movement occurred only in flowers with low pollen load on the stigma and the remaining pollen in anthers dropped onto stigma surfaces after stamens moved to the flower''s centre.

Conclusions

In R. graveolens pollen removal is promoted through one-by-one movement of the stamen, which presents pollen in doses to pollinators by successive uplifting of the stamen and avoids interference of two consecutively dehisced anthers by falling back of the former stamen before the next one moves into the flower''s centre. Simultaneous stamen movement at the end of anthesis probably reflects an adaptation for late-acting self-pollination.  相似文献   

9.

Background and Aims

The tam (tardy asynchronous meiosis) mutant of Arabidopsis thaliana, which exhibits a modified cytokinesis with a switch from simultaneous to successive cytokinesis, was used to perform a direct test of the implication of cytokinesis in aperture-pattern ontogeny of angiosperm pollen grains. The aperture pattern corresponds to the number and arrangement of apertures (areas of the pollen wall permitting pollen tube germination) on the surface of the pollen grain.

Methods

A comparative analysis of meiosis and aperture distribution was performed in two mutant strains of arabidopsis: quartet and quartet-tam.

Key Results

While the number of apertures is not affected in the quartet-tam mutant, the arrangement of the three apertures is modified compared with the quartet, resulting in a different aperture pattern.

Conclusions

These results directly demonstrate the relationship between the type of sporocytic cytokinesis and pollen aperture-pattern ontogeny.  相似文献   

10.

Background and Aims

Rhamnogalacturonan-II (RG-II) is one of the pectin motifs found in the cell wall of all land plants. It contains sugars such as 2-keto-3-deoxy-d-lyxo-heptulosaric acid (Dha) and 2-keto-3-deoxy-d-manno-octulosonic acid (Kdo), and within the wall RG-II is mostly found as a dimer via a borate diester cross-link. To date, little is known regarding the biosynthesis of this motif. Here, after a brief review of our current knowledge on RG-II structure, biosynthesis and function in plants, this study explores the implications of the presence of a Golgi-localized sialyltransferase-like 2 (SIA2) protein that is possibly involved in the transfer of Dha or Kdo in the RG-II of Arabidopsis thaliana pollen tubes, a fast-growing cell type used as a model for the study of cell elongation.

Methods

Two heterozygous mutant lines of arabidopsis (sia2-1+/– and qrt1 × sia2-2+/–) were investigated. sia2-2+/– was in a quartet1 background and the inserted T-DNA contained the reporter gene β-glucuronidase (GUS) under the pollen-specific promoter LAT52. Pollen germination and pollen tube phenotype and growth were analysed both in vitro and in vivo by microscopy.

Key Results

Self-pollination of heterozygous lines produced no homozygous plants in the progeny, which may suggest that the mutation could be lethal. Heterozygous mutants displayed a much lower germination rate overall and exhibited a substantial delay in germination (20 h of delay to reach 30 % of pollen grain germination compared with the wild type). In both lines, mutant pollen grains that were able to produce a tube had tubes that were either bursting, abnormal (swollen or dichotomous branching tip) or much shorter compared with wild-type pollen tubes. In vivo, mutant pollen tubes were restricted to the style, whereas the wild-type pollen tubes were detected at the base of the ovary.

Conclusions

This study highlights that the mutation in arabidopsis SIA2 encoding a sialyltransferase-like protein that may transfer Dha or Kdo on the RG-II motif has a dramatic effect on the stability of the pollen tube cell wall.  相似文献   

11.

Background and Aims

In temperate woody perennials, flower bud development is halted during the winter, when the buds enter dormancy. This dormant period is a prerequisite for adequate flowering, is genetically regulated, and plays a clear role in possibly adapting species and cultivars to climatic areas. However, information on the biological events underpinning dormancy is lacking. Stamen development, with clear differentiated stages, appears as a good framework to put dormancy in a developmental context. Here, stamen developmental changes are characterized in apricot (Prunus armeniaca) and are related to dormancy.

Methods

Stamen development was characterized cytochemically from the end of August to March, over 4 years. Developmental changes were related to dormancy, using the existing empirical information on chilling requirements.

Key Results

Stamen development continued during the autumn, and the flower buds entered dormancy with a fully developed sporogenous tissue. Although no anatomical changes were observed during dormancy, breaking of dormancy occurred following a clear sequence of events. Starch accumulated in particular places, pre-empting further development in those areas. Vascular bundles developed and pollen mother cells underwent meiosis followed by microspore development.

Conclusions

Dormancy appears to mark a boundary between the development of the sporogenous tissue and the occurrence of meiosis for further microspore development. Breaking of dormancy occurs following a clear sequence of events, providing a developmental context in which to study winter dormancy and to evaluate differences in chilling requirements among genotypes.  相似文献   

12.

