首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abstract Beetles in the weevil subfamilies Scolytinae and Platypodinae are unusual in that they burrow as adults inside trees for feeding and oviposition. Some of these beetles are known as ambrosia beetles for their obligate mutualisms with asexual fungi—known as ambrosia fungi—that are derived from plant pathogens in the ascomycete group known as the ophiostomatoid fungi. Other beetles in these subfamilies are known as bark beetles and are associated with free‐living, pathogenic ophiostomatoid fungi that facilitate beetle attack of phloem of trees with resin defenses. Using DNA sequences from six genes, including both copies of the nuclear gene encoding enolase, we performed a molecular phylogenetic study of bark and ambrosia beetles across these two subfamilies to establish the rate and direction of changes in life histories and their consequences for diversification. The ambrosia beetle habits have evolved repeatedly and are unreversed. The subfamily Platypodinae is derived from within the Scolytinae, near the tribe Scolytini. Comparison of the molecular branch lengths of ambrosia beetles and ambrosia fungi reveals a strong correlation, which a fungal molecular clock suggests spans 60 to 21 million years. Bark beetles have shifted from ancestral association with conifers to angiosperms and back again several times. Each shift to angiosperms is associated with elevated diversity, whereas the reverse shifts to conifers are associated with lowered diversity. The unusual habit of adult burrowing likely facilitated the diversification of these beetle‐fungus associations, enabling them to use the biomass‐rich resource that trees represent and set the stage for at least one origin of eusociality.  相似文献   

2.
Abstract.  1. Bark and ambrosia beetles are crucial for woody biomass decomposition in tropical forests worldwide. Despite that, quantitative data on their host specificity are scarce.
2. Bark and ambrosia beetles (Scolytinae and Platypodinae) were reared from 13 species of tropical trees representing 11 families from all major lineages of dicotyledonous plants. Standardised samples of beetle-infested twigs, branches, trunks, and roots were taken from three individuals of each tree species growing in a lowland tropical rainforest in Papua New Guinea.
3. A total of 81 742 beetles from 74 species were reared, 67 of them identified. Local species richness of bark and ambrosia beetles was estimated at 80–92 species.
4. Ambrosia beetles were broad generalists as 95% of species did not show any preference for a particular host species or clade. Similarity of ambrosia beetle communities from different tree species was not correlated with phylogenetic distances between tree species. Similarity of ambrosia beetle communities from individual conspecific trees was not higher than that from heterospecific trees and different parts of the trees hosted similar ambrosia beetle communities, as only a few species preferred particular tree parts.
5. In contrast, phloeophagous bark beetles showed strict specificity to host plant genus or family. However, this guild was poor in species (12 species) and restricted to only three plant families (Moraceae, Myristicaceae, Sapindaceae).
6. Local diversity of both bark and ambrosia beetles is not driven by the local diversity of trees in tropical forests, since ambrosia beetles display no host specificity and bark beetles are species poor and restricted to a few plant families.  相似文献   

3.
Abstract Cylindrobrotus pectinatus gen. et sp.n. , a new scolytine species from Cretaceous Lebanese amber, is described. A new tribe, Cylindrobrotini trib.n. , is proposed for this unique species, which demonstrates an unusual combination of some archaic and many advanced characters. This finding suggests that the Scolytinae became a distinct lineage of Curculionoidea from the Lower Cretaceous. Fossil records are reviewed, and some remarks on the origin and taxonomic position of bark and ambrosia beetles are made. Some comments on the various phylogenetic interpretations of the last 30 years are given, particularly in respect of their correspondence with the fossil record. The early appearance of Scolytinae in the fossil record before other Curculionidae (which appeared in the Upper Cretaceous) can be used as evidence against the hypothesis of bark beetles as offspring of weevils. The question of the taxonomic rank of bark beetles (separate subfamily or family) and their placement among other groups of the superfamily remains unsolved.  相似文献   

4.
Insect–fungus mutualism is one of the better-studied symbiotic interactions in nature. Ambrosia fungi are an ecological assemblage of unrelated fungi that are cultivated by ambrosia beetles in their galleries as obligate food for larvae. Despite recently increased research interest, it remains unclear which ecological factors facilitated the origin of fungus farming, and how it transformed into a symbiotic relationship with obligate dependency. It is clear from phylogenetic analyses that this symbiosis evolved independently many times in several beetle and fungus lineages. However, there is a mismatch between palaeontological and phylogenetic data. Herein we review, for the first time, the ambrosia system from a palaeontological perspective. Although largely ignored, families such as Lymexylidae and Bostrichidae should be included in the list of ambrosia beetles because some of their species cultivate ambrosia fungi. The estimated origin for some groups of ambrosia fungi during the Cretaceous concurs with a known high diversity of Lymexylidae and Bostrichidae at that time. Although potentially older, the greatest radiation of various ambrosia beetle lineages occurred in the weevil subfamilies Scolytinae and Platypodinae during the Eocene. In this review we explore the evolutionary relationship between ambrosia beetles, fungi and their host trees, which is likely to have persisted for longer than previously supposed.  相似文献   

5.
The scolytid ambrosia beetles Xyleborus monographus and X. dryographus were investigated to identify their nutritional ambrosia fungi. The examination of the oral mycetangia of the beetles, the specialized organs for fungal transport, revealed the dominant occurrence of Raffaelea montetyi, a fungus that was also predominant in the beetle tunnels in the immediate vicinity of the feeding larvae. R. montetyi was previously known only as the ambrosia fungus of the platypodid ambrosia beetle, Platypus cylindrus. These beetle species inhabit the same habitat, mainly trunks of oaks in the Western Palaeartic. The possibility of an exchange of the symbiotic fungus between the ambrosia beetles within their common breeding place is discussed. Consequently, the previous hypothesis of a species-specific association of a single ambrosia fungus with a single beetle species is questioned. A phylogenetic analysis based on DNA sequences classified R. montetyi within the Ophiostomatales of the ascomycetes. The investigation of conidiogenesis of R. montetyi by SEM supported this taxonomic placement and showed the development of the conidia by annellidic percurrent proliferation, identical to the conidiogenesis reported for many anamorph states of the Ophiostomatales.  相似文献   

6.
Understanding the ecology and evolutionary history of symbionts and their hosts requires accurate taxonomic knowledge, including clear species boundaries and phylogenies. Tortoise mites (Mesostigmata: Uropodoidea) are among the most diverse arthropod associates of bark beetles (Curculionidae: Scolytinae), but their taxonomy and host associations are largely unstudied. We tested the hypotheses that (1) morphologically defined species are supported by molecular data, and that (2) bark beetle uropodoids with a broad host range comprise cryptic species. To do so, we assessed the species boundaries of uropodoid mites collected from 51 host species, across 11 countries and 103 sites, using morphometric data as well as partial cytochrome oxidase I (COI) and nuclear large subunit ribosomal DNA (28S). Overall, morphologically defined species were confirmed by molecular datasets, with a few exceptions. Twenty-nine of the 36 uropodoid species (Trichouropoda, Nenteria and Uroobovella) collected in this study had narrow host ranges, while seven species had putative broad host ranges. In all but one species, U. orri, our data supported the existence of these host generalists, which contrasts with the typical finding that widespread generalists are actually complexes of cryptic specialists.  相似文献   

7.
Although invasion of exotic ambrosia beetles (fungus feeders) and bark beetles (phloem feeders) (Coleoptera: Curculionidae: Scolytinae) is considered a major threat to forest health worldwide, no studies have quantitatively investigated the anthropogenic and environmental factors shaping the biogeographical patterns of invasion by these insects across large spatial scales. The primary aim of this study was to assess the relative importance of international trade and several environmental variables of the recipient region on species richness of established exotic Scolytinae. As a reference, we also evaluated the relationships between the same environmental variables and species richness of native Scolytinae. Using an information-theoretic framework for model selection and hierarchical partitioning, we evaluated the relative importance of the potential drivers of species richness of native and exotic Scolytinae in 20 European countries and the 48 contiguous continental US states. Analyses were conducted separately for ambrosia and bark beetle species. Value of imports was a strong predictor of the number of exotic Scolytinae species in both regions. In addition, in the USA, warmer and wetter climate was positively linked to increased numbers of both native and exotic ambrosia beetles. Forest heterogeneity and climatic heterogeneity and secondarily forest area were key drivers in explaining patterns of species richness for native bark beetles but not for exotic species in both regions. Our findings suggest that if current infestation levels continue on imported plants and wood packaging material, increasing international trade will likely lead to more establishments of exotic Scolytinae with concomitant negative effects on forest health in both Europe and the USA. Compared to Europe the risk of invasion appears higher in the USA, especially for ambrosia beetles in the southeastern USA where the climate appears highly suitable for exotic establishment.  相似文献   