Background and Aims

Evolutionary transitions from heterostyly to dioecy have been proposed in several angiosperm families, particularly in Rubiaceae. These transitions involve the spread of male and female sterility mutations resulting in modifications to the gender of ancestral hermaphrodites. Despite sustained interest in the gender strategies of plants, the structural and developmental bases for transitions in sexual systems are poorly understood.

Methods

Here, floral morphology, patterns of fertility, pollen-tube growth and floral development are investigated in two populations of the scandent shrub Mussaenda pubescens (Rubiaceae), native to southern China, by means of experimental and open-pollinations, light microscopy, fluorescence microscopy and scanning electron microscopy combined with paraffin sectioning.

Key Results

Mussaenda pubescens has perfect (hermaphroditic) flowers and populations with two style-length morphs but only weak differentiation in anther position (stigma-height dimorphism). Experimental pollinations demonstrated that despite morphological hermaphroditism, the species is functionally dioecious. The long-styled (L) morph possesses sterile pollen and functions as a female, whereas the short-styled (S) morph is female sterile and functions as a male. Self- and intra-morph pollinations of the S-morph were consistent with those expected from dimorphic incompatibility. The two populations investigated were both S-morph (male) biased. Investigations of early stages of floral development indicated patterns typical of hermaphroditic flowers, with no significant differences in organ growth between the floral morphs. Meiosis of microspore mother cells was of the simultaneous type with tetrads isobilateral in shape. The tapetal cells in anther walls of the L-morph became vacuolized during meiosis I, ahead of the uninucleate microspore stage in the S-morph. In the L-morph, the microspore nucleus degenerated at the tetrad stage resulting in male sterility. Microsporogenesis and male gametophyte development was normal in the S-morph. Failure in the formation of megaspore mother cells and/or the development of megagametophytes resulted in female sterility in the S-morph, compared with normal megasporogenesis in the L-morph.

Conclusions

In M. pubescens, cryptic dioecy has evolved from stigma-height dimorphism as a result of morph-specific sterility mutations.  相似文献   

13.

Background and Aims

Spatial (herkogamy) and temporal (dichogamy) separation of pollen presentation and stigma receptivity have been interpreted as reducing interference between male and female functions in hermaphroditic flowers. However, spatial separation leads to a potential conflict: reduced pollination accuracy, where pollen may be placed in a location on the pollinator different from the point of stigma contact.

Methods

To understand better how herkogamous flowers resolve this conflict, a study was made of a subalpine herb, Parnassia epunctulata, the nectariferous flowers of which exhibit sequential anther dehiscence (staggered pollen presentation) and stamen movements; usually one newly dehisced anther is positioned each day over the central gynoecium, while the older stamens bend away from the central position.

Key Results

The open flowers were visited by a variety of pollinators, most of which were flies. Seed set was pollinator-dependent (bagged flowers set almost no seeds) and pollen-limited (manual pollination increased seed set over open pollination). Analyses of adaptive accuracy showed that coordinated stamen movements and style elongation (movement herkogamy) dramatically increased pollination accuracy. Specifically, dehiscing anthers and receptive stigmas were positioned accurately in the vertical and horizontal planes in relation to the opposite sexual structure and pollinator position. By contrast, the spatial correspondence between anthers and stigma was dramatically lower before the anthers dehisced and after stamens bent outwards, as well as before and after the period of stigmatic receptivity.

Conclusions

It is shown for the first time that a combination of movement herkogamy and dichogamy can maintain high pollination accuracy in flowers with generalized pollination. Staggered pollen and stigma presentation with spatial correspondence can both reduce sexual interference and improve pollination accuracy.  相似文献   

14.

Background and Aims

Understanding the species composition of pollen on pollinators has applications in agriculture, conservation and evolutionary biology. Current identification methods, including morphological analysis, cannot always discriminate taxa at the species level. Recent advances in flow cytometry techniques for pollen grains allow rapid testing of large numbers of pollen grains for DNA content, potentially providing improved species resolution.

Methods

A test was made as to whether pollen loads from single bees (honey-bees and bumble-bees) could be classified into types based on DNA content, and whether good estimates of proportions of different types could be made. An examination was also made of how readily DNA content can be used to identify specific pollen species.

Key Results

The method allowed DNA contents to be quickly found for between 250 and 9391 pollen grains (750–28 173 nuclei) from individual honey-bees and between 81 and 11 512 pollen grains (243–34 537 nuclei) for bumble-bees. It was possible to identify a minimum number of pollen species on each bee and to assign proportions of each pollen type (based on DNA content) present.

Conclusions

The information provided by this technique is promising but is affected by the complexity of the pollination environment (i.e. number of flowering species present and extent of overlap in DNA content). Nevertheless, it provides a new tool for examining pollinator behaviour and between-species or cytotype pollen transfer, particularly when used in combination with other morphological, chemical or genetic techniques.  相似文献   

15.

Background and Aims

The coastal plain of Israel hosts the last few remaining populations of the endemic Iris atropurpurea (Iridaceae), a Red List species of high conservation priority. The flowers offer no nectar reward. Here the role of night-sheltering male solitary bees, honey-bees and female solitary bees as pollinators of I. atropurpurea is documented.

Methods

Breeding system, floral longevity, stigma receptivity, visitation rates, pollen loads, pollen deposition and removal and fruit- and seed-set were investigated.

Key Results

The main wild pollinators of this plant are male eucerine bees, and to a lesser extent, but with the potential to transfer pollen, female solitary bees. Honey-bees were found to be frequent diurnal visitors; they removed large quantities of pollen and were as effective as male sheltering bees at pollinating this species. The low density of pollen carried by male solitary bees was attributed to grooming activities, pollen displacement when bees aggregated together in flowers and pollen depletion by honey-bees. In the population free of honey-bee hives, male bees carried significantly more pollen grains on their bodies. Results from pollen analysis and pollen deposited on stigmas suggest that inadequate pollination may be an important factor limiting fruit-set. In the presence of honey-bees, eucerine bees were low removal–low deposition pollinators, whereas honey-bees were high removal–low deposition pollinators, because they removed large amounts into corbiculae and deposited relatively little onto receptive stigmas.

Conclusions

Even though overall, both bee taxa were equally effective pollinators, we suggest that honey-bees have the potential to reduce the amount of pollen available for plant reproduction, and to reduce the amount of resources available to solitary bee communities. The results of this study have potential implications for the conservation of this highly endangered plant species if hives are permitted inside reserves, where the bulk of Oncocyclus iris species are protected.  相似文献   

16.

Background and Aims

Silene dioica and S. latifolia experience only limited introgression despite overlapping flowering phenologies, geographical distributions, and some pollinator sharing. Conspecific pollen precedence and other reproductive barriers operating between pollination and seed germination may limit hybridization. This study investigates whether barriers at this stage contribute to reproductive isolation between these species and, if so, which mechanisms are responsible.

Methods

Pollen-tube lengths for pollen of both species in styles of both species were compared. Additionally, both species were pollinated with majority S. latifolia and majority S. dioica pollen mixes; then seed set, seed germination rates and hybridity of the resulting seedlings were determined using species-specific molecular markers.

Key Results

The longest pollen tubes were significantly longer for conspecific than heterospecific pollen in both species, indicating conspecific pollen precedence. Seed set but not seed germination was lower for flowers pollinated with pure heterospecific versus pure conspecific pollen. Mixed-species pollinations resulted in disproportionately high representation of nonhybrid offspring for pollinations of S. latifolia but not S. dioica flowers.

Conclusions

The finding of conspecific pollen precedence for pollen-tube growth but not seed siring in S. dioica flowers may be explained by variation in pollen-tube growth rates, either at different locations in the style or between leading and trailing pollen tubes. Additionally, this study finds a barrier to hybridization operating between pollination and seed germination against S. dioica but not S. latifolia pollen. The results are consistent with the underlying cause of this barrier being attrition of S. dioica pollen tubes or reduced success of heterospecifically fertilized ovules, rather than time-variant mechanisms. Post-pollination, pre-germination barriers to hybridization thus play a partial role in limiting introgression between these species.  相似文献   

17.

Background and Aims

Hydration, rupture and exine opening due to the sudden and large expansion of intine are typical of taxoid-type pollen grains. A hemispheric outgrowth external to the exine was observed on Cupressus and Juniperus pollen grains before the intine swelling and exine release. However, the actual existence of this permanent or temporary structure and its precise role in pollen hydration is still being debated. The aim of this paper is to collect information on the actual presence of this peculiar outgrowth on the surface of the Cupressus pollen grain, its structure, composition and function.

Methods

Pollen grains of several Cupressus species were observed using various techniques and methodologies, under light and fluorescence microscopy, phase-contrast microscopy, confocal microscopy, scanning electron microscopy, and an environmental scanning electron microscope. Observations were also performed on other species with taxoid-type pollen grains.

Key Results

A temporary structure located just above the pore was observed on Cupressus pollen grains, as well as on other taxoid-type pollens. It is hemispheric, layered, and consists of polysaccharides and proteins. The latter are confined to its inner part. Its presence seems to regulate the entrance of water into the grains at the beginning of pollen hydration.

Conclusions

The presence of a temporary structure over the pore of taxoid-type pollen grains was confirmed and its structure was resolved using several stains and observation techniques. This structure plays a role in the first phases of pollen hydration.  相似文献   

18.