8.
9.
小蠹亚科的分类地位(鞘翅目,象虫科)   总被引:2,自引:0,他引:2  
许多学者将小蠹作为象虫总科Curculionoidea中一个独立的科Scolytidae,而目前国际上普遍认为小蠹为象虫科Curculionidae中的一个亚科,即小蠹亚科Scolytinae。Erichson在1842年即提出了小蠹为象虫科的一个亚科,20世纪以R.A.Crowson为代表的学者对此观点表示支持并进行了较为严谨的科学论证,而以S.L.Wood为代表的另外一些学者则坚持小蠹的科级地位,我国学者蔡邦华、殷惠芬等一直沿用该分类系统。近20年来,国际上许多学者通过对小蠹类昆虫的成虫和幼虫外部特征的深入研究,以及支序系统学和分子生物学等一些最新结果,普遍认为小蠹类昆虫应为象虫科的一个亚科,这一观点已被国际上广泛接受。本文全面介绍了小蠹分类研究的历史及新的研究进展,并提出和建议采用"小蠹亚科"这一分类地位,与象虫亚科并列,均隶属于象虫科。  相似文献   

10.
Forest insect pests are one of the major disturbance factors in forest ecosystems and their outbreaks are expected to be more severe under the influence of global warming. Coleopterans are dominant among forest insects and their ecological functions include general detritivores, dead wood feeders, fungivores, herbivores, live wood feeders and predators. Ambrosia and bark beetles contribute to ecological succession of forests and, therefore, ecological functions of forests can be changed in response to their outbreaks. Mountain pine beetle (MPB) outbreaks are the most dramatic example of changes in the ecological functions of forest due to the outbreak of a forest insect pest altered by global warming. Composition of coleopteran species varies with latitude. However, composition of functional groups is consistent with latitude which indicates that resources available to beetles are consistent. In coleopteran communities, ambrosia and bark beetles can become dominant due to increases of dead or stressed trees due to the warming climate. This can also induce changes in the ecological functions of coleopterans, i.e. selective force to displace trees that have lower ecological fitness due to temperature increase. Therefore, recent increases in the density ambrosia and bark beetles offer a chance to study ecological processes in forests under the influence of global warming.  相似文献   

11.
Abstract Scolytine weevils (bark and ambrosia beetles) have a unique ecological significance in forest ecosystems, which equates to major effects on landscape ecology and to monetary losses. Fossilized galleries of scolytines have been reported in Late Mesozoic wood, but here we describe a well‐preserved body fossil from the Cretaceous, c. 100 Ma, preserved in amber from northern Myanmar. Moreover, the specimen is remarkably similar to Recent species of the genus Microborus, revealing stasis unexpected within scolytines and thus highlighting the antiquity of the group. Stratigraphic dating and comparison of insect palaeofaunas included in other well‐dated ambers from multiple sites support the age estimate of the Burmese amber. A minimum age for one clade of scolytines is thus established, indicating an early divergence of scolytines from other weevils in the Late Jurassic or Early Cretaceous and challenging the current perspective of weevil evolution.  相似文献   

12.
We assessed the effect of geographical distance on insect species turnover in a situation where other major environmental factors, including host plant species, altitude, and climate, were constant. We sampled ambrosia beetles (Coleoptera, Curculionidae: Scolytinae and Platypodinae) from four tree species: Artocarpus altilis , Ficus nodosa , Leea indica and Nauclea orientalis , at three sites forming a 1000 km transect in lowland rainforests of northern Papua New Guinea. A standardized volume of wood from trunk, branches and twigs was sampled for ambrosia beetles from three individuals of the four tree species at each site. Each tree was killed standing and left exposed to beetle colonization for 20 days prior to sampling. We obtained 12 751 individuals from 84 morphospecies of ambrosia beetles. We surveyed most of the local species richness at each site, predicted by Chao 2 species richness estimates. The similarity of ambrosia beetle communities, estimated by Chao-Sorensen index, was not correlated with their geographical distance. Likelihood analysis and Q-mode analysis using Monte Carlo-generated null distribution of beetles among sites supported the hypothesis that the assemblages of ambrosia beetles at different sites are drawn from the same species pool, regardless of their geographical distance. Tree part (trunk, branch, or twig) was more important predictor of the composition of ambrosia beetle communities than was the host species or geographical location. All three variables, however, explained only a small portion of variability in ambrosia assemblages. The distribution of ambrosia beetles among tree parts, tree species and study sites was mostly random, suggesting limited importance of host specificity or dispersal limitation.  相似文献   

13.
The classification of life forms into a hierarchical system (taxonomy) and the application of names to this hierarchy (nomenclature) is at a turning point in microbiology. The unprecedented availability of genome sequences means that a taxonomy can be built upon a comprehensive evolutionary framework, a longstanding goal of taxonomists. However, there is resistance to adopting a single framework to preserve taxonomic freedom, and ever increasing numbers of genomes derived from uncultured prokaryotes threaten to overwhelm current nomenclatural practices, which are based on characterised isolates. The challenge ahead then is to reach a consensus on the taxonomic framework and to adapt and scale the existing nomenclatural code, or create a new code, to systematically incorporate uncultured taxa into the chosen framework.Subject terms: Archaea, Bacteria  相似文献   