Background and Aims

Plants surrounded by individuals of other co-flowering species may suffer a reproductive cost from interspecific pollen transfer (IPT). However, differences in floral architecture may reduce or eliminate IPT.

Methods

A study was made of Pedicularis densispica (lousewort) and its common co-flowering species, Astragalus pastorius, to compare reproductive and pollination success of lousewort plants from pure and mixed patches. Floral architecture and pollinator behaviour on flowers of the two plants were compared along with the composition of stigmatic pollen load of the louseworts. The extent of pollen limitation of plants from pure and mixed patches was also explored through supplemental pollination with self- and outcross pollen (PLs and PLx).

Key Results

Mixed patches attracted many more nectar-searching individuals of Bombus richardsi. These bumble-bees moved frequently between flowers of the two species. However, they pollinated P. densispica with their dorsum and A. pastorius with their abdomen. This difference in handling almost completely eliminated IPT. Lousewort plants from mixed patches yielded more seeds, and seeds of higher mass and germinability, than those from pure patches. Moreover, louseworts from mixed patches had lower PLs and PLx compared with those from pure patches.

Conclusions

Differences in floral architecture induced differences in pollinator behaviour that minimized IPT, such that co-flowering plants significantly enhanced quantity and quality of pollinator visits for the lousewort plants in patchy habitat. These findings add to our understanding of the mechanisms of pollination facilitation.  相似文献   

19.

Background and Aims

The polygalacturonase (PG) gene family has been found to be enriched in pollen of several species; however, little is currently known about the function of the PG gene in pollen development. To investigate the exact role that the PG gene has played in pollen development and about this family in general, one putative PG gene, Brassica campestris Male Fertility 9 (BcMF9), was isolated from Chinese cabbage (Brassica campestris ssp. chinensis, syn. B. rapa ssp. chinensis) and characterized.

Methods

RT-PCR, northern blotting and in situ hybridization were used to analyse the expression pattern of BcMF9, and antisense RNA technology was applied to study the function of this gene.

Key Results

BcMF9 is expressed in particular in the tapetum and microspore during the late stages of pollen development. Antisense RNA transgenic plants that displayed decreased expression of BcMF9 showed pollen morphological defects that resulted in reduced pollen germination efficiency. Transmission electron microscopy revealed that the homogeneous pectic exintine layer of pollen facing the exterior was over-developed and predominantly occupied the intine, reversing the normal proportional distribution of the internal endintine layer and the external exintine in transgenic pollen. Inhibition of BcMF9 also resulted in break-up of the previously formed tectum and baculae from the beginning of the binucleate stage, as a result of premature degradation of tapetum.

Conclusions

Several lines of evidence, including patterns of BcMF9 expression and phenotypic defects, suggest a sporophytic role in exine patterning, and a gametophytic mode of action of BcMF9 in intine formation. BcMF9 might act as a co-ordinator in the late stages of tapetum degeneration, and subsequently in the regulation of wall material secretion and, in turn, exine formation. BcMF9 might also play a role in intine formation, possibly via regulation of the dynamic metabolism of pectin.Key words: Brassica campestris, Chinese cabbage, exine, intine, PG, pollen wall, polygalacturonase, BcMF9  相似文献   

20.

Key message

An ABC transporter gene ( OsABCG15 ) was proven to be involved in pollen development in rice. The corresponding protein was localized on the plasma membrane using subcellular localization.

Abstract

Wax, cutin, and sporopollenin are important for normal development of the anther cuticle and pollen exine, respectively. Their lipid soluble precursors, which are produced in the tapetum, are then secreted and transferred to the anther and microspore surface for polymerization. However, little is known about the mechanisms underlying the transport of these precursors. Here, we identified and characterized a member of the G subfamily of ATP-binding cassette (ABC) transporters, OsABCG15, which is required for the secretion of these lipid-soluble precursors in rice. Using map-based cloning, we found a spontaneous A-to-C transition in the fourth exon of OsABCG15 that caused an amino acid substitution of Thr-to-Pro in the predicted ATP-binding domain of the protein sequence. This osabcg15 mutant failed to produce any viable pollen and was completely male sterile. Histological analysis indicated that osabcg15 exhibited an undeveloped anther cuticle, enlarged middle layer, abnormal Ubisch body development, tapetum degeneration with a falling apart style, and collapsed pollen grains without detectable exine. OsABCG15 was expressed preferentially in the tapetum, and the fused GFP-OsABCG15 protein was localized to the plasma membrane. Our results suggested that OsABCG15 played an essential role in the formation of the rice anther cuticle and pollen exine. This role may include the secretion of the lipid precursors from the tapetum to facilitate the transfer of precursors to the surface of the anther epidermis as well as to microspores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号