14.
Ambrosia fungi are an ecological assemblage cultivated by ambrosia beetles as required nutrient sources. This mutualism evolved in multiple beetle and fungus lineages. Whether convergence in ecology led to convergent metabolism in ambrosia fungi is unknown. We compared the assimilation of 190 carbon sources in five independent pairs of ambrosia fungi and closely related, non-ambrosial species. Ecological convergence versus phylogenetic divergence in carbon source use was tested using variation partitioning. We found no convergence in carbon utilization capacities. Instead, metabolic variation was mostly explained by phylogenetic relationships. In addition, carbon usage in ambrosia fungi was equally diverse as that in non-ambrosial species. Thus, carbon metabolism of each ambrosia fungus is determined by its inherited metabolism, not the transition towards symbiosis. In contrast to other fungus-farming systems of termites and attine ants, the fungal symbionts of ambrosia beetles are functionally diverse, reflecting their independent evolutionary origins.  相似文献   

15.
Although Europe is the cradle of dragonfly systematics and despite great progress in the last 2 decades, many issues in naming its species and understanding their evolutionary history remain unresolved. Given the public interest, conservation importance and scientific relevance of Odonata, it is time that remaining questions on the species?? status, names and affinities are settled. We review the extensive but fragmentary literature on the phylogeny, classification and taxonomy of European Odonata, providing summary phylogenies for well-studied groups and an ecological, biogeographic and evolutionary context where possible. Priorities for further taxonomic, phylogenetic and biogeographic research are listed and discussed. We predict that within a decade the phylogeny of all European species will be known.  相似文献   

16.
Fungi in the orders Ophiostomatales and Microascales (Ascomycota), often designated as ophiostomatoid fungi, are frequent associates of scolytine bark and ambrosia beetles that colonize hardwood and coniferous trees. Several species, e.g., Ophiostoma novo-ulmi, are economically damaging pathogens of trees. Because little is known regarding the ophiostomatoid fungi in Europe, we have explored the diversity of these fungi associated with hardwood-infesting beetles in Poland. This study aims to clarify the associations between fungi in the genera Ambrosiella, Graphium (Microascales), Graphilbum, Leptographium, Ophiostoma and Sporothrix (Ophiostomatales) and their beetle vectors in hardwood ecosystems. Samples associated with 18 bark and ambrosia beetle species were collected from 11 stands in Poland. Fungi were isolated from adult beetles and galleries. Isolates were identified based on morphology, DNA sequence comparisons for five gene regions (ITS, LSU, ßT, TEF 1-α, and CAL) and phylogenetic analyses. In total, 36 distinct taxa were identified, including 24 known and 12 currently unknown species. Several associations between fungi and bark and ambrosia beetles were recorded for the first time. In addition, associations between Dryocoetes alni, D. villosus, Hylesinus crenatus, Ernoporus tiliae, Pteleobius vittatus and ophiostomatoid fungi were reported for the first time, and Sporothrix eucastanea was reported for the first time outside of the USA. Among the species of Ophiostomatales, 14 species were in Ophiostoma s. l., two species were in Graphilbum, nine species were in Sporothrix, and seven species were in Leptographium s. l. Among the species of Microascales, three species were in Graphium, and one was in Ambrosiella. Twenty taxa were present on the beetles and in the galleries, twelve only on beetles, and four only in galleries. Bark and ambrosia beetles from hardwoods appear to be regular vectors, with ophiostomatoid fungi present in all the beetle species. Most ophiostomatoid species had a distinct level of vector/host specificity, although Ophiostoma quercus, the most frequently encountered species, also had the greatest range of beetle vectors and tree hosts. Plant pathogenic O. novo-ulmi was found mainly in association with elm-infesting bark beetles (Scolytus multistriatus, S. scolytus, and P. vittatus) and occasionally with H. crenatus on Fraxinus excelsior and with Scolytus intricatus on Quercus robur.  相似文献   

17.
Some phytophagous insects have been known to inoculate certain fungi on plant substrates. In many cases of such insect–fungi relationships it has been considered that fungi contribute to insects by decomposing lignin or polysaccharides, and that the insects feed on the decomposition products or fungi themselves. Females of the leaf-rolling weevil in the genus Euops (Attelabidae) store spores of symbiotic fungi in the mycangia and inoculate them on leaf rolls. To determine the effect of mycangial fungi on larval nutrition in E. lespedezae, the nutritional value was compared between leaves with and without mycangial fungi. Two Penicillium species were isolated from the mycangia. These mycangial fungi showed little effect on the decomposition of lignin and polysaccharides, and showed little effect on enhancement of soluble sugars within leaves. Thus, the mutualism between Euops and its mycangial fungi contrasts with the mainly nutritional mutualisms between wood-infesting insects (termites, bark/ambrosia beetles, and wood wasps) and lignin/polysaccharide-decomposing fungi.  相似文献   

18.
Xylosandrus germanus (Blandford) and other species of ambrosia beetles are key pests of ornamental nursery trees. A variety of laboratory- and field-based experiments were conducted in pursuit of improved monitoring strategies and to develop a trap tree strategy for ambrosia beetles. Traps baited with bolts prepared from Magnolia virginiana L. injected with ethanol caught five times more X. germanus than ethanol-baited traps. Basal stem injections of ethanol into M. virginiana induced more ambrosia beetle attacks than irrigating or baiting with ethanol, and no attacks occurred on water-injected trees. A positive correlation was also detected between concentration of injected ethanol and cumulative attacks. Solid phase microextraction-gas chromatography-mass spectrometry characterized bark emissions from ethanol- and water-injected M. virginiana at 1, 2, 10, and 16 d after treatment. Ethanol emission from injected trees steadily declined from 1 to 16 d after treatment, but was not emitted from water-injected trees. A variety of monoterpenes were also emitted in trace amounts from the ethanol- and water-injected trees. Antennal responses of X. germanus via gas chromatography-electroantennographic detection to volatiles from ethanol-injected M. virginiana occurred for ethanol, but not the various monoterpenes. X. germanus and other ambrosia beetles were also equally attracted to traps baited with ethanol alone compared with a synthetic mixture of ethanol plus various monoterpenes formulated to mimic ethanol-injected M. virginiana. Injecting concentrated solutions of ethanol into trees may be useful for establishing odor-based trap trees, which could aid with monitoring programs and/or potentially deflect ambrosia beetles away from valuable nursery stock.  相似文献   

19.
The higher-level taxonomy of tiger beetles is re-evaluated in light of recent publications based on large taxon sets and a large number of genetic loci. These studies have demonstrated that tiger beetles are a distinct family, Cicindelidae Latreille, sister to the Carabidae Latreille (ground beetles) or Trachypachidae Thomson (false ground beetles) + Carabidae. Recent phylogenies have also recovered consistent patterns in higher-level relationships within the tiger beetles that challenge the traditional taxonomic framework, most of which is more than a century old. These phylogenetic results are reviewed along with concordant morphological characters to create an updated higher-level classification. The subfamily Collyrinae Csiki is not supported by any modern data. We recognize six tribes, Manticorini Laporte (new sense), Megacephalini Laporte (new sense), Collyridini Brullé, Ctenostomatini Laporte, Cicindelini Latreille and the reinstated Oxycheilini Chaudoir (with emended spelling).  相似文献   

20.
1 Sudden oak death is caused by the apparently introduced oomycete, Phytophthora ramorum. We investigated the role of bark and ambrosia beetles in disease progression in coast live oaks Quercus agrifolia. 2 In two Marin County, California sites, 80 trees were inoculated in July 2002 with P. ramorum and 40 were wounded without inoculation. Half of the trees in each group were sprayed with the insecticide permethrin [cyclopropanecarboxylic acid, 3‐(2,2‐dichloroethenyl)‐2,2‐dimethyl‐(3‐phenoxyphenyl) methyl ester] to prevent ambrosia and bark beetle attacks, and then were sprayed twice per year thereafter. After each treatment, sticky traps were placed on only the permethrin‐treated trees. Beetles were collected periodically in 2003. 3 Inoculated trees accounted for 95% of all beetles trapped. The ambrosia beetles Monarthrum scutellare and Xyleborinus saxeseni and the western oak bark beetle Pseudopityophthorus pubipennis were the most abundant of the seven species trapped. 4 Permethrin treatment delayed initiation of beetle attacks and significantly reduced the mean number of attacks per tree. Beetles did not attack any wounded or noncankered inoculated trees. 5 Trees with larger cankers trapped more beetles early in the disease. Once permethrin lost effectiveness, the number of beetle entrance tunnels was a more reliable predictor of subsequent trap catch than was canker size. 6 Beetles were initially attracted to P. ramorum cankers in response to kairomones generated in the host‐pathogen interaction. After beetles attacked the permethrin‐treated trees, aggregation pheromones most probably were the principal factor in beetle colonization behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